

First Workshop *Data Science: Theory and Application* RWTH Aachen University, Oct. 26, 2015

The Statistical Approach to Speech Recognition and Natural Language Processing

Hermann Ney Human Language Technology and Pattern Recognition

RWTH Aachen University, Aachen DIGITEO Chair, LIMSI-CNRS, Paris

Human Language Technology (HLT)

Speech Recognition

Text Image Recognition

boart to preserve the great idea to preserve this

Machine Translation

wir wollen diese große Idee erhalten

we want to preserve this great idea

tasks:

- speech recognition
- text image recognition
- machine translation
 - (+ sign language,...)

characteristic properties:

- well-defined 'classification' tasks:
 - due to 5000-year history of (written!) language
 - well-defined classes: letters or words of the language
- easy task for humans (but: native vs. foreign language ?)
- hard task for computers (as the last 50 years have shown!)

unifying view:

- \bullet formal task: input string \rightarrow output string
- output string: string of words/letters in a natural language
- models of context and dependencies: strings in input and output
 - within input and output string
 - across input and output string

activities of RWTH team in large-scale joint projects:

- TC-STAR 2004-2007: funded by EU
 - first research system for speech-to-speech translation on real-life data (EU parliament)
 - partners: KIT Karlsruhe, FBK Trento, LIMSI Paris, UPC Barcelona, IBM-US Research, ...
- GALE 2005-2011: funded by US DARPA emphasis on Chinese and Arabic speech and text
- BOLT 2011-2015: funded by US DARPA emphasis on colloquial text for Arabic and Chinese
- QUAERO 2008-2013: funded by OSEO France European languages, more colloquial speech, handwriting
- BABEL 2012-2017: funded by US IARPA spoken term detection with noisy and limited training data
- EU projects 2012-2014: EU-Bridge, TransLectures emphasis on recognition and translation of lectures (academic, TED, ...)

- two strings: input $x_1^M := x_1...x_m...x_M$ and output $c_1^N := c_1...c_n...c_N$ with a probabilistic dependence: $p(N, c_1^N | x_1^M)$
- performance measure or loss function: $L[\tilde{c}_1^{\tilde{N}}, c_1^N]$ between true output $\tilde{c}_1^{\tilde{N}}$ and hypothesized output c_1^N
- Bayes decision rule minimizes expected loss:

$$x_1^M o \hat{c}_1^{\hat{N}}(x_1^M) \ := \ rgmin_{N,c_1^N} \Big\{ \sum_{ ilde{N}, ilde{c}_1^{ ilde{N}}} p(ilde{N}, ilde{c}_1^{ ilde{N}}|x_1^M) \cdot L[ilde{c}_1^{ ilde{N}},c_1^N] \Big\}$$

 $\text{rule for minimum string error:} \quad x_1^M \to \hat{c}_1^{\hat{N}}(x_1^M) := \arg \max_{N, c_1^N} \left\{ p(N, c_1^N | x_1^M) \right\}$

• from true to model distribution: separation of language model $p(N, c_1^N)$

$$p(N,c_{1}^{N}|x_{1}^{M}) = p(N,c_{1}^{N}) \cdot p(x_{1}^{M}|c_{1}^{N}) \left/ \left. p(x_{1}^{M}) \right|
ight.$$

- advantage: huge amounts of monolingual training data
- extension: log-linear modelling

RÀ

four ingredients:

- performance measure: often edit distance we have to decide how to judge the quality of the system output
- probabilistic models (with a suitable structure): to capture the dependencies within and between input and output strings
 - elementary observations: Gaussian mixtures, log-linear models, support vector machines (SVM), artificial neural nets (ANN), ...
 - strings: n-gram Markov chains, Hidden Markov models (HMM), recurrent neural nets (RNN), LSTM RNN, ...
- training criterion:
 - to learn the free parameters of the models
 - ideally should be linked to performance criterion
 - might result in complex mathematical optimization (efficient algorithms!)
 - extreme situation: number of free parameters vs. observations
- Bayes decision rule:
 - to generate the output word sequence
 - combinatorial problem (efficient algorithms)
 - should exploit structure of models

examples: dynamic programming and beam search, A* and heuristic search, ...

use of statistics has been controversial in symbolic processing and computational linguistics:

• Chomsky 1969:

... the notion 'probability of a sentence' is an entirely useless one, under any known interpretation of this term.

 was considered to be true by most experts in (rule-based) natural language processing and artificial intelligence

history of statistical approach to MT:

- 1989-94: IBM's pioneering work
- since 1996: only a few teams advocated statistical MT: RWTH Aachen, UP Valencia, HKUST Hong Kong, CMU Pittsburgh
- since 2004: from singularity to mainstream in MT
- 2008 Google Translate

Example of Alignment (Canadian Hansards)

R

From Words to Phrases

source sentence 我很高兴和你在一起. gloss notation I VERY HAPPY WITH YOU AT TOGETHER. target sentence I enjoyed my stay with you.

Viterbi alignment for $F \rightarrow E$:

WS Data Science, RWTH Aachen, 26-Oct-2015

phrase-based approach:

- training: extraction

 of phrase pairs (= two-dim. 'blocks')
 after alignment/lexicon
 training
- translation process: phrases are the smallest units

positions										-
								-	•	
						-				
					-					
							•			
get		-								
tar		-								
	•									
			-							

source positions

11

Conclusions HLT tasks: mapping from input string to output string

- statistical approach (inc. ANNs): four key ingredients
 - choice of performance measure: errors at string, word, phoneme, frame level
 - probabilistic models at these levels and the interaction between these levels
 - training criterion along with an optimization algorithm
 - Bayes decision rule along with an efficient implementation
- about recent work on artificial neural nets:
 - they result in significant improvements
 - they provide one more type of probabilistic models
 - they are PART of the statistical approach
- specific future challenges for statistical approach (incl. ANNs) in general:
 - complex mathematical model that is difficult to analyze
 - questions: can we find suitable mathematical approximations with more explicit descriptions of the dependencies and level interactions and of the performance criterion (error rate)?
- specific challenges for ANNs:
 - can the HMM-based alignment mechanism be replaced?
 - can we find ANNs with more explicit probabilistic structures?

THE END

