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1 Introduction

In the year 1948, Claude Shannon established a mathematical theory in his seminal
work [1] for the elementary description of information transmission over noisy commu-
nication systems. He provided a conceptual probabilistic model for a point-to-point
channel between a single transmitter and a single receiver impaired by noise. A main
part of his contribution was deriving and proving the maximal data-rate for reliable
communication on a Gaussian point-to-point channel under fixed power and bandwidth
constraints. But actually achieving the maximal data-rate in an implemented com-
munication system has been exceedingly challenging over several decades. Since then,
Shannon’s work inspired many scientists and engineers to design elaborate channel
codes that counteract transmission errors in order to achieve the maximal data-rate.
Nowadays, it is indeed possible to communicate with data rates pretty close to the
Shannon-capacity with reasonable effort [2].

However, in contemporary wireless communication systems there are multiple users
sharing the same communication medium. In contrast to omnipresent noise, the re-
sulting multi-user interference is not a naturally occurring phenomenon - it is rather a
self-induced impairment caused by multiple simultaneous transmissions. The ongoing
trend of increasing wireless communication traffic leads to a tight bottleneck of the
maximally achievable data rates per user.

So far, most conventional signalling strategies (cf. [3], [4], [5]) basically avoid inter-
ference by signal orthogonalization, by treating weak interference as noise or by can-
celling strong interference. In case of orthogonalization, the available resources (e.g.,
time, bandwidth, space) are elaborately partitioned among the users so that each user
obtains a limited share of an ordinary interference-free point-to-point channel to con-
vey their dedicated signals to the intended receivers, so that non-dedicated users are
masked out. For instance, if the data rate is demanded to be equal among each user, it
will scale reciprocally. In other words, each one of K > 1 users only achieves the 1

K -th
ratio of the sum-rate of a point-to-point channel. Whereas treating interference as
noise is indeed optimal for the case of very weak interference power as shown in [6], [7]
and [8], the approach clearly results in very low data rates for moderate and strong
interference power, especially for a high number of users. Similarly, cancelling inter-
ference is most effective for very strong interference power only. The most relevant
cases in between, i. e., for multi-user channels with moderate interference power or even
generic channel conditions, the sum-capacity and the capacity region of the individual
rates per user remains unsolved and highly challenging so far.

1



1 Introduction

1.1 Capacity Approximation

Even for the most elementary 2 -user interference channel, the exact capacity charac-
terization is not fully known and proven yet. However, it turned out that it is worth-
while to approximate the channel capacity of multi-user channels with several different
techniques (cf. [5]). Within the scope of this theses, especially the degrees-of-freedom
(DoF) measure for capacity approximation at high signal-to-noise-ratio (SNR), is of
particular interest.
Furthermore, to ease an accurate capacity approximation, simplified multi-user

channel models are considered by focussing on the challenging effects of multiple signal
interactions and by de-emphasizing the effects of noise. The linear deterministic chan-
nel model (LDCM) [9] provides a promising model that yet accurately approximates
these effects in terms of the highly relevant Gaussian channel model. As a result, this
approach supported and inspired several seminal works studying the capacity of var-
ious elementary channels in terms of the highly relevant Gaussian channel model. In
some cases the capacity is even characterized within a limited number of bits (e. g., the
2 -user interference channel [4] and the relay channel [9]). These derivations also utilize
genie-based bounding techniques as developed in [10] and [4]. But when considering
interference channels with more than two users, the optimal communication schemes
and their capacity are far less understood. Note that approximating the capacity for
channels approximated the LDCM becomes increasingly challenging for multiple users
as well.

1.2 The Fundamental Principle of Interference
Alignment

Multi-user interference is conventionally considered as a harmful and hence unwanted
impairment that must be circumvented. A novel approach is to permit interfering
signals by designing them cooperatively such that the aggregate interference signals
are contained to a finite subspace at each user. This approach is called interference
alignment (IA) and introduced in the seminal publications [3] and [11].
The key idea of IA is to optimally arrange the signalling-dimensions among differ-

ent users such that the dimensions of interfering signals overlay, while the dedicated
signals remain separate and hence decodable at the intended receivers. In the opti-
mal case, the dimensions occupied by the interfering signals fully overlap, as if each
user only experiences one virtual interferer in the system. Especially for a multi-user
interference channel as depicted in Figure 1.1 for three users, the data rate per user
approximately scales by 1

2 w. r. t. the capacity of interference-free point-to-point links
for each dedicated user pair. It is remarkable that this scaling is independent of the
total number of users K. This is a substantial gain, when compared to an orthogo-
nalized communication scheme. By applying IA, the aforementioned bottleneck can
already be overcome for K ≥ 3 communicating user pairs.
This theoretical idea of IA has opened the door to efficient communication schemes

[12] with multiple users, multiple relays, bidirectional communications, etc. Nonethe-
less, there are still many challenging limitations in both theory and practice to cope

2



1.3 Motivation

Figure 1.1: The fundamental principle of interference alignment: In a 3 -user inter-
ference channel, 3 transmitters Txi communicate with 3 receivers Rxi in
pairwise distinct links. The interference of the 2 non-dedicated users is
aligned to an interference subspace (red, dotted lines) at each receiver,
while the dedicated signal (blue, solid lines) remains distinct.

with, e. g., the high demands on computational complexity and extremely accurate
knowledge of the channel gains between all users.

A fundamental demand to enable IA - the relativity of alignment [12] - is that the
channel itself must support a sufficient structure or variability so that an alignment
scheme is feasible. Interestingly, IA is applied in a diverse number of substantially
different schemes. It is enabled in multiple-input multiple-output (MIMO) channels
by symbol-extensions in time or frequency [3], by rational independent dimensions [13],
by signal-scale [14], on pairs of complementary matrices in ergodic channels [15], by
propagation delay [3], [16], by (asymmetric complex) phase [17], on lattices [18], etc.

Clearly, IA has already drawn a lot of attention from the research areas of informa-
tion theory, signal processing and even in distributed data-storage systems [19] and it
still remains in the spotlight. For a more extensive overview and references on IA, we
point the interested reader to the comprehensive survey [12].

1.3 Motivation

In this dissertation, our main focus is to introduce and develop a novel model for
multi-user communication channels - the cyclic polynomial channel model (CPCM).
Inspired by the convenient algebraic framework of cyclic codes, our model enlightens
a theoretical approach of IA using a polynomial ring. The CPCM is closely related to
the widely accepted LDCM [9] and also motivated by the elementary example of IA
by propagation delay given in [3]. A key difference to the LDCM is the use of a cyclic
shift instead of a linear shift to model the impact of multiple interfering signals. From
a mathematical perspective, such cyclic shifts uncover several valuable properties,
that are hidden within the LDCM. It is a particular drawback of the LDCM that,
for multi-user scenarios, the exponentially increasing number of parameters is hard
to handle. In the literature, the authors mostly concentrate on multi-user channels

3



1 Introduction

with symmetrically parameterized channel gains, e. g., [20], [21], [22], or on arbitrary
channel gains with only two user-pairs, e. g., [23], [24]. The proposed CPCM, however,
is particularly tailored to tackle problems with asymmetric channel gains and multiple-
users rather than directly focussing on the capacity-approximation within a limited
number of bits.

1.4 Contributions

The CPCM supports the investigation of the following aspects:

In our initial research idea, the proposed CPCM was mainly dedicated to genera-
lize the concept of IA by propagation delay for arbitrary channels, since unrolled
cyclic shifts can be interpreted as propagation delays over the channel.

Moreover, the capacity-achieving schemes for the CPCM are inherently provided
for asymmetric channel gains in multi-user systems. Deriving optimal schemes
for the related LDCM is very challenging, since tracking the dependencies on
arbitrary channel gains is immensely cumbersome if many users are involved.

While the conventional approach is to compute the achievable rates for a fixed
channel, we turn the problem around: We fix a set of demanded rates and
formulate separability conditions that must be satisfied by the channel to ensure
decodability. These conditions are also useful explain particular singularities in
the related LDCM.

Note that there is still a highly active and conflicting discussion about using alge-
braic structure versus random codes [25] in network and multi-user information
theory. In this light, considering a model with cyclic shifts is quite amenable for
an algebraic investigation.

In this thesis, we cover several different multi-user networks with the following prop-
erties:

Elementary unidirectional networks: The multiple-access channel, the broadcast
channel, the interference channel and the X- channel. (Chapter 3)

Some users in the networks are equipped with backhaul links for constrained
cooperation to provide a specific set of cognitive messages. (Chapter 3)

Relaying : Relays are auxiliary devices to enhance the channel by forwarding a
function of the received signals and to enable some efficient schemes. (Chapter 4)

Multi-way communications : If users act as transceivers, they can simultaneously
transmit and receive over a bidirectional channel. (Chapters 4 and 5)

In order to achieve the maximal DoF for these networks, our proposed communica-
tion schemes are mainly based on:

4



1.4 Contributions

Orthogonal multiple-access : We show that the conventional othogonalization of
signals is already optimal for some elementary channels. This is coherent with
known results and intended to introduce the readers to the proposed model.
(Chapter 3)

Linear coding and interference cancellation: However, these orthogonal schemes
are already restrictive for interference channels. We derive linear coding strate-
gies to resolve interference by cancellation. (Chapter 3)

Cyclic interference alignment : We develop cyclic IA schemes coherent to the
fundamental IA principle described above. The provided capacity results are
suitable for known results (e.g., for the X- channel and the K-user interference
channel) of conventional channel models, in case they are already available.
(Chapter 3)

Cyclic interference neutralization (IN): Especially in systems with multiple re-
lays, there are multiple instances of the same interference from different relays.
These signals can be aligned into the same subspace to neutralize each other over
the air. (Chapter 4)

Network-coded cyclic signal alignment (SA): In bidirectional communications
with relays, dedicated bidirectional signals are aligned so that a simple network
code [26] is used at the receivers. (Chapters 4 and 5)

In the course of this dissertation, we do not only discuss DoF-achieving schemes for
various channels, we also reveal several interesting phenomena and elaborate corre-
sponding insights for multi-user systems:

(A) We observe different duality relationships : (Chapters 3, 4 and 5)

(1) Cyclic IA is dual to cyclic IN in 3 -user X- networks with a backhaul net-
work of cognitive messages at the transmitters or receivers. (Chapter 3)

(2) We observe a user-relay duality, for a cascaded chain of two-way relay net-
works, i. e., the roles of users and relays are swapped. It is linked to a
unicast-multicast1 duality in the uplink and its reciprocal downlink trans-
mission. (Chapter 4)

(3) We observe a Δ-Y relationship between 3 -way channels and Y - channels,
which is motivated by the well-known Δ-Y transformation in electrical cir-
cuit theory. (Chapter 5)

(B) We observe a reciprocal alignment property for a channel with two transmitters
and two receivers: It basically states that aligning signals from the two trans-
mitters at a primary receiver provides a particular interference pattern at the
secondary receiver, while, vice versa, aligning two signals at the secondary re-
ceiver in an analogous way, provides the reciprocal interference pattern of the
previous alignment at the primary transmitter. This property is exploited in the
capacity-achieving scheme of the 2-user X- channel. (Chapter 3)

1In a unicast transmission, a single message is only dedicated for one receiver only. In a multicast
transmission, a single messages is intended for multiple receivers at the same time.

5



1 Introduction

(C) Moreover, we highlight several common properties that appear in Gaussian chan-
nels, MIMO channels and linear deterministic channels, likewise. Especially,
constant MIMO channels exhibit a limitation caused by common eigenvectors
when applying a perfect IA scheme. In the CPCM, an analogous property is
also present for cyclic IA, but it only limits the feasibility of the communication
system to a certain subset of channel matrices. (Chapters 3, 4 and 5)

Albeit, some of these phenomena, i. e., parts of (A)(1) and (C), were at least partially
observed within the conventional channel models already, these insights extend the yet
available knowledge and also serve as an additional confirmation for the validity of our
proposed model.
Parts of this dissertation are published in [27], [28], [29], [30], [31], [32], [33] and [34].

1.5 Organization

In Chapter 2, we first recapitulate two basic models that are also treated in this the-
sis, before introducing the CPCM in detail. Then, optimal communication schemes
for several elementary unidirectional communication channels are discussed in Chap-
ter 3 using the CPCM. Furthermore, the 2 -user X- channel, the 3 -user X- channel,
and the K-user interference channel are investigated for the application of cyclic IA.
In Chapter 4, we extend the given model with relays and we apply cyclic IN. In a
subsequent step,also two-way relaying and corresponding network-coded signal align-
ment schemes are included. In Chapter 5, we focus on 3-way communications that
involve an elaborate combination of the methods discussed in the previous chapters.
The 3-way channel is discussed in terms of the CPCM and in terms of the LDCM and
Gaussian MIMO channel model (GMCM) for comparison. In Chapter 6, we briefly
explore practical issues of IA in general and discuss IA by propagation delay in parti-
cular. The conclusion of this dissertation and directions for future works are provided
in Chapter 7.
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1.6 Notation

1.6 Notation

Symbol Description

a,A scalar/random variables (lower/upper case letters)

a,A row vectors/matrices (boldface lower/upper case letters)

A sets (calligraphic upper case letters)

0a×b a × b zero matrix

Ia×b a × b identity matrix

1a×b a × b one matrix

span(A) linear column-span of A

rank(A) rank of A

dim(A) dimension of A

det(A) determinant of A

AT transposed matrix of A

A Moore-Penrose pseudo-inverse of a non-square A

A−1 inverse matrix of A

diag(a1, ..., an) a square diagonal matrix with diagonal entries a1, ..., an[a]+ max(0, a) positive part of a ∈ R
(n
k
) binomial coefficient - n choose k

H(X) entropy of a random variable X

I(X;Y ) mutual information between X and Y

CN(μ,Σ) complex normal distribution with mean vector μ

and covariance matrix Σ

x an indeterminate, to address offsets in a polynomial

p(x) a polynomial ∑n−1
i=0 p[i]xi with coefficients p[i]

Tx transmitter (source)

Rx receiver (destination)

T transceiver (source/destination)

R relay

Figure 1.2: Notation.
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2 Basic Multi-User Communication
Models

In this chapter, we will briefly recapitulate the preliminary properties of two widely
established wireless channel models used in the literature on multi-user information
theory:

The Gaussian MIMO Channel Model (GMCM), and

the Linear Deterministic Channel Model (LDCM).

Then, we introduce our novel channel model using polynomial rings:

The Cyclic Polynomial Channel Model (CPCM)1.

We will elaborate several common properties between the CPCM and the two other
channel models within the course of this thesis.

2.1 Common Parameters of the Considered Channel
Models

The following common parameters and sets will be consistently used for all consid-
ered channel models unless it is stated otherwise. We consider multi-user interference
channels with KTx ∈ N transmitters and KRx ∈ N receivers. Transmitters are de-
noted by Txi with index i ∈ KTx = {1, ...,KTx}. Receivers are denoted by Rxj for
j ∈ KRx = {1, ...,KRx}, respectively. A dedicated message from Txi to Rxj is denoted
by wji and has rate Rji for i ∈ KTx, j ∈ KRx.
In case that transmitters and receivers are combined into a single device, it is called

a transceiver Ti. We will further assume that transceivers are capable of perfect
full-duplex operation. The set of transceiver-indices is denoted by KT = {1, ...,KT}
for KT transceivers Ti. A relay Ri, with index i ∈ KR is an auxiliary device that
can both transmit and receive (and hence forward) messages. But in contrast to a
transceiver, a relay does not initiate own messages. The set of relay-indices is denoted
by KR = {1, ...,KR} for KR relays.

2.2 Gaussian MIMO Channel Model (GMCM)

First, we briefly consider the GMCM describing multi-antenna systems with multiple
users as considered in [35] for instance. We will discuss some results concerning time-
varying MIMO channels in Section 4.1.4, and also results of the time-constant MIMO

1Parts of this work have been published in [27].
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2 Basic Multi-User Communication Models

3 -way channel in Sections 5.3 and 5.4. Note that the distinction between time-varying
and time-constant MIMO channels is essential in the design of feasible IA schemes for
multi-user MIMO interference channels.

2.2.1 GMCM: Definition

Let a transmitter Txi be equipped with an arbitrary number of MTxi ∈ N transmit
antennas, and a receiver Rxj with MRxi receive antennas. The signal transmitted at
time instance n from Txi is a vector xi(n) ∈ CMTxi

×1 satisfying a power constraint P .
The channel matrix for the MIMO channel from Txi to Rxj is denoted by Hji ∈
C

MRxj
×MTxi . These random channel matrices are generated i. i. d. from a continuous

probability distribution. We assume full and global channel state information (CSI),
i. e., all channel matrices are perfectly known at each user. Depending on the discussed
communication problems in the later chapters, we will specify whether the channel
coefficients are time-varying or constant throughout the whole communication. The
received signal at Rxj is a vector yj(n) ∈ C

MRxj
×1. yj(n) is a superposition of the

transmitted signals from each Txi, weighted by Hji, respectively, and i.i.d. complex
additive white Gaussian noise (AWGN) zj ∼ CN(0MRxj

×1,IMRxj
×MRxj

):
yj(n) = ∑i∈KT

Hjixi(n) + zj(n). (2.1)

2.2.2 Degrees-of-Freedom: A Capacity Approximation for the
GMCM

It has been a very challenging task to characterize the maximal achievable rates, i. e.,
the exact sum-capacity and the capacity region, for most of such Gaussian MIMO
multi-user channels. In order to yet obtain an sufficiently accurate insight into these
central problems, a widely used approach is to describe the scaling behaviour of the
channel capacity within the high SNR regime. Such an approximation of the sum-
capacity CΣ(P ) is represented by:

CΣ(P ) = DoF ⋅ log(P ) + o(P ). (2.2)

The DoF-measure2 is defined in [3] and [37] as the pre-log factor of the achieved sum-
capacity CΣ(P ):

DoF = lim
P→∞

CΣ(P )
log(P ) . (2.3)

The DoF become accurate at high SNR, i. e., for power P →∞ as the approximation
error vanishes with o(P ) → 0.

We will particularly apply the GMCM in Subsection 4.1.4, and in Sections 5.3
and 5.4.

2The DoF are also known as multiplexing gain (cf. [35], [36]).
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2.3 Linear Deterministic Channel Model (LDCM)

2.2.3 Relativity of Alignment: Feasibility Conditions

The relativity of interference alignment as discussed in [12] is an elementary property
that must be satisfied for any IA scheme known up to now. This property basically
demands that each receiver requires an independent and sufficiently different view
of the channel to enable IA. For the IA schemes considered in [3], [37] and [38], this
property is satisfied by either considering time-varying channel coefficients in the single
antenna case, or by employing multiple antennas at each receiver, so that the provided
schemes do not degenerate and invalidate the use of IA. Similarly, for the ergodic IA
scheme in [15], this property is provided by time-varying channel coefficients generated
by an ergodic process.
Enabling IA is also described by satisfying a set of feasibility conditions for multi-

user MIMO channels with constant coefficients as discussed in [39] and [40]. These
feasibility conditions demand that there is an interference free-space for a certain set
of decodable dedicated signals while interference is completely eliminated after zero-
forcing.
In order to ensure that each dedicated signal is linearly decodable at its desired

receiver, we demand that the following properties for the proposed communication
schemes hold:

Linear interference-free: All signals that are dedicated for the receiver are
allocated to a subspace that is linear independent of the interfering signals which
are dedicated for other receivers.

Linear decodability: Multiple dedicated signals for the same receiver must be
received linearly independent within the dedicated signal subspace.

2.3 Linear Deterministic Channel Model (LDCM)

In order to approximate the capacity of Gaussian multi-user networks with more em-
phasis on the relative strength of the channel gains, a wireless channel can be char-
acterized in the high-SNR regime by the linear deterministic channel model (LDCM).
The model was introduced by Avestimehr, Diggavi and Tse3 in [9] and [41] and in the
dissertation of Avestimehr [42]. This model is a special class of the general determin-
istic channel model introduced by El-Gamal and Costa in [43].
One of the main goals of the LDCM is to simplify the analysis of the capacity of

Gaussian relay and interference channels with multiple users. Its underlying concept
is to eclipse the impact of noise and to highlight the influence of essential properties of
wireless signal interaction. In particular the authors of [9] focus on the effects caused
by broadcasting, interference and signal-scale in the shared medium.
Furthermore, the LDCM is a useful tool for deriving the generalized degrees-of-

freedom (GDoF) as considered in [4], which is a more accurate measure of the approx-
imate capacity than the DoF. For highly accurate capacity characterizations whose
capacity approximation error is within a constant gap, a refined linear deterministic
channel model using a lower triangular Toeplitz matrix is proposed in [44]. However,

3The LDCM is also called the ADT-model.
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2 Basic Multi-User Communication Models

the GDoF-metric is not in the scope of this thesis and hence its discussion is omitted.
The concept of the constant-gap capacity approximation is only briefly recapitulated.

2.3.1 LDCM: Definition

In the LDCM of [41, Section II], the transmitted signals of each user are described by
a sequence of q ∈ N bits. Each bit is indexed from the least significant bit level 1 to
the most significant bit level q in a 1×q input bit vector x = (x(q), ..., x(1)). The q bit
levels transmitted from Txi to Rxj are linearly shifted down by q − nji levels, so that
a number of nji ∈ N bits remains above the noise threshold. This is a so-called signal-
scale representation (signal-scale-property), since the q bit levels are scaled down at
the receivers. These bit-pipes emulate the attenuation of the channel gains from a
transmitter to a receiver.
The parameter q for the maximal level is determined by the strongest channel gain,

i. e., q =maxi∈KTx,j∈KRx
(nji). For the linear shifting operation, a q × q shift matrix with

ones on the lower side-diagonal and zeros otherwise is used:

S = ( 01×q 0

Iq−1×q−1 0q−1×1
) . (2.4)

S is a nil-potent matrix, since its q-th power and higher powers yield Sq = 0q×q. The
linear shift matrix is not invertible and its determinant is det(S) = 0. By applying the
shift matrix q − nji times on x provides the following 1 × q output bit vector yj:

yT
j = Sq−njixT

i

= (0, ...,0, xi(q), ..., xi(q − nji)).
We obtain a linear down-shifted version of input xi with nji ≤ q potentially non-zero
bit levels remaining in yi. Bit levels that are shifted below the lowest index of yi are
truncated and lost. This truncation represents the influence of the noise threshold on
the received signal. By extending this operation to multiple transmitters and receivers,
the received signal yields a superposition of all transmitted signals, which are each
shifted by q − nji:

yT
j = ∑i∈KTx

Sq−njixT
i , (2.5)

for j ∈ KRx, respectively. The signals of the transmitter are broadcast to each re-
ceiver (broadcast-property) and the receivers obtain superimposed bits of multiple
transmitters (interference-property). An exemplary 2 -user multiple-access channel is
depicted in Figure 2.1 in terms of the LDCM. In order to compute the capacity by
means of the LDCM, upper bounds on the maximal number of conveyable bits must
be derived. Furthermore, achievable coding schemes must be designed to verify these
upper bounds.

2.3.2 Capacity Approximation

The strength of the channel gains in the LDCM and the complex Gaussian channel
model are related by nji = ⌈log2(P )⌉+. For a point-to-point channel from Tx1 to Rx1,

12



2.3 Linear Deterministic Channel Model (LDCM)

Figure 2.1: A linear deterministic multiple-access channel with two transmitters, one
receiver, channel gains n11 = 3, n12 = 4, and a number of q = 4 bit levels is
depicted. Most significant bits are the topmost and least significant bits
are the lowermost bit levels.

the mutual information of the linear deterministic point to point channel is:

CLDCM,P2P = I(X1;Y1) =H(Sq−n11xT
1 ) =H(yT

1 ) (2.6)

= ∑n11

i=1 H(y1(i) ∣ y1(i − 1), ..., y1(1)) (2.7)

= n11. (2.8)

The entropy in the last line is maximized by the Bernoulli distribution with indepen-
dent components with parameter 1

2 . This is a capacity approximation within a margin
of at most one bit w. r. t. the complex Gaussian channel point-to-point capacity (cf. [1])
for high SNR:

log2(1 + P ) ≤ n11 = ⌈log2(P )⌉+ ≤ log2(2 + 2P ) ≤ log2(1 + P ) + 1. (2.9)

A well-known result as, e. g., given in [45, Section 15.3.6], is that the capacity region
of the Gaussian multiple-access channel is characterized by the following upper bounds
on the rates R11 and R12:

R11 ≤ I(X1;Y1 ∣X2) = log2(1 + P1), (2.10)

R12 ≤ I(X2;Y1 ∣X1) = log2(1 + P2), (2.11)

R11 +R12 ≤ I(X1,X2;Y1) = log2(1 + P1 + P2), (2.12)

for some input distribution f1(x1)f2(x2) satisfying E(X2
1) ≤ P1 and E(X2

1) ≤ P2 for
zero mean unit-variance real-valued Gaussian noise.

In case of the LDCM [41], the analogous representation of the capacity region, i. e.,
the closure of all achievable rate vectors, for the multiple-access channel is:

R11 ≤ I(X1;Y1 ∣X2) = n11, (2.13)

R12 ≤ I(X2;Y1 ∣X1) = n12, (2.14)

R11 +R12 ≤ I(X1,X2;Y1) =max(n11, n12), (2.15)
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2 Basic Multi-User Communication Models

by computing the mutual information in terms of the LDCM, with i ≠ j ∈ {1,2}:
I(Xi;Y1 ∣Xj) =H(Y1 ∣Xj) −H(Y1 ∣X1,X2)

=H(Y1 ∣Xj)
=H(Sq−n11xT

1 +Sq−n12xT
2 ∣ Sq−n1jxT

j )
=H(Sq−n1ixT

i )= n1i,

I(X1,X2;Y1) =H(Y1) −H(Y1 ∣X1,X2) =H(Y1)
=H(Sq−n11xT

1 +Sq−n12xT
2 ).=max(n11, n12).

This capacity region can be achieved using orthogonal multiple-access schemes. Fur-
thermore, the capacity region of the LDCM is actually within one bit of its Gaussian
counterpart (cf. in [9] and [41]).

max(log2(1 + P1), log2(1 + P2)) ≤ log2(1 + P1 + P2)
≤max(n11, n22)
=max(⌈log2(P1)⌉+, ⌈log2(P2)⌉+)
≤max(log2(2 + 2P1), log2(2 + 2P2))
≤max(log2(1 + P1), log2(1 + P2)) + 1.

The LDCM and its extensions have already gained a lot of interest by many re-
searchers working in the realm of multi-user information theory. There is an enormous
amount of works dedicated to the characterization the capacity of various multi-user
channels based on the LDCM. Among these, we would like to point to other elemen-
tary examples in [9] and to some works on signal-scale interference alignment [20],
[21], [22], [46], interference neutralization [47], [48], and user-cooperation [23].
Albeit the LDCM considerably simplifies the derivation of capacity-achieving schemes

for symmetric channel gains and for small networks, it becomes increasingly challeng-
ing to compute the capacity of multi-user networks with non-symmetric channel gains.
Furthermore, the capacity expressions derived for the LDCM exhibit some exceptional
singularities, especially for fully-symmetric channels (cf. [21] and [22], for instance).
In the following, we will introduce our main channel model of this dissertation that
deals with the aforementioned challenging problems.

2.4 Cyclic Polynomial Channel Model (CPCM)

In contrast to the LDCM, which is essentially based on a linear shift of bit-vectors,
the proposed CPCM is based on a polynomial ring with cyclic shifts within a finite
number of dimensions. Our mathematical framework is inspired by algebraic cyclic
codes as in [49] and by the related LDCM of [9] as discussed in the previous section. A
particular benefit of the CPCM concerns the algebraically convenient description by
polynomials. While conventional algebraic codes mainly focus on the detection and
correction of errors caused by noise (cf. [50]) the CPCM is dedicated to characterize
the effects of multi-user interference, even for arbitrary cyclic shifts.

14



2.4 Cyclic Polynomial Channel Model (CPCM)

Figure 2.2: In a cyclic polynomial channel withKTx transmitters Txi andKRx receivers
Rxj, messages are conveyed by polynomials vi(x) over the channel by the
transfer matrix D. The polynomials rj(x) comprise the received messages.

We would like to remark, that a closely related channel model for multi-user line-of-
sight (LoS) channels was introduced in [51]. Therein, similar effects of cyclic shifting
are discussed as well. But in contrast to the approaches pursued in this thesis, the
considered scheme in [51] is derived from a graph-theoretic perspective. Furthermore,
another related model is investigated in [52] for an orthogonal frequency division multi-
plexing (OFDM) communication system in the time-frequency domain. The approach
in [52] presents a channel decomposition with circulant matrices describing cyclic shifts.

2.4.1 CPCM: Definition

The CPCM provides a conceptual description of a wireless channel with KTx +KRx

users, i. e., KTx transmitters and KRx receivers, as depicted in Figure 2.2. We denote
a source message to be conveyed from Txi to Rxj, for i ∈ KTx and j ∈ KRx, by wji.
Such a message wji comprises mji ∈ N0 subordinate messages (submessages) and is
denoted by:

wji = (W [0]
ji , ...,W

[mji−1]
ji ), W [l]

ji ∈ F, (2.16)

for l = 1, ...,mji − 1. The total number of submessages mji may also be interpreted as
rate demand between Txi and Rxj. The communication channel has n ∈ N dimensions.
The assignment of messages to these dimensions is represented by polynomials in the
indeterminate x of degree n − 1. As for the well-known cyclic codes, we consider
a commutative polynomial ring F(x) modulo xn − 1 with coefficients over a field F

(e.g., [53, Chapter 7 §2, p. 189]). The coefficients denote the carried information.

Encoding Scheme

All dedicated messages to be transmitted by Txi are encoded into the coefficients of
the polynomial vi(x) by the encoding function ei:

ei ∶ (w1i, ...,wKRxi) ↦ vi(x).
The set of dedicated submessages is encoded in the coefficients of vi(x) with a linear
code. A single position within the n dimensions4 is addressed by an offset x0, x1, ..., xn−1,
from 0 (zero-offset) to n − 1 (maximal offset).

4The terms ’offsets’ and ’dimensions’ are synonymously used in this thesis.
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2 Basic Multi-User Communication Models

Channel Transfer Matrix and Received Signal

An individual cyclic shift between Txi to Rxj is denoted by the multiplication with
a monomial dji ∈ D for D = {xk∣k ∈ N} ∪ {0}. A zero-valued entry dji = 0 means that
there is no link between Txi to Rxj. The channel transfer matrix is assumed to be
static and fully known to all users during the whole transmission, and it is defined by:

D = (dji)1≤j≤KRx,1≤i≤KTx
. (2.17)

The (cyclic polynomial) transfer function for KTx transmitters and KRx receivers is
compactly described by a matrix multiplication of the vector of input polynomials v
with the channel matrix D, such that the vector of output polynomials r yields:

rT ≡DvT mod(xn − 1). (2.18)

with vectors v = (v1(x), ..., vKTx
(x)) and r = (r1(x), ..., rKRx

(x)). The modulo opera-
tion is taken element-wise. The received signal at Rxj is a superposition of transmitted
polynomials:

rj(x) = ∑i∈KTx
djivi(x) mod (xn − 1). (2.19)

Decoding Scheme

The received coefficients of the polynomials rj(x) are linearly decoded to obtain an
estimate of the dedicated messages ŵji. The decoding function for rj(x) is:

fj ∶ rj(x) ↦ (ŵj1, ..., ŵjKRx
).

The dedicated messages are correctly decoded if ŵji = wji holds for all dedicated
transmitter-receiver pairs. If a dedicated message wji cannot be linearly resolved,
then there exists no error-free decoding scheme.

Example: Point-to-Point Channel

Consider the elementary point-to-point channel (KRx =KTx = 1) with n ≥ 1 dimensions.
Let only a single submessage W11 be transmitted at offset xp11 and cyclically shifted
over the channel by d11 = xδ11 . For v1(x) =W11xp11 the polynomial received at Rx1 is:

r1(x) = d11W11x
p11 ≡W11x

δ11+p11 mod (xn − 1).
The dedicated message W11 is decoded at offset xδ11+p11 mod (xn − 1).
2.4.2 Degrees-of-Freedom: Capacity of the CPCM

In order to evaluate the performance of a communication scheme over the given chan-
nel, we consider an analogous DoF-measure as defined in Section 2.2.2.
Assuming i. i. d. zero mean unit variance Gaussian noise at the receivers and an

average power constraint P per message within each dimension, a single interference-
free link between Txi and Rxj has a capacity of log(P ) bits per dimension at high
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2.4 Cyclic Polynomial Channel Model (CPCM)

SNR. Recall from (2.3) that the DoF-measure is defined by:

DoF = lim
P→∞

CΣ(P )
log(P ) .

In the presented cyclic polynomial channel model, we define the achieved DoF by the
total number of submessages M received interference-free per n dimensions:

DoF = lim
P→∞

M
n log(P )
log(P ) = M

n
. (2.20)

The messaging matrix5 M denotes the number of demanded submessages dedicated
to be conveyed from Txi to Rxj per period of n dimensions:

M = (mji)1≤j≤KRx,1≤i≤KTx
, mji ∈ N0. (2.21)

The total number of messages in the system is computed by:

M = ∑j∈KRx
∑i∈KTx

mji. (2.22)

From the number of dedicated and interfering submessages at each receiver, upper
bounds on the DoF can be derived (e. g., Section 3.2). The main task is to design op-
timal encoding and decoding schemes for a particular setup of users and rate demands
within the CPCM such that these upper bounds are achieved.
Recall the previous example: It is obvious that a messages w11 with m11 = L, L ∈ N,

submessages can be conveyed within at least n ≥ L dimensions in the point-to-point
channel. Clearly, if these L submessages are each allocated to distinct dimensions, the
single and merely shifted received signal is linearly decodable. If we choose n = L, then
M
n = L

L = 1 DoF is always achievable. This result is in accordance with the DoF of the
Gaussian point-to-point channel.

2.4.3 Relativity of Alignment: Separability Conditions

In terms of the CPCM, communication channels with multi-user interference are fully
described by their channel matrices and their messaging matrices. Since we assume
that the channel matrix is fully known to each user, one can always trace back all
transmitter offsets that are incident to a particular receiver offset.
The proposed separability conditions6 are slightly stricter than the feasibility con-

ditions, which were briefly discussed in Section 2.2.3. In particular, we will further
impose that the signals are interference-free and decodable per each offset and not
only linear decodability. Hence, if one of the transmitter offsets contains a dedicated
signal for a particular receiver offset, the incident transmitter offsets may not carry any
desired or interfering signals and must remain silent. Otherwise, the dedicated signal
would be subject to interference on that offset. In several cases these conditions are

5This matrix is basically a unicast traffic matrix as defined in [54], but without a normalization to
one.

6The terminology is also used similarly in the discussion of real interference alignment in [13].
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rather strict and effectively narrow the total number of channels down to the number
of feasible channels.
The formulation of these separability conditions provides a useful tool to classify

elementary properties of the channel matrix. We will elaborate the formal description
of the separability conditions for the CPCM (cf. Sections 3.1, 4.1.1 and 4.2.3 in
particular). As a result, we can determine the maximal number of achievable DoF
and the feasibility of the proposed communication scheme based on the given channel
matrix and the underlying message demands only. We will also discuss an interesting
link between the separability conditions of cyclic IA on the CPCM and the feasibility
conditions of MIMO IA on the GMCM in Section 3.4.3.

2.4.4 CPCM versus LDCM: An Algebraic Extension

There are various other ways to mathematically describe the cyclic shifts of the CPCM.
Another option than using a polynomial ring to describe the behaviour of cyclic shifts,
is to use vectors and powers of a particular circulant7 n × n matrix:

T = ( 01×n−1 1

In−1×n−1 0n−1×1
) . (2.23)

Clearly, this matrix is almost identical to the linear shift matrix in (2.4) for the LDCM,
except the top-right element. However, in contrast to the linear shift matrix S, the
circulant shift matrix T is not nil-potent, so that no integer exponent will produce a
zero-matrix 0n×n. The cyclic shift circulant matrix is invertible and its determinant is
det(T ) = 1. T is also orthogonal, since T T = T −1 holds.
Furthermore, we can describe the input signal from a transmitter Txi, i ∈ KTx,

as an 1 × n vector vi = (vi(0), ..., vi(n − 1)). The output signal is an 1 × n vector
rj = (rj(1), ..., rj(n−1)) at Rxj, which is a superposition of the input signals cyclically
shifted by δji positions:

rT
j = ∑KTx

i=1 T δjivT
i , (2.24)

for each j ∈ KRx. Since the offsets x0, ..., xn−1 may be interpreted as basis-vectors of
an n dimensional vector space, we can also apply several useful operations from linear
algebra like rank(⋅),dim(⋅), etc., to this representation.
Each channel, based on the CPCM, has a specific counterpart in the LDCM (and vice

versa). We replace the shift matrices S ↔ T and hence the gains δji (modn) ↔ n−nji:

rT
j = ∑KTx

i=1 T δjivT
i , (2.25)

yT
j = ∑KTx

i=1 Sn−njixT
i . (2.26)

The LDCM basically provides a particular subset of bit-pipes of the LDCM. Thus,
by using the cyclic shift operation, we highlight several algebraic properties that are
concealed within the LDCM. Only if all channel parameters of the K-user interference

7A circulant n × n matrix T n = (tj,i)0≤i,j≤n−1 has a certain symmetry described by tj,i = ti−j (modn).

Note that this is also a Frobenius companion matrix of the polynomial ∑
n−1
k=0 x

k.
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channel and the 2 -user X- channel are fully-symmetric (i. e., δji = 0 for the CPCM,
and nji = q for the LDCM), then the channel matrices are raised by a power of zero.
Each subchannel would degenerate to an n × n identity matrix In×n:

S0 = T 0 = In×n. (2.27)

As a result, both the CPCM and the LDCM exactly coincide in that case. This fully-
symmetric parameterization is an interesting exception mentioned in the characteriza-
tion of the linear deterministic and symmetricK-user interference channel in [22, Theo-
rem3.1 & Remark 1], and also for the linear deterministic 2 -user X- channel in [21].
Singularities are observed in the sum-rate for fully-symmetric channel gains. For those
cases, the authors of [22], [21] show that the achievable rates do not exceed the rates
of an orthogonal multiple-access scheme.
Reconsidering this property from the viewpoint of the CPCM, these exceptional

symmetries violate the separability conditions of the K-user interference channel (cf.
Theorems 3.6 and 3.8) and also of the 2 -user X- channel (cf. Theorem 3.9) as we
will see in the next chapter. Hence, the CPCM does not only show an important
analogy to the LDCM for this case, it also contributes to the analysis of the LDCM by
providing a set of potential symmetry-candidates where the LDCM might display this
exceptional behaviour. This insight also applies to more general channel symmetries.
Furthermore, the proposed communication schemes derived from the CPCM might
also indicate a first step showing how to align interference in the LDCM under general
channel symmetries.
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3 Multi-User Single-Hop
Unidirectional Communications

In this chapter, we first consider the DoF of some elementary and well-known channels:

The K-user multiple-access channel,

the K-user broadcast channel, and

the 2 -user interference channel.

By applying the CPCM to these elementary channels, we introduce our basic method-
ology and validate known results on the DoF from a different perspective. With
this approach, we also pursue a similar strategy as the authors of [35], [9], [13], [55],
and [56], who also introduce new approximation measures or novel channel models
for interference networks. In [35], the DoF-analysis of multi-user MIMO channels is
introduced. In [9], the authors establish the LDCM. The idea of real interference align-
ment is presented in [13], and the discrete superposition model is introduced in [55].
A related finite-field channel model is introduced in [56]. In our next step, we discuss
the DoF of three unidirectional channels based on the CPCM:

A general upper bound1 on the DoF of a KTx ×KRx -user X- network,

the 2 -user X- channel1,

the K-user interference channel1, and

the 3 -user X- network2.

Unidirectional Unicast Communications

In a unidirectional unicast communication system with multiple users, a message is
dedicated to be conveyed from a single transmitter Txi to a single dedicated receiver
Rxi only. No message is dedicated for a group of multiple receivers as in the case
of multicast communications. But nonetheless, a transmitter may transmit multiple
different messages that are each dedicated for different receivers, and a receiver may
also receive different dedicated messages from multiple transmitters.

1Parts of this work have been published in [27].
2Parts of this work have been published in [32].

21



3 Multi-User Single-Hop Unidirectional Communications

3.1 Elementary Unidirectional Multi-User Channels

First, we apply the CPCM to well-known multi-user channels as the multiple-access
channel, the broadcast channel and the 2-user interference channel and derive optimal
communication schemes to achieve the maximal number of DoF within n dimensions,
respectively.

3.1.1 Cyclic Polynomial Multiple-Access Channel

Figure 3.1: The cyclic polynomial multiple-access channel.

Our first example of a unicast communication system with multiple users is a
multiple-access channel (MAC). In a K- user MAC, there are KTx = K transmitters
and only KRx = 1 receiver. An illustration of the MAC is depicted in Figure 3.1. In
this case the messaging matrix degenerates to a 1 ×K row vector:

M = (m11, ...,m1K). (3.1)

Each Txi transmits a message w1i that is dedicated for the single receiver Rx1. The
m1i submessages from Txi to Rx1 are denoted by w1i and the corresponding offsets
for the allocation in vi(x) are denoted by the parameters p

[l]
i , l = 0, ...,m1i − 1, in the

vector p1i:

w1i = (W [0]
1i , ...,W

[m1i−1]
1i ), (3.2)

p1i = (p[0]1i , ..., p
[m1i−1]
1i ). (3.3)

The polynomials vi(x) allocate the m1i submessages by:

vi(x) = ∑m1i−1
t=0 W

[t]
1i x

p1i
[t]

. (3.4)

Here, the vector of transmitted polynomials is v = (v1(x), ..., vK(x)) and the vector of
received polynomials degenerates to a single polynomial r = r1(x). From (2.19), we
obtain:

r1(x) ≡ ∑i∈K d1ivi(x) mod (xn − 1). (3.5)

The submessages dedicated for Rx1 must be linearly decodable. Hence, we demand
that each submessage is effectively received in a separate dimension after the linear
decoding procedure is performed. Thus, to keep all dedicated messages segregated
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3.1 Elementary Unidirectional Multi-User Channels

x0 x1 x2 x3 x4

v1(x) W
[0]
11 0 0 W

[1]
11 0

v2(x) W
[0]
12 0 0 0 0

v3(x) 0 W
[1]
13 0 0 W

[0]
13

r1(x) W
[1]
13 W

[0]
11 W

[0]
12 W

[0]
13 W

[1]
11

Figure 3.2: This is a valid solution for orthogonal MA in a 3-user MAC for n = 5 di-
mensions, with m11 = 2, m12 = 1, and m13 = 2 submessages, and with cyclic
’right-shifts’ d11 = x, d12 = x2, and d13 = x4. All separability conditions are
fulfilled and Rx1 can decode all five submessages achieving 1 DoF in total.
The parameters are: p

[0]
11 = 0, p

[1]
11 = 3, p

[0]
11 = 0, p

[0]
13 = 4, p

[1]
13 = 1.

at Rx1, we demand that the following multiple-access conditions pairwise hold for all
distinct i ≠ k ∈ KTx:

d1ix
p
[l]
1i ≢ d1kx

p
[t]
1k mod(xn − 1), (3.6)

for all l ∈ {0, ...,m1i − 1}, t ∈ {0, ...,m1k − 1}. Furthermore, the encoder must be linear.
We demand that different submessages from the same Txi are also pairwise distinct:

d1ix
p
[l]
1i ≢ d1kx

p
[t]
1i mod(xn − 1), (3.7)

for all l, t ∈ {0, ...,m1i − 1}, l ≠ t.

3.1.2 Orthogonal Multiple-Access (MA)

An orthogonal multiple-access (MA) scheme is a very basic allocation procedure for
the offset-parameters p1i, for all i ∈ KTx. Each transmitted submessage is allocated
at a distinct offsets at Rx1. We will show that orthogonal MA achieves the following
sum-DoF for M = ∑K

i=1m1i submessages over n = ∑K
k=1m1k dimensions:

DoF ≤ ∑K
i=1m1i

∑K
k=1m1k

= 1. (3.8)

An exemplary encoding that uses an orthogonal MA scheme is depicted in the table
of Figure 3.2. An orthogonal MAC scheme is already sufficient to achieve the upper
bound on the DoF of the MAC.

Lemma 3.1. The upper bound of 1 DoF in a MAC is achieved by orthogonal MA for
n = ∑K

i=1m1i dimensions.

Proof:
(a) Necessity of n ≥ ∑K

i=1m1i dimensions :
Since all submessage must be linearly decodable at receiver Rx1, the number of di-
mensions n is lower bounded by the total number of all submessages n ≥ ∑K

i=1m1i.
Otherwise dedicated messages would overlap at Rx1 and can not be resolved linearly.
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3 Multi-User Single-Hop Unidirectional Communications

(b) Sufficiency of orthogonal MA to achieve 1 DoF :
We may assume any channel matrix D with arbitrary dij ∈ D. W.l.o.g., we first fix

all parameters of p11, such that all the p
[⋅]
11 are pairwise distinct within the offsets

0, ..., n − 1. Now, a number of m11 offsets at Rx1 is already used. Then, we iteratively
fix the other offsets p1i for i = 2, ...,K, so that they do not overlap with the already
fixed offsets at receiver Rx1. All submessages are orthogonal to each other within n
dimensions. This is clearly feasible since all Txi can accommodate m1i submessages
at any offset within n = ∑K

i=1m1i dimensions. Altogether, Rx1 can decode all messages
and the MA scheme achieves the upper bound of 1 DoF in total. ∎

3.1.3 Cyclic Polynomial Broadcast Channel

Figure 3.3: The cyclic polynomial broadcast channel.

An inverted example of the MAC is the cyclic polynomial broadcast channel (BC).
TheK-user BC has one transmitter Tx1 and KTx =K receivers Rxj, with j ∈ KRx. The
BC is depicted in Figure 3.3. Transmitter Tx1 intends to convey each message wj1 to
its dedicated receiver Rxj. The messaging matrix degenerates to aK×1 column vector:

M = (m11,m21, ...,mK1)T. (3.9)

Analogously to the MAC, we define the vectors for submessages and offset parameters:

wj1 = (W [0]
j1 , ...,W

[mj1−1]
j1 ), (3.10)

pj1 = (p[0]j1 , ..., p
[mj1−1]
j1 ). (3.11)

The transmitted signal from Tx1 is:

v1(x) = ∑j∈KTx
∑mj1−1

k=0 W
[k]
j1 xp

[k]
j1 . (3.12)

The received signal at Rxj is:

rj(x) = dj1v1(x). (3.13)

Messages, that are dedicated for receiver Rxj but not for Rxk, must be linear inde-
pendent at Tx1. Again we demand that the submessages are allocated to distinct
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3.1 Elementary Unidirectional Multi-User Channels

dimensions. More precisely, the intra-user interference conditions for different recei-
vers j ≠ k ∈ KRx are expressed by:

xp
[l]
j1 ≢ xp

[t]
k1 mod (xn − 1), (3.14)

for l ∈ {0, ...,mj1 − 1}, t ∈ {0, ...,mk1 − 1}. The following lemma is basically analogous
to Theorem 3.1.

Lemma 3.2. The upper bound of 1 DoF in a BC is achieved by an orthogonal MA
scheme for n = ∑K

i=1m1i dimensions.

Proof:
(a) Necessity of n ≥ ∑K

j=1mj1 dimensions :
Since we demand a linear encoder, each submessage must already be linearly resolv-
able at the transmitter. Thus, the proof is basically analogous to Theorem 3.1 (a) for
swapped indices.

(b) Sufficiency to achieve 1 DoF by orthogonal MA:
We assume a channel matrix D with arbitrary dj1 ∈ D. W.l.o.g., we may fix p11 first,
such that m11 offsets are used at Tx1. Then, we iteratively fix the offsets pj1, for
j = 2, ...,K, so that they do not overlap and remain orthogonal to the already fixed
offsets at Tx1.
The received signals rj(x) are merely cyclically shifted versions of the transmitted

signal v1(x). In the received signals rj(x), the dimensions with non-dedicated mes-
sages are discarded and each dedicated submessage wj1 is decoded at receiver Rxj.
Thus, the intra-user interference conditions are satisfied by construction. Note that
even all non-dedicated messages are decodable at each receiver. Altogether, the MA

scheme achieves M
n = ∑K

j=1 mj1

∑K
j=1 mj1

= 1 DoF on the given BC. ∎

3.1.4 Cyclic Polynomial 2 -User Interference Channel

Yet another elementary unicast communication problem is described by the 2 -user
interference channel (2IFC). The corresponding Gaussian 2IFC is a fundamentally
important object in the research area of multi-user information theory and has already
been thoroughly discussed over several decades. However, note that the exact capacity
characterization of the Gaussian 2IFC is still not known yet. Particularly important
works on the 2IFC are [57], [4], [6], [7], [8], [58], [14], and [36], discussing interference
cancellation, genie-aided upper-bounds, treating interference as noise, etc. The DoF
are known to be upper bounded by 1 as shown in [36]. The capacity region of the
linear deterministic 2IFC is provided in [59].
The cyclic polynomial 2IFC comprises KTx = 2 transmitters and KRx = 2 receivers,

and thus we have KRx = KTx = K. Tx1 desires to convey a message w11 to Rx1
with m11 submessages and concurrently, Tx2 desires to convey w22 to Rx2 with m22

submessages. This corresponds to a 2 × 2 diagonal messaging matrix:

M = diag(m11,m22). (3.15)
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3 Multi-User Single-Hop Unidirectional Communications

Figure 3.4: Messaging in the cyclic polynomial interference channel.

We have M = m11 +m22 submessages in total. The channel matrix for the 2IFC is
defined as:

D = ( d11 d12
d21 d22

) . (3.16)

The signals of each transmitter interfere at the undesired receivers over the cross-
channels d12 and d21. An illustration of the 2IFC is depicted in Figure 3.4. We denote
the vector of submessages and of parameters for signals from Txi to Rxi, with i ∈ K, by:

wii = (W [0]
ii , ...,W

[mii−1]
ii ), (3.17)

pii = (p[0]ii , ..., p
[mii−1]
ii ). (3.18)

The transmitted signals from Tx1 and Tx2 are:

v1(x) = ∑m11−1
k=0 W

[k]
11 xp

[k]
11 , (3.19)

v2(x) = ∑m22−1
k=0 W

[k]
22 xp

[k]
22 . (3.20)

The polynomials received at Rx1 and Rx2 yield:

r1(x) ≡ d11v1(x) + d12v2(x) mod(xn − 1),
r2(x) ≡ d21v1(x) + d22v2(x) mod(xn − 1).

The 2IFC introduces another elementary type of interference: inter-user inter-
ference. We demand that the dedicated messages are received separately from the
undesired interfering messages. In the 2IFC, there are only two inter-user interference
conditions to consider:

d11x
p
[l]
11 ≢ d12x

p
[t]
22 mod(xn − 1), (3.21)

d21x
p
[l]
11 ≢ d22x

p
[t]
22 mod(xn − 1), (3.22)

for all l ∈ {0,1, ...,m11 − 1} and all t ∈ {0,1, ...,m22 − 1}.
Lemma 3.3. If det(D) ≡ 0 mod(xn − 1) holds, orthogonal MA is sufficient to achieve
the upper bound of 1 DoF in the 2IFC.

Proof:
(a) Necessity of n ≥m11 +m22 dimensions :

At Rx1, a number of m11 dedicated submessages must be linearly decodable and at
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3.1 Elementary Unidirectional Multi-User Channels

least m22 dimensions are occupied by interference. And vice versa at Rx2, m22 dedi-
cated submessages must be decodable and at least m11 dimensions are occupied by
interference. Hence, at both receivers the necessary number of dimensions is lower
bounded by n =m11 +m22.

(b) Sufficiency of orthogonal MA to achieve 1 DoF :
The given condition on the determinant implies:

det(D) ≡ 0 mod(xn − 1)
⇔ d11d22 − d12d21 ≡ 0 mod(xn − 1)

⇔ d11d
−1
12 ≡ d21d

−1
22 mod(xn − 1). (3.23)

Due to this property, the separability conditions (3.21) and (3.22) coincide. We fix
both parameters p11 and p22 such that orthogonality of their received offsets at Rx1,
and hence (3.21), is fulfilled. (3.22) will be fulfilled accordingly. As a result, all signals
are received in orthogonal dimensions and both receivers can decode their dedicated
signals (and even their interfering signals) within n =m11 +m22 dimensions. ∎
Clearly, if the converse statement det(D) ≢ 0 mod(xn − 1) holds, a scheme purely

based on orthogonal MA is not sufficient to achieve 1 DoF in the 2IFC exactly. A subset
of signals will interfere and prohibit decodability of all signals. Thus n > m11 +m22

dimensions are necessary if only orthogonal MA is applied.
There are two approaches to tackle this problem. The first approach is accomplished

as follows. An orthogonal MA scheme that uses sufficiently long messages and a well-
chosen guard interval is capable to asymptotically achieve 1 DoF. Let the cyclic shifts
that are imposed by the channel be parameterized by δij, i. e., we have dij = xδij .

Corollary 3.4. An orthogonal multiple-access scheme asymptotically achieves 1 DoF
in the 2 -user interference channel for m11 +m22 ≫ δ11 + δ12 + δ21 + δ22.

Proof:
Let n =m11 +m22 + 2Δ0 with the guard interval Δ0 = δ12+δ22+δ11+δ21 ≥ 0. We first

consider an allocation for Rx1 and fix the parameters in p11 such that a continuous
frame of m11 dimensions is allocated for w11 at Rx1 within the dimensions 0, ...,m11−1.
Then, we leave a guard interval of Δ0 dimensions at Rx1 and fix the parameters in
p22 such that a continuous frame of m22 dimensions is allocated for w22 at Rx1 within
the dimensions m11 +Δ0, ...,m11 +Δ0 +m22 − 1. The remaining Δ0 dimensions within
m11 +Δ0 +m22, ...,m11 +Δ0 +m22 +Δ0 − 1 are unused at Rx1. Clearly, the signals at
Rx1 do not interfere within n =m11 +Δ0 +m22 +Δ0 dimensions for Δ0 ≥ 0.
At Rx2, this allocation also yields two frames of m11 and m22 dimensions, respec-

tively. The frame of m11 dimensions occupies the dimensions:

0 − δ11 + δ21, ...,m11 − δ11 + δ21.

The frame of m22 dimensions occupies the dimensions

m11 +Δ0 − δ12 + δ22, ...,m11 +Δ0 +m22 − δ12 + δ22.
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3 Multi-User Single-Hop Unidirectional Communications

At Rx2, the gap of unused frames on the ’right-hand side’ of m11 occupies a number of:

Δ1 = −δ12 + δ22 +m11 +Δ0 − (−δ11 + δ21 +m11)
= 2(δ11 + δ22) ≥ 0 (3.24)

dimensions. The second gap of unused frames on the ’right-hand side’ of m22 has:

Δ2 = −δ11 + δ21 + n − (−δ12 + δ22 +m11 +Δ0 +m22)
= 2(δ12 + δ21) ≥ 0 (3.25)

dimensions. As Δ0, Δ1 and Δ2 are all non-negative, the signals do neither interfere
at Rx2. Altogether, for m11 +m22 ≫ 2Δ0 = Δ1 +Δ2, the MA scheme asymptotically
achieves the value one:

DoF ≤ M

n
= m11 +m22

m11 +m22 + 2Δ0

→ 1. (3.26)

∎
We will see in the following, that 1 DoF is also exactly achievable for the case

det(D) ≢ 0mod(xn − 1) by applying a linear encoding and decoding (LEaD) scheme
with interference cancellation.

3.1.5 Linear Encoding and Decoding (LEaD)

In our previous considerations, the overlap of multiple signals is avoided beforehand
by applying an orthogonal MA scheme so that each submessage is allocated to an
individual dimension, respectively. This is independent of whether it is a dedicated
or an interfering signal. Basically, an MA scheme treats undesired signals in the same
manner as desired signals and then discards the interference afterwards. A LEaD
scheme, however, provides the opportunity to decode overlapping interference from the
received signal by using known side-information about interfering signals. In terms of
the CPCM, the basic idea is to repeat the interfering signals within the yet unused
and interference-free signal space of the undesired receiver. These repeated signals
provide full side-information about the interference in order to cancel the overlapping
interference from the dedicated signals. There are related LEaD schemes used for the
LDCM (e. g., as in [59] and [21]). In the following, we define some auxiliary sets to
describe the collection of dedicated offsets, of interfering offsets, etc.
The set of all offsets is defined by:

N = {0, ..., n − 1}. (3.27)

The set of dedicated offsets from Txi allocated at Rxj, for i, j ∈ K, is defined by:

Sji = {k ∈ N ∣ djixp
[l]
ji ≡ xk mod (xn − 1), l ∈ {0, ...,mji − 1}}. (3.28)

The set of interfering offsets from Txj received at Rxj, for i, j, t ∈ K, is defined by:

Iji = {k ∈ N ∣ djixp
[l]
ti ≡ xk mod (xn − 1), l ∈ {0, ...,mti − 1}, t ≠ j}. (3.29)
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If an offset contains neither dedicated nor interfering signals, it is unused and empty.
For the case of the 2IFC, the set of unused offsets at Rxi is:

Ui = N ∖ (Sii ∪ Iij), (3.30)

with i ≠ j ∈ K. Altogether, the particular sets of interest for the 2IFC are N , S11, S22,I12, I21, U1 and U2.

Theorem 3.5. A combined orthogonal multiple-access and LEaD scheme achieves the
upper bound of 1 DoF of the 2IFC.

Proof:
(a) Necessity of n ≥m11 +m22 dimensions :

The proof of (a) is already provided in Lemma 3.3 (a). Moreover, note that:

n ≤m11 +m22 = ∣S11∣ + ∣I12∣ = ∣S22∣ + ∣I21∣ = ∣N ∣. (3.31)

(b) Sufficiency of orthogonal MA and LEaD to achieve 1 DoF :
For det(D) ≡ 0 mod (xn − 1), achievability by orthogonal MA has already been
proven in Lemma 3.3 (b). Hence, it suffices to consider the complementary case with
det(D) ≢ 0 mod (xn − 1).
W.l.o.g. we fix vectors p11 and p22 so that the inter-user interference condition in

(3.21) holds, i. e., we apply an orthogonal offset allocation at Rx1. Then, there is no
overlapping interference at Rx1 and we obtain the following properties:

S11 ∩ I12 = ∅, S11 ∪ I12 = N , U1 = ∅. (3.32)

Some offsets will violate (3.22) and overlap at Rx2:

S22 ∩ I21 ≠ ∅, S22 ∪ I21 ⊂ N , U2 ≠ ∅. (3.33)

But, there are also unused offsets at Tx2 in the non-empty set U2:

U2 = N ∖ (S22 ∪ I21). (3.34)

The number of unused offsets ∣U2∣ and the number of overlapping offsets ∣S22 ∩ I21∣ at
Rx2 is equal due to the inclusion-exclusion principle of united sets and due to (3.31):

∣U2∣ = ∣N ∣ − ∣S22 ∪ I21∣ = ∣N ∣ − (∣S22∣ + ∣I21∣ − ∣S22 ∩ I21∣)
= ∣N ∣ − (∣N ∣ − ∣S22 ∩ I21∣) = ∣S22 ∩ I21∣. (3.35)

In order to enable Rx2 to cancel the overlapping interference from Tx1 in S22 ∩ I21,
Tx1 repeats the overlapping part of its interfering signals within the offsets of U2.
Now, Rx2 cancels the known interference from Tx1 and hence decodes its dedicated
signal w22. Rx1 cancels the repeated signals from Tx1 using the decodable signals
received in S11. This scheme corresponds to a simple linear decoding procedure. Both
receivers can decode their dedicated and even the interfering signals. Altogether, the
combined orthogonal MA and LEaD scheme achieves 1 DoF for a D with arbitrary
dji ∈ D. ∎
Up to this point, we have considered three elementary channels and introduced the

corresponding separability conditions. We provided achievable schemes based on MA
and LEaD. In the following, we focus on more extensive multi-user channels and we
will also introduce cyclic IA in particular.
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3.2 A General Upper Bound for KTx ×KRx - User
X-Networks

Before continuing with further unidirectional networks, we provide a more general
upper bound on the DoF and combine the proof of the optimality for the theorems
given in this chapter. Note that the general upper bound is basically analogous to [37,
Theorem1], albeit applied to the CPCM.
We denote the collection of dedicated messages received at Rxj by the j-th row

vector of M :

μj = (mj1, ...,mjKTx
), (3.36)

and we obtain M = (μT
1 , ...,μ

T
KRx

)T. The total number of dedicated messages to be
conveyed from all transmitters to Rxj corresponds to summing up the entries in μj:

∥μj∥1 = ∑KTx

i=1 mji.

The collection of messages transmitted from Txi is given by the i-th column vector
of M :

νT
i = (m1i, ...,mKRxi),

so that M = (ν1, ...,νKTx
). The total number of messages transmitted from Txi is the

sum of elements in vi, respectively:

∥νT
i ∥1 = ∑KRx

j=1 mji.

In general, the multiple-access interference conditions demand separability of all∥μj∥1 desired messages, so that these messages are received interference-free at Rxj.
Furthermore, the intra-user interference conditions demand separability of all ∥νT

i ∥1
messages transmitted from Txi. For a pair (Rxj,Txi), there must be at least:

∥μj∥1 + ∥νT
i ∥1 −mji

dimensions to ensure the two given separability conditions hold. Since entry mji

appears twice when adding the 1-norm of the corresponding row vectors and column
vectors, it must be subtracted once.
To further ensure that the inter-user interference conditions hold, the maximum of

the sum ∥μj∥1 + ∥νT
i ∥1 −mji over all i ∈ KTx, j ∈ KRx provides the minimal feasible n.

Altogether, the minimal necessary number of n dimensions is lower bounded by:

n ≥ max
j∈KRx, i∈KTx

(∥μj∥1 + ∥νT
i ∥1 −mji)

= max
j∈KRx, i∈KTx

(∑KTx

k=1 mjk +∑KRx

l=1 mli −mji) , (3.37)

with j ∈ KRx and i ∈ KTx for a fixed messaging matrix M . Thus, from the definition
in (2.20), the DoF of a KTx ×KRx - user X- channel are upper bounded by:

DoF ≤ ∑KRx
j=1 ∑KTx

i=1 mji

max
j∈KRx, i∈KTx

(∑KTx

k=1 mjk +∑KRx

l=1 mli −mji) . (3.38)
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Figure 3.5: The polynomial 2 -user X- channel with messages W11, W12, W21 and W22

between Tx1, Tx2, Rx1 and Rx2 and the cyclic shifts d11, d12, d21 and d22
of the transfer matrix D.

3.3 Cyclic IA on the Cyclic Polynomial 2 - User
X- Channel

A 2 -user X- channel is physically equivalent to a 2IFC. However, it has a number
of four independent messages w11,w21,w12 and w22 instead of only two independent
messages w11 and w22 for two separate dedicated user-pairs. The sets of indices are
again KTx = KRx = K = {1,2}. The 2 -user X- channel as depicted in Figure 3.5 does
not only combine the properties of a 2 -user multiple-access, a 2 -user broadcast and a
2 -user interference channel, it also serves as the most basic example for the application
of cyclic IA. The X- channel has also been considered in [11] and in [38] for the initial
development of the IA principle for time-varying MIMO X- channels.

In terms of the CPCM, the task is to convey and decode four dedicated messages
w11, w12, w21 and w22 interference-free within n dimensions. The scheme is optimal
if n is minimal and still feasible. The channel transfer matrix of the X- channel is the
same as in (3.16), namely:

D = ( d11 d12
d21 d22

) .

For an introductory discussion of cyclic IA, we begin with a simplified messaging
matrix M = 12×2 with only a single submessage per user-pair. The general case with
arbitrary message lengths will be treated afterwards in Sections 3.3.3 and 3.3.4. To
simplify notation, and since mji = 1 for all j, i ∈ K holds, the superscripts [0] are

omitted, i. e., we use W
[0]
ji =Wji =wji and p

[0]
ji = pji here.

3.3.1 Perfect Cyclic Interference Alignment

We call interfering submessages to be aligned if they are received within the same
dimension at an undesired receiver. In order to align the submessages W22 and W21

of v1(x) and v2(x), they must overlap in the same dimension at Rx1, but they must
remain distinct in different dimensions at Rx2. To align the submessages W11 and W12

of v1(x) and v2(x), they must overlap at Rx2, but remain distinct at Rx1, accordingly.
An example of such an alignment is shown in the table of Figure 3.6. The following
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x0 x1 x2

v1(x) W11 0 W21

v2(x) 0 W12 W22

r1(x) W21+W22 W11 W12

r2(x) W11+W12 W22 W21

Figure 3.6: Cyclic IA is applied on a 2 -user X- channel with n = 3 dimensions. The fol-
lowing cyclic ’right-shifts’ d11 = d12 = x1, d21 = x3 and d22 = x2 are assumed.
The parameters are p11 = 0, p12 = 1, p21 = 2, p22 = 2 and n = 3 and 4

3 DoF
are achieved. Aligned interference is highlighted in red.

polynomials with the offset parameters p11, p12, p21, p22 ∈ N0 are used for transmission:

v1(x) =W11x
p11 +W21x

p21 , (3.39)

v2(x) =W12x
p12 +W22x

p22 . (3.40)

Then by (2.18), the received polynomials at Rx1 and Rx2 yield:

r1(x) ≡ d11W11x
p11 + d12W12x

p12+
d11W21x

p21 + d12W22x
p22 mod(xn − 1), (3.41)

r2(x) ≡ d21W21x
p21 + d22W22x

p22+
d21W11x

p11 + d22W12x
p12 mod(xn − 1). (3.42)

The messages dedicated for Rxj must be linearly decodable. Thus, we demand that
the multiple-access interference conditions hold with the indices j ∈ K, and i ≠ l ∈ K:

djix
pji ≢ djlx

pjl mod(xn − 1). (3.43)

The two messages from Txi dedicated for different receivers Rxj and Rxk must also be
linear decodable. Accordingly, we demand that the intra-user interference conditions
with j ≠ k ∈ K, i ∈ K, hold:

xpji ≢ xpki mod(xn − 1). (3.44)

Moreover, the interfering messages must also be received separately from the dedicated
messages at each Rxj. Hence, the inter-user interference conditions must hold with
j ≠ k ∈ K, i ≠ l ∈ K:

djix
pji ≢ djlx

pkl mod(xn − 1). (3.45)

These negated congruences (3.43), (3.44) and (3.45) are the separability conditions of
the cyclic polynomial 2 -user X- channel. The separability conditions do not preclude
to align intra- and inter-user interference to a single dimension at each Rxj, which is
expressed by:

djix
pki ≡ djlx

pkl mod(xn − 1), (3.46)
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with j ≠ k ∈ K and i ≠ l ∈ K. Such an alignment is called perfect because the two differ-
ent interference signals perfectly overlap in exactly the same dimensions per receiver.
We further remark that (3.46) substituted into (3.45) yields (3.44):

djix
pji ≢ djlx

pkl mod(xn − 1)
⇒ djix

pji ≢ djix
pki mod(xn − 1)

⇒ xpji ≢ xpki mod(xn − 1),
with the indices j ≠ k ∈ K and i ≠ l ∈ K. Hence, we can neglect the condition (3.45) if
both (3.44) and (3.46) hold.
From the upper bound (3.38) and M = 12×2, the 2 user X- channel is upper bounded

by 4
3 DoF.

Theorem 3.6. A perfect cyclic IA scheme for the cyclic polynomial X- channel sat-
isfying the separability conditions of the X-channel exists, if and only if the condition
det(D) ≢ 0 mod(xn − 1) and n = 3 hold. Then, cyclic IA achieves the upper bound of
4
3 DoF.

Proof:
(a) Necessity of det(D) ≢ 0 mod(xn − 1), n ∈ N:

By assuming the contraposition, det(D) ≡ 0 mod(xn − 1) yields (cf. (3.23)):

det(D) ≡ 0 mod(xn − 1)
⇒ d11d22 − d21d12 ≡ 0 mod(xn − 1)

⇒ d11d22 ≡ d21d12 mod(xn − 1)
⇒ djidkl ≡ dkidjl mod(xn − 1), (3.47)

with the indices j ≠ k ∈ K and i ≠ l ∈ K. Including (3.47) into condition (3.46) yields:

djix
pki ≡ djlx

pkl mod(xn − 1)
⇒ dkix

pki ≡ dklx
pkl mod(xn − 1).

Relabeling the indices j ↔ k provides:

⇒ djix
pji ≡ djlx

pjl mod(xn − 1),
and contradicts (3.43) for any n ∈ N.
(b) Necessity of n > 2 dimensions :

Assume det(D) ≢ 0 mod(xn−1) holds. We consider the right-hand sides of (3.43) and
(3.44). (3.44) is expanded by dji.

(3.43) ∶ djix
pji ≢ djlx

pjl mod(xn − 1),
(3.44) ∶ djix

pji ≢ djix
pki mod(xn − 1).

These right-hand side terms must also be pairwise distinct, since we can relabel the
indices i↔ l in (3.48) to obtain (3.45):

djlx
pjl ≢ djix

pki mod(xn − 1) (3.48)

⇔ djix
pji ≢ djlx

pkl mod(xn − 1).
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There is no solution to satisfy all three conditions on djixpji with only n = 1 or n = 2
dimensions.

(c) Sufficiency of n = 3 and det(D) ≢ 0 mod(xn − 1):
From the perfect IA condition in (3.46), the following holds:

xp12 ≡ d−122d21x
p11 mod(x3 − 1), (3.49)

xp21 ≡ d−111d12x
p22 mod(x3 − 1). (3.50)

Furthermore, the condition (3.44) must hold:

xp11 ≢ xp21 mod(x3 − 1), (3.51)

xp12 ≢ xp22 mod(x3 − 1). (3.52)

The insertion of (3.49) and (3.50) into condition (3.51) yields:

xp22 ≢ d22d11d
−1
21d
−1
12x

p12 mod(x3 − 1), (3.53)

Due to the determinant in (3.47), the following holds:

d−112d
−1
21d22d11 ≢ 1 mod(x3 − 1).

W.l.o.g., we can fix p11 and compute p12 using (3.49). We can determine a solution for
p22 from (3.52) and (3.53) only if n > 2. For n = 3 the solution of p22 is unique. The
remaining parameter p21 is derived using (3.52).
The validity of condition (3.43) is yet to check. Inserting (3.49) and (3.50) into

(3.43) for all cases provides:

xp11 ≢ d12d21d
−1
22d
−1
11x

p11 mod(x3 − 1),
xp21 ≢ d22d11d

−1
12d
−1
21x

p21 mod(x3 − 1).
Both conditions are satisfied by prerequisite, since (3.47) holds. Altogether, there is
a solution for cyclic IA on the X- channel with n = 3 dimensions and M = 4 messages
satisfying the separability conditions and achieving the upper bound of 4

3 DoF. ∎
Note that this theorem also includes the example of the 2 -user X- channel considered
in [37, Figure 1] for d11 = d21 = x1, d12 = x0, d22 = x2 and p21 = p12 = 0, p11 = p22 = 1.

Corollary 3.7. If det(D) ≡ 0 mod(xn − 1) holds, only 1 DoF can be achieved on the
cyclic polynomial 2 -user X- channel.

Proof:
Theorem 3.6 (a) yields that interference signals can not be aligned if the condition

det(D) ≡ 0 mod(xn − 1) holds. Each message must be received distinctly within its
own dedicated offset, i. e., a MA scheme demands n ≥ 4. As in Lemma 3.3, only 1 DoF
is achievable by decoding all four messages at each receiver. ∎
Note that, if det(D) ≡ 0 mod(xn − 1) holds, the cyclic polynomial X- channel does

not provide the relativity of IA. In other words, the influence of each subchannel to
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the receivers does not provide a sufficiently diverse view of the transmitted signals, so
that the observed signals from both transmitters behave identically and the benefits
of cyclic IA are precluded. An according exceptional case is also observed in the
symmetric 2 -user X- channel in terms of the LDCM in [21, Theorems 3.1 & 3.2] at
full symmetry.
Before we devise a more generalized cyclic IA scheme for the X- channel with

an arbitrary number of submessages, we first elaborate an inherent symmetry prop-
erty of IA. The observed property is a main tool for the derivation of the capacity-
achieving scheme.

3.3.2 Complementary Reciprocal Symmetry of Cyclic IA

Interestingly, aligning two messages from different transmitters at one receiver provides
an inherent symmetry property in the given X- channel, if the necessary determinant
condition det(D) ≢ 0 mod (xn−1) holds. To elaborate this, we consider two parameters
p1, p2 ∈ N for messages W̃1, W̃2 from Tx1 and Tx2, respectively. Let p1 and p2 be chosen
such that these messages are aligned at Rx2 at a fixed offset λ2 ∈ N:

d21x
p1 ≡ d22x

p2 ≡ xλ2 mod (xn − 1). (3.54)

This alignment results in the following received signals (denoted with tilde):

r̃1(x) ≡ xλ2(d11d−121W̃1 + d12d
−1
22W̃2) mod (xn − 1), (3.55)

r̃2(x) ≡ xλ2(W̃1 + W̃2) mod (xn − 1). (3.56)

Conversely, we may choose p1, p2 such that two messages W̊1, W̊2 align at Rx1 at a
fixed offset λ1 ∈ N instead:

d11x
p1 ≡ d12x

p2 ≡ xλ1 mod (xn − 1). (3.57)

The received signals of the second case yield (denoted with circle):

r̊1(x) ≡ xλ1(W̊1 + W̊2) mod (xn − 1), (3.58)

r̊2(x) ≡ xλ1(d−111d21W̊1 + d−112d22W̊2) mod (xn − 1). (3.59)

By comparing (3.55) with (3.59) and (3.56) with (3.58), we observe that the offsets of
the polynomials r̃i(x) and r̊j(x) can be mutually converted by the following transfor-
mation3:

r̊j(x) ≡ xλi+λj r̃i(x−1)∣W̃1→W̊1,W̃2→W̊2
mod (xn − 1), (3.60)

r̃j(x) ≡ xλi+λj r̊i(x−1)∣W̊1→W̃1,W̊2→W̃2
mod (xn − 1), (3.61)

for i ≠ j ∈ K. The coefficients with the messages are substituted correspondingly. We
call these two alignments complementary reciprocal symmetric4, since the dedicated

3For the reciprocal polynomial of p(x), the sequence of coefficients is reversed, i. e., we obtain
p(x−1) = ∑

n−1
k=0 p

[k]x−k.
4This property should not be confused with the related concept of the reciprocity of alignment in [40],
where IA on the reciprocal channel with swapped transmitter-receiver pairs is considered instead.
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signals and the aligned interference signals are swapped at the receivers and the offsets
are reciprocally inverted along λi and shifted to λj (or vice versa). In other words,
the complementary reciprocal symmetry basically states that aligning signals from
both transmitters at Rx1 provides a particular interference pattern at Rx2, while vice
versa, aligning two signals at Rx2 provides the reciprocal interference pattern of the
one observed before at Rx1.

3.3.3 X- Channel with Generalized Message Lengths

Now, we generalize the perfect IA scheme of Section 3.3.1 such that the messages wji

may have different lengths mji ≥ 1. In contrast to the simplified case treated above,
a scheme purely based on IA is not sufficient to achieve the upper bound. Similar to
the 2IFC case, we also need to employ a LEaD scheme. Furthermore, we apply the
complementary reciprocal symmetry property elaborated in the previous section.
The generalized messaging matrix of the 2 -user X- channel is:

M = ( m11 m12

m21 m22
) . (3.62)

The total number of transmitted submessages is:

M =m11 +m21 +m12 +m22. (3.63)

In analogy to the MAC, BC and 2IFC, we use the vectors:

wji = (W [0]
ji , ...,W

[mji−1]
ji ), (3.64)

pji = (p[0]ji , ..., p
[mji−1]
ji ). (3.65)

The transmitted polynomial from Txi is:

vi(x) = ∑2

j=1∑mji

k=1 W
[k]
ji xp

[k]
ji . (3.66)

The received polynomials derived from (2.18) yield:

r1(x) ≡ d11v1(x) + d12v2(x) mod (xn − 1),
r2(x) ≡ d21v1(x) + d21v2(x) mod (xn − 1).

The separability conditions defined in Section 3.3.1 are now generalized for gener-
alized message lengths, i.e., each condition also applies to any pair of submessages as
follows:

Multiple-access interference conditions with
i, j, l ∈ K, i ≠ l, t ∈ {0, ...,mji − 1}, t′ ∈ {0, ...,mjl − 1}:

djix
p
[t]
ji ≢ djlx

p
[t′]
jl mod (xn − 1). (3.67)

Intra-user interference conditions with
i, j, k ∈ K, j ≠ k, t ∈ {0, ...,mji − 1}, t′ ∈ {0, ...,mki − 1}:

xp
[t]
ji ≢ xp

[t′]
ki mod (xn − 1). (3.68)
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Inter-user interference conditions with
i, j, k ∈ K, i ≠ l, k ≠ j, t ∈ {0, ...,mji − 1}, t′ ∈ {0, ...,mki − 1}:

djix
p
[t]
ji ≢ djlx

p
[t′]
ki mod (xn − 1). (3.69)

3.3.4 Achievability of Perfect Cyclic IA with Linear Coding

Despite the vast amount of separability conditions for the X- channel as given above,
a communication scheme that includes cyclic IA, LEaD and exploits the property
of complementary reciprocal symmetry of IA, can achieve the corresponding upper
bounds and the maximal sum-rate of up to 4

3 DoF for equal message lengths. This is
shown in the following theorem.

Theorem 3.8. A combined cyclic IA and LEaD scheme achieves the upper bound:

DoF ≤ m11 +m21 +m12 +m22

maxi≠j∈K(mii +mij +max(mji,mjj)) ,
on the 2 -user X- channel with arbitrary message lengths, if the total number of di-
mensions is n = maxi≠j∈K(mii +mij +max(mji,mjj)), and if det(D) ≢ 0 mod(xn − 1)
holds.

Proof:
(a) Necessity of n ≥maxi≠j∈K(mii +mij +max(mji,mjj)):

This upper bound on n is a special case of the upper bound already shown in (3.38)
for the given M in (3.62).

(b) Necessity of det(D) ≢ 0 mod (xn − 1):
For det(D) ≡ 0 mod(xn − 1), cyclic IA contradicts to the separability conditions as
already proven in Theorem 3.6 (a).

(c) Sufficiency of cyclic IA for det(D) ≢ 0 mod (xn − 1) and the given lower bound
on n:
Our cyclic IA scheme with LEaD is outlined as follows:

(i) Align the primary interference space at Rx2:
Interference signals are pairwise aligned at Rx2 beginning at offset λ2 to form a
primary interference space confined to a continuous frame5.

(ii) Linear encoding and decoding extension at Rx2:
The LEaD extension ensures that dedicated signals are decodable at Rx1. Fur-
thermore, this extension provides a frame of sufficiently many unused dimensions
at Rx1 such that the next step (iii) can be applied.

(iii) Complementary reciprocal symmetric alignment at Rx1:
Using the complementary reciprocal symmetry of cyclic IA, the remaining signals
are reciprocally aligned at Rx1 such that the already aligned dedicated signals
still remain decodable.

5We call a continuous sequence of offsets a frame.
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First, let m11 =m12 =m21 =m22 = k, with k ∈ N, so that lower bound on n yields n = 3k
with a maximal number of dedicated submessages k. Clearly, it suffices to prove three
cases: n = 3k, n = 3k + 1, and n = 3k + 2.

Step (i) - Alignment of the Primary Interference Space:

In this initial step, k parameters p
[0]
11 , ..., p

[k−1]
11 and k parameters p

[0]
12 , ..., p

[k−1]
12 for the

messages w11 and w12 are fixed such that the interfering submessages W
[l]
11 and W

[l]
12

are pairwise aligned at Rx2 for l = 0, ..., k − 1 in a frame of k distinct dimensions. We
choose the offset of the first aligned submessagesW

[0]
11 , W

[0]
12 at Rx2 as λ2 ∈ {0, ..., n−1},

so that:

d21x
p
[l]
11 ≡ d22x

p
[l]
12 ≡ xλ2+l mod (xn − 1). (3.70)

So far, the transmitted signals from Txi, for i ∈ K, are:
ṽi(x) = ∑k−1

l=0 W
[l]
1i x

p
[l]
1i . (3.71)

The following signals are received at Rx1 and Rx2:

r̃1(x) ≡ ∑k−1
l=0 xλ2+l(d−111d21W [l]

11 + d−112d22W
[l]
12 ) mod (xn − 1), (3.72)

r̃2(x) ≡ ∑k−1
l=0 xλ2+l(W [l]

11 +W
[l]
12 ) mod (xn − 1) (3.73)

This allocation ensures that the aligned interference at Rx2 is confined to a frame of
k dimensions at offsets xλ2 , ..., xλ2+k−1. We call this frame of aligned interference the
primary interference space I2 = I21 ∪ I22 at Rx2.
Let a frame of τ ∈ N dedicated submessages transmitted from Txi and received at

Rxj be denoted by the set:

S[τ]ji = {djiW [0]
ji xp

[0]
ji , ..., djiW

[τ−1]
ji xp

[τ−1]
ji }. (3.74)

Currently, two different frames, each of k dedicated submessages, occupy the signal
space at Rx1 as illustrated by the white areas of Figure 3.7. Let the parameters τ11 and
τ12 denote the offset of the first submessage for the frames of S11 and S12 as received
at Rx1, respectively:

τ11 ≡ λ2 − δ21 + δ11 (mod n), (3.75)

τ12 ≡ λ2 − δ22 + δ12 (mod n). (3.76)

The offset which is next to the end of such a k-dimensional frame is at:

τ1 = τ11 + k, (3.77)

τ2 = τ12 + k. (3.78)

We deliberately avoid the (modn)-operation in (3.77) and (3.78) to maintain a linear
ordering relationship over a cyclically unrolled period. In order to determine the size
of the yet unused offsets at Rx1 (grey shading), we need to compute the distance Δ1
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between τ1 and τ12, and also the distance Δ2 between τ2 and τ11 (cf. clock-wise distance
metric in [60]):

Δ1 =
⎧⎪⎪⎨⎪⎪⎩
τ12 − τ1, if τ11 < τ12,

n + τ12 − τ1, if τ11 > τ12,
(3.79)

Δ2 =
⎧⎪⎪⎨⎪⎪⎩
n + τ11 − τ2, if τ11 < τ12,

τ11 − τ2, if τ11 > τ12.
(3.80)

If Δ1 or Δ2 yields a negative value, then the frames S11 and S12 overlap. An example
of the parameters τ11, τ1, τ12, τ2, and distances Δ1, Δ2 is illustrated in Figure 3.7.
Case (a): If there is no intersection at Rx1, i. e., if S11∩S12 = ∅, then we will obtain

two unused frames of non-negative length 0 ≤Δ1 < k and 0 ≤Δ2 < k, respectively. We
define the following auxiliary parameters for the maximal and the minimal distance of
Δ1 and Δ2:

Δ3 =min(Δ1,Δ2), (3.81)

Δ3 =max(Δ1,Δ2). (3.82)

In this non-intersecting case, ∣S11 ∪ S12∣ = 2k dimensions are occupied by two disjoint
frames of k dimensions each. A number of n−2k = k dimensions at Rx1 remains unused
yet. The unused offsets cover exactly Δ3+Δ3 =Δ1+Δ2 = n−2k = k dimensions in this
case (cf. Figure 3.7(a)). Both parameters Δ3 and Δ3 are non-negative integers here.
Case (b): Otherwise, the dedicated signals must intersect at Rx1, i. e., S11 ∩ S12 ≠ ∅.

We obtain that either Δ1 or Δ2 is negative. Δ3 also becomes negative. The absolute
value ∣Δ3∣ indicates the number of overlapping dimensions. 2k − ∣Δ3∣ dimensions are
occupied by (partially overlapping) dedicated signals. A number of n−Δ3 dimensions
at Rx1 remains unused yet. The fully overlapping case S11 = S12 is already excluded
by det(D) ≢ 0 mod (xn − 1).
Step (ii) - Linear Encoding and Decoding (LEaD) Extension:

We propose a LEaD scheme in order to provide the following three properties for the
received signals at Rx1 and Rx2:

I All dedicated signals at Rx1 are linearly decodable.

II A frame of at least k dimensions is available for the yet unallocated primary
interference space I1 at Rx1.

III A frame of 2k unused dimensions is available at Rx2. This frame is retained for
the remaining dedicated messages w21 and w22.

We repeat the first ∣Δ3∣ submessages W
[l]
11 ,W

[l]
12 , for l = 0, ..., ∣Δ3∣−1 at Rx2, by aligning

them next to I2:
d21x

q
[l]
11 ≡ d22x

q
[l]
12 ≡ xλ2+k+l mod (xn − 1), (3.83)
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(a) Non-overlapping frames in n dimensions: S11 ∩ S12 = ∅.

(b) Overlapping frames in n dimensions: S11 ∩ S12 ≠ ∅.

Figure 3.7: The illustration shows an example for the case of non-overlapping framesS11∩S12 = ∅ at the top, and for the case of overlapping frames S11∩S12 ≠ ∅
at the bottom, as allocated by step (i) at Rx1. Yet unused dimensions are
shown in grey. For step (ii), the linear encoding and decoding extension is
depicted for τ11 < τ12, and 0 < Δ1 < Δ2. The cancellation of redundant or
overlapping signals is indicated by dashed arrows. Overlapping offsets are
dotted in grey.

with the additional offset parameters q
[l]
1i for the repeated submessages W

[l]
1i . The

extended transmission signals from Txi, for i ∈ K, become:

ṽi(x) = ∑k−1
l=0 W

[l]
1i x

p
[l]
1i +∑∣Δ3∣−1

l′=0 W
[l′]
1i xq

[l′]
1i , (3.84)

and the corresponding received signals are:

r̃1(x) ≡ ∑k−1
l=0 xλ2+l(d−111d21W [l]

11 + d−112d22W
[l]
12 )+ (3.85)

∑∣Δ3∣−1
l′=0 xλ2+k+l′(d−111d21W [l′]

11 + d−112d22W
[l′]
12 ) mod (xn − 1), (3.86)

r̃2(x) ≡ ∑k−1
l=0 xλ2+l(W [l]

11 +W
[l]
12 ) +∑∣Δ3∣−1

l′=0 xλ2+k+l′(W [l′]
11 +W

[l′]
12 ) mod (xn − 1). (3.87)

This extended alignment scheme produces a secondary interference space I ′2 at Rx2
with ∣Δ3∣ submessages. The secondary interference space I ′2 at Rx2 is cancelled by using
the first 0, ..., ∣Δ3∣ − 1 dimensions of the primary interference space I2. This cancellation
procedure is depicted by the dashed arrows in the lower graphs of Figure 3.7. Thus,
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the effective interference space left over at Rx2 after cancellation is again I2, with only
k dimensions.

In the case (a) with S11 ∩S12 = ∅ at Rx1, the smaller gap of ∣Δ3∣ unused dimensions

is filled up with the corresponding repeated dedicated signals S[∣Δ3∣]
ij . This repetition in

the smaller gap is used to cancel out the corresponding dedicated signals as depicted
in Figure 3.7(a). In the larger gap with ∣Δ3∣ dimensions, the additional repetition of
signals are cancelled by using the corresponding dedicated signals.

In the contrary case (b), we have S11 ∩ S12 ≠ ∅ at Rx1. Now, a number of ∣Δ3∣
dimension overlaps at Rx1. Likewise, we extend the signal as in (3.83) with the first

∣Δ3∣ submessages. At Rx1, the repeated signals S[∣Δ3∣]
1j occur at τj , correspondingly. The

overlapping parts are cancelled using the corresponding interference-free signals. This
extension and cancellation procedure for this second case is depicted in Figure 3.7(b).

In both cases, the dedicated signals and the repeated signals form a continuous
frame of 2k dimensions at Rx1 after performing the cancellation scheme as described
above. The dedicated signals allocated so far are decodable. Moreover, a frame of k
dimensions is yet left unused after cancellation at Rx1 and a frame of 2k dimensions
is left unused at Rx2. Hence, the LEaD-extension provides all three desired properties
I, II, and III.

Step (iii) - Complementary Reciprocal Symmetric Alignment:

In this step, we derive the complementary alignment of interfering signals at Rx1. We
align the interference at Rx1, caused by W

[l]
21 and W

[l]
22 , at an offset λ1 ∈ {0, ..., n−1} by:

d11x
p
[l]
21 ≡ d12x

p
[l]
22 ≡ xλ1−l mod (xn − 1), (3.88)

for l = 0, ..., k − 1. This primary interference space I1 is aligned in the reciprocal direc-
tion, when compared to the IA at Rx2 in (3.70). The offset λ1 is uniquely chosen by:

λ1 =
⎧⎪⎪⎨⎪⎪⎩
τ11 − 1 + [Δ1]+, if Δ1 ≤Δ2,

τ12 − 1 + [Δ2]+, if Δ2 <Δ1,
(3.89)

so that I1 is located exactly within the frame of k yet unused (or cancelled) offsets.

Analogously to step (ii), we also apply a LEaD-extension to provide decodability

for the dedicated signals W
[l]
21 and W

[l]
22 . Again, the first ∣Δ3∣ submessages W

[l]
21 ,W

[l]
22 ,

with l = 0, ..., ∣Δ3∣ − 1, are repeated next to the primary interference space I1, also in
the reciprocal direction, so that they are aligned at:

d11x
q
[l]
21 ≡ d12x

q
[l]
22 ≡ xλ1−k−l mod (xn − 1), (3.90)

with the offsets q
[l]
2i for the repeated submessages W

[l]
2i , for i ∈ K. The linearly extended

transmission signal v̊i(x) from Txi is:

v̊i(x) = ∑k−1
l=0 W

[l]
2i x

p
[l]
2i +∑∣Δ3∣−1

l′=0 W
[l′]
2i xq

[l′]
2i . (3.91)

41



3 Multi-User Single-Hop Unidirectional Communications
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Figure 3.8: An example of cyclic IA with the LEaD-extension for the 2 -userX- channel
with n = 7 = 3⋅2+1 dimensions (⇒ k = 2). Let the channel matrixD impose
the following cyclic ’right’-shifts d11 = x0, d12 = x3, d21 = x4, d22 = x6 and let
m11 = 3, m12 =m21 =m22 = 2. The parameters from the scheme are λ2 = 0,
λ1 = 2, τ11 = 3, τ12 = 4, τ1 = 5, τ2 = 6, Δ1 = −1, and Δ2 = 4. The primary
interference spaces are highlighted in red and the secondary interference
spaces in green. The complementary reciprocal symmetry is satisfied, when
ignoring W

[2]
11 , as highlighted in blue. The cancellation of interference by

the linear decoder is indicated by the terms crossed out. Altogether, all
M = 9 dedicated submessages are decodable within 7 dimensions achieving
the proposed upper bound.

This provides the following received signals at Rx1 and Rx2:

r̊1(x) ≡ ∑k−1
l=0 xλ1−l(W [l]

21 +W
[l]
22 ) +∑∣Δ3∣−1

l′=0 xλ1−k−l′(W [l′]
21 +W

[l′]
22 ) mod (xn − 1), (3.92)

r̊2(x) ≡ ∑k−1
l=0 xλ1−l(d11d−121W [l]

21 + d12d
−1
22W

[l]
22 )+ (3.93)

∑∣Δ3∣−1
l′=0 xλ1−k−l′(d11d−121W [l′]

21 + d12d
−1
22W

[l′]
22 ) mod (xn − 1). (3.94)

Now, we combine the transmitted signals (3.84) and (3.91) of Txi:

vi(x) = ṽi(x) + v̊i(x). (3.95)

At each Rxj, the combined received signals yield from r̃i(x) and r̊i(x), respectively:
rj(x) ≡ r̃j(x) + r̊j(x) mod (xn − 1). (3.96)

For r1(x) all dedicated signals are linearly decoded as shown in step (ii). Recall that
the primary interference space I1 fits perfectly into the formerly unused (or cancelled)
signal space at Rx1. The secondary interference space I ′1 is cancelled using I1. The
proposed alignment scheme satisfies the following complementary reciprocal symmetry
relationship for r2(x) (cf. (3.60), (3.61)) by construction:

r̊2(x) ≡ xλ1+λ2 r̃1(x−1)∣w11→w21,w12→w22
mod (xn − 1), (3.97)

r̃2(x) ≡ xλ1+λ2 r̊1(x−1)∣w21→w11,w22→w12
mod (xn − 1). (3.98)

The resulting r2(x) = r̃2(x)+r̊2(x) is complementary reciprocal symmetric w.r.t. r1(x).
Due to the corresponding relabelling of submessages, all dedicated signals for Rx2 are
decodable now, as well. At this point, the case n = 3k, for k ∈ N, is already proven.
For the case that the minimal necessary n is lower bounded by n = 3k + 1, we may

consider m11 = k + 1, m12 =m21 =m22 = k, w.l.o.g. As in the previous scheme, k pairs
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of submessages are aligned in the same way as in steps (i) to (iii) at both receivers.
But now, the lower bound on n is limited by 3k + 1 instead of only 3k dimensions.
Thus, there is still one unused offset left over at both receivers after the cancellation
of known interference. Tx1 allocates its remaining k + 1-th submessage W

[k]
11 in v1(x)

at those two offsets, such that one W
[k]
11 is received within the unused dimensions

of the receivers Rx1 and Rx2 each. Both receivers will receive one interference-free
W
[k]
11 and one interfering W

[k]
11 in general. Clearly, linear decoders can each cancel the

interference at both receivers. Case n = 3k + 2 is treated analogously and hence it is
omitted here.
An example of the proposed scheme for case n = 3k + 1 is provided in the table

of Figure 3.8. As a result, all m11 + m21 + m12 + m22 submessages are successfully
conveyed within a total number of n =maxi≠j∈K(mii+mij +max(mji,mjj)) dimensions
for all cases. ∎
The optimal choice for the number of submessages is mji = k for a non-zero constant
k ∈ N, so that interference is perfectly aligned and the DoF are maximized by 4

3 .

3.4 Cyclic IA on the Cyclic Polynomial K- User
Interference Channel

In the following section, a cyclic polynomial K-user interference channel is considered
for K ≥ 3 user-pairs. The K-user interference channel is of notable interest, since IA is
capable to provide a number of K

2 DoF [3]. In contrast to the conventional approaches
such a channel is not user-limited, since the DoF linearly scale with the number of
user-pairs K.

3.4.1 Perfect Cyclic Interference Alignment

Similar to the initial exposition of the 2-user X- channel in Section 3.3, we use a
symmetric messaging matrix M = IK×K . There is a number of M = K independent
messages Wi = wii dedicated to be conveyed from transmitter Txi to receiver Rxi
in disjoint pairs with indices i ∈ K for KTx = KRx = K = {1, ...,K}. Note that in [3,
Appendix I], the closely related example for IA by propagation delay yields a special
case of this problem. We will not cover the general case with arbitrary message lengths
in this dissertation. The K-user interference channel is depicted in Figure 3.9.
The channel matrix between is defined as D = (dji)1≤i,j≤K with dji ∈ D. This channel

is also called fully-connected as each transmitter has a non-zero subchannel to each
receiver. The polynomial vi(x) only contains the single (sub-)message Wi intended for
Rxi. The offset parameter pi ∈ N0, for i ∈ K, allocates the message Wi within vi(x):

vi(x) =Wix
pi . (3.99)

The input vector of the transmitted polynomials is denoted by v = (v1(x), ..., vK(x)).
The transfer function of channel yields the received vector r = (r1(x), ..., rK(x)):

rT =DvT mod(xn − 1).
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Figure 3.9: The fully-connected cyclic polynomial interference channel with K user-
pairs and M = K submessages W1, ...,WK , so that there is one message
between each pair of transmitters Tx1, ...,TxK and receivers Rx1, ...,RxK
for the transfer matrix D.

And the received polynomial at Rxj yields:

rj(x) = ∑K

i=1 djiWix
pi mod(xn − 1).

The task of cyclic IA for the given K- user interference channel is to convey and
decode the M = K dedicated messages W1, ...,WK interference-free within n dimen-
sions. The scheme is optimal in the sense of cyclic IA if the number of dimensions n
is minimal and still feasible.
In contrast to the 2 × 2 cyclic polynomial X- channel, neither the multiple-access

interference nor the intra-user interference conditions are to be considered for this
K- user interference channel, since there is only one message Wi per dedicated user-
pair i anyway. Thus, only the following inter-user interference conditions are to be
considered for j ≠ i ∈ K:

djjx
pj ≢ djix

pi mod(xn − 1). (3.100)

We count K(K − 1) of these separability conditions in total for K users, i. e., a single
receiver observes K −1 inter-user interference signals from the undesired transmitters.
In the given case of K user-pairs, perfect IA means to align all K −1 interfering signals
received at each Rxj into a single dimension:

djix
pi ≡ djkx

pk mod(xn − 1), (3.101)

with pairwise distinct i, j, k ∈ K.
For notational convenience, we define auxiliary 2 × 2 submatrices of D denoted as

Dj,k,i, if the following structure is satisfied for pairwise distinct indices i, j, k ∈ K:
Dj,k,i = ( djj dji

dkj dki
) . (3.102)

Theorem 3.9. A perfect cyclic IA scheme for the K- user interference channel with
messaging matrix M = IK×K exists, if the three conditions:
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det(Dj,k,i) ≢ 0 mod(xn − 1),
djidkjdik ≡ dijdjkdki mod(xn − 1),
and n = 2 dimensions,

hold for pairwise distinct i, j, k ∈ K. Then, cyclic IA achieves K
2 DoF.

Proof:
(a) Necessity of djidkjdik ≡ dijdjkdki mod(xn − 1), n ∈ N:

Let i, j, k ∈ K be pairwise distinct. By relabelling the indices in (3.101) to i→ j, j → k
and k → i, we obtain (3.103). And by relabelling the indices in (3.101) to i→ k, j → i
and k → j, we obtain (3.104), respectively:

(3.101) ∶ djix
pi ≡ djkx

pk mod(xn − 1),
dkjx

pj ≡ dkix
pi mod(xn − 1), (3.103)

dikx
pk ≡ dijx

pj mod(xn − 1). (3.104)

These three equivalences are solvable, if and only if the following condition holds:

djidkjdik ≡ djkdkidij mod(xn − 1). (3.105)

Otherwise, perfect IA cannot be applied.

(b) Necessity of det(Dj,k,i) ≢ 0 mod(xn − 1), n ∈ N:
Inserting the relabelled (3.103) into the inter-user interference (3.100) condition yields:

djjdkid
−1
kjx

pi ≢ djix
pi mod(xn − 1)

⇒ djjdki ≢ dkjdji mod(xn − 1)
⇒ 0 ≢ det(Dj,k,i) mod(xn − 1), (3.106)

for pairwise distinct i, j, k ∈ K. If the contraposition det(Dj,k,i) ≡ 0 mod(xn − 1) is
assumed, the separability conditions can not be fulfilled by perfect IA.

(c) Necessity of n > 1 dimensions:
Only n = 1 dimension would preclude any separation of desired and interfering mes-
sages necessary for the inter-user interference conditions in (3.100).

(d) Sufficiency the given separability conditions with n = 2 to achieve K
2 DoF :

Firstly, we consider the valid channel matrix D = x1IK×K + (1K×K − IK×K)x2 as in [3,
Appendix I]. The condition (3.105) holds since any non-diagonal entry is x2, i. e.,
djidkjdik ≡ dijdjkdki ≡ x2x2x2 ≡ 1 mod(x2 − 1). The condition (3.106) also holds since
det(Dj,k,i) ≡ x3(x1 − 1) ≢ 0 mod(x2 − 1).
There are many other valid channel matrices D: If all entries of a row in the given

D are cyclically shifted by xm, m ∈ N, the two conditions still hold. For a shifted
row j, we obtain (djixm)dkj ≡ dki(djjxm) mod(x2 − 1) ⇒ djidkj ≡ dkidjj mod(x2 − 1),
leading to (3.106). An analogous argument holds for (3.105).
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For such a valid D, we fix p1 w.l.o.g. and determine all other pi, with i = 2, ...,K,
by applying the perfect IA condition in (3.101):

xpi ≡ d−1ji dj1x
p1 mod(x2 − 1).

A solution that perfectly aligns all K − 1 interference signals at each receiver exists
for the fixed offset parameters, since (3.105) holds by prerequisite on the given D for
n = 2. The (aligned) interference signals do not overlap with the dedicated signals at
all receivers, since the same perfect IA used for the derivation of the required (3.106)
is also used here.
Altogether, K messages are conveyed interference-free in n = 2 dimensions and

K
2 DoF are achieved. This corresponds to the upper bound (3.38) for messaging ma-
trix M = IK×K . ∎
The conditions on the K-user interference channel can also be expressed alterna-

tively. We define yet another kind of auxiliary 2× 2 -matrices of D with the following
structure:

Di,j = ( dii dij
dji djj

) , (3.107)

for i ≠ j ∈ K. In contrast to the submatrices in (3.102), there are two diagonal elements
of D in Di,j instead of only one diagonal element in Dj,k,i.

Corollary 3.10. For perfect cyclic IA with n = 2, the following alternative conditions:

det(Di,j) ≡ 0 mod(x2 − 1), (3.108)

must hold for i ≠ j ∈ K.
Proof:
Since n = 2, a perfect IA scheme can be alternatively formulated by allocating

dedicated and (aligned) interference signals side-by-side with:

diix
pi ≡ dijx

pjx1mod(x2 − 1), (3.109)

diix
pi ≡ dikx

pkx1mod(x2 − 1), (3.110)

for pairwise distinct i, j, k ∈ K. On the one hand, we may substitute diixpi in both
congruences and obtain (3.101) to derive condition (3.105) as above. On the other
hand, we may consider a relabelled version of (3.109) with swapped indices instead:

(3.109) ∶ diix
pi ≡ dijx

pjx1 mod(x2 − 1),
djjx

pj ≡ djix
pix1 mod(x2 − 1). (3.111)

Substituting these two congruences leads to the condition:

diidjj ≡ dijdji mod(x2 − 1) (3.112)

⇔ det(Di,j) ≡ 0 mod(x2 − 1), (3.113)

for i ≠ j ∈ K. ∎
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3.4.2 Common Eigenvectors in Separate Subspaces

It is shown in [3, Sec. IV-D], that perfect IA6 is infeasible for the constant MIMO
K-user interference channel with single antennas per user. The infeasibility of perfect
IA is due to common eigenvectors in the dedicated and the interference subspaces.
Interestingly, an analogous problem is recognizable in the CPCM, but it merely imposes
a constraint on the D. To briefly elaborate this, we consider a perfect cyclic IA scheme
for the 3-user interference channel mimicking the MIMO IA scheme in [3, Section IV-D:
Equations (25)-(27)]:

d13x
p3 ≡ d12x

p2 mod(x2 − 1), (3.114)

d13x
p3 ≡ d31x

p1 mod(x2 − 1), (3.115)

d32x
p2 ≡ d31x

p1 mod(x2 − 1). (3.116)

By resolving these equations w.r.t. xp1 , we obtain:

xp1 ≡ d−113d23d
−1
21d12d

−1
32d31x

p1 mod(x2 − 1). (3.117)

An analogous formulation arises in [3, Section IV-D], but with corresponding diagonal
MIMO channel matrices and beam-forming vectors. This corresponding equation
leads to the problem of common eigenvectors when applying perfect MIMO IA. In
the cyclic IA scheme, (3.117) only implies a constraint like (3.105).

3.4.3 On the Feasibility Conditions of the K-User Interference
Channel

To elaborate further common properties of the CPCM and the GMCM, we consider
the feasibility conditions of the K-user MIMO interference channel with MTx transmit
antennas and MRx receive antennas (cf. [39]). In the GMCM, let the channel matrices
Hji for each link from Txi to Rxj have MRx ×MTx dimensions. The transmit beam-
forming matrices V i have MTx × di dimensions and the receive filtering matrices N i

have MRx × di dimensions. We have rank(V i) = di = rank(N i) = di ≤ min(MTx,MRx)
for both matrices. The feasibility conditions for this case are compactly formulated by:

N jHjiV i = 0dj×di , for all i ≠ j ∈ K, (3.118)

rank(N iH iiV i) = di, for all i ∈ K, (3.119)

for some properly chosen beam-forming and zero-forcing matrices, as in [39], [40]. The
first condition (3.118) ensures that the interference signals from Txi are projected into
the null space of the receiver at Rxj for distinct i, j. The second condition (3.119)
ensures that the dedicated signals from Txi are projected into a dedicated signal space
of di dimensions at Rxi. Analogous to the demanded properties in Section 2.2.3, satis-
fying these feasibility conditions also provides linear interference-free communication
and linear decodability of all dedicated signals.

6However, asymptotically perfect IA is feasible using symbol-extensions for instance [3].
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We now translate these feasibility conditions to an analogous expression for the
CPCM. Let a zero-forcing polynomial at Rxj be defined by:

zj(x) = ∑n−1
k=0 z

[k]
j xk, z

[k]
j ∈ {0,1}. (3.120)

By element-wise multiplying the zero-forcing polynomial zj(x) with the received poly-
nomial rj(x), the resulting polynomial zj(x)○rj(x) is filtered correspondingly. A filter

coefficient z
[k]
j = 1 keeps the received coefficient r

[k]
j at offset k unchanged, and a filter

coefficient z
[k]
j = 0 zero-forces the received coefficient at offset k.

With such zero-forcing polynomials, the feasibility conditions for the cyclic polyno-
mial K-user interference channel are analogously formalized as follows:

zj(x) ○ djivi(x) = 0, for i ≠ j ∈ K, (3.121)

rank(zi(x) ○ diivi(x)) =mii. (3.122)

The first condition provides that interference space is zero-forced at each receiver, and
the second condition provides that there are sufficiently dimensions available for the
mii dedicated submessages from Txi to Rxi, for all i ∈ K. These conditions are fulfilled
by the cyclic IA scheme proven in Theorem 3.9 using the zero-forcing polynomial:

zj(x) ≡ djix
pi ≡ djkx

pk mod(x2 − 1). (3.123)

3.5 Infeasibility of Perfect Cyclic IA in Multi-User
X-Networks

In this section, we consider a 3 -user X-network, an extension of the 2-user X-channel.
Similar to the 2 -user X-network, each transmitter has one dedicated message for
each receiver, i. e., three messages per transmitter. The investigation of this channel
particularly addresses an interesting open problem that was stated in the discussion
of [16, SectionV]:

Problem: Is perfect IA by propagation delay feasible on K-user X-networks with
K > 2 users?

We will show in this section that, in terms of the CPCM, perfect cyclic IA in a
K-user X - network for K > 2 users is indeed overconstrained and hence infeasible. We
observe that this property even goes beyond the closely related problem of common
invariant subspaces of constant MIMO IA [37].
Then, in order to tackle this infeasibility problem, we extend the capabilities of

the 3 -user X-network by using a cooperative interference alignment and cancellation
(IAC) scheme over rate-limited backhaul network (BHN). The concept of IAC is ini-
tially introduced in [61] and also applied in [62] for instance. Therein, a BHN provides
a limited exchange of messages at the receiver-side to support the cancellation of known
interference by the aid of cognitive messages from the other cooperating receivers.
We first analyze a simple feedforward scheme achieving 9

5 DoF within 5 dimensions
and only one message over an interference-free feedforward BHN. In other words, we
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permit a single cognitive receiver that has interference-free access to one message of
the transmitters.

Our second step leads us to a related cyclic IAC scheme, but its cognitive messages
are restricted to a receiver-sided backhaul network (Rx-BHN). In that case, only recei-
vers can cooperate and exchange a limited number of messages. Cyclic IAC achieves
the 9

5 DoF with a minimum of only 2 messages over the Rx-BHN.

For a transmitter-sided backhaul network (Rx-BHN), we employ the concept of IN as
discussed in [47] and [63] to inhibit interference at the receivers. IN is a communication
scheme cancelling interference ’over the air’ by aligning complementary versions of the
same message within the same signalling space. Since IN is not in the main focus of
this particular section, we point the reader to Sections 4.1 and 4.2 in the subsequent
chapter. We observe a duality relationship between IAC on the Rx-BHN and IN on
the dual Tx-BHN. This insight also generalizes the related observations in [23] for a
2IFC with cooperation.

3.5.1 Cyclic Polynomial 3 -User X- Network

Note that, we already derived the DoF for the 2-user X-channel in Section 3.3, and
in [27, Section III]. Here, each transmitter intends to conveyK = 3 dedicated messages,
one to each receiver. The set of user-indices is KTx = KRx = K = {1,2,3}. For the sake
of simplicity, we constrain our model to M = 13×3, i. e., mji = 1 submessages for all
transmitter-receiver pairs. We set our focus on perfect IA. There are M = K2 = 9
unicast messages in the system in total for these given assumptions. The transmitted
signal from Txi is a polynomial with (sub-)messages Wji dedicated for receiver Rxj:

vi(x) = ∑j∈KWjix
pji . (3.124)

Each receiver must decode three dedicated messages, and receives six interfering sig-
nals, i.e., they must cope with two interfering messages per transmitter Txi. The
received signal rj(x) at Rxj is:

rj(x) ≡ ∑i∈K djivi(x) mod (xn − 1). (3.125)

The 3 -user X- network is depicted in Figure 3.10.

Separability Conditions

In order to guarantee decodability, all three types of separability conditions as discussed
in Section 3.3.1 must be considered for the 3- user X- network. Including all nine
messages, the intra-user interference conditions at Txi, for pairwise distinct pii, pji,
pki, are:

xpji ≢ xpki mod (xn − 1), (3.126)

xpii ≢ xpji mod (xn − 1), (3.127)

xpii ≢ xpki mod (xn − 1). (3.128)
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Figure 3.10: The fully-connected 3 -user X- network with three transmitters Tx1,Tx2
and Tx3, three receivers Rx1,Rx2,Rx3, nine independent messages Wji

and nine estimated messages Ŵji. The influence of the channel is para-
meterized by dji.

The multiple-access interference conditions at Rxi for distinct dedicated signals diixpii ,
dijxpij , dikxpik , are:

dijx
pij ≢ dikx

pik mod (xn − 1), (3.129)

diix
pii ≢ dijx

pij mod (xn − 1), (3.130)

diix
pii ≢ dikx

pik mod (xn − 1). (3.131)

And the inter-user interference conditions at Rxi are:

diix
pii ≢ dijx

pkj mod (xn − 1), (3.132)

diix
pii ≢ dijx

pjj mod (xn − 1), (3.133)

diix
pii ≢ dikx

pjk mod (xn − 1), (3.134)

diix
pii ≢ dikx

pkk mod (xn − 1), (3.135)

dijx
pij ≢ diix

pji mod (xn − 1), (3.136)

dijx
pij ≢ diix

pki mod (xn − 1), (3.137)

dijx
pij ≢ dikx

pjk mod (xn − 1), (3.138)

dijx
pij ≢ dikx

pkk mod (xn − 1), (3.139)

for distinct indices i, j, k ∈ K, respectively. Note that by a circular relabelling of indices,
these conditions can also be expressed for Txj, Txk, Rxj and Rxk (cf. Appendix A).

3.5.2 Infeasibility Problem of Perfect Cyclic Interference
Alignment

A receiver Rxi will receive a superposition of six interfering signals in total: diixpji ,
diixpki , dijxpkj , dijxpjj , dikxpjk , dikxpkk . Two interfering signals from the same trans-
mitter can not be aligned due to the intra-user interference conditions (3.126) to
(3.128). As three dimensions are reserved for dedicated signals and at least two di-
mensions must be reserved for interference, we demand n ≥ 5 dimensions.
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Perfect cyclic IA is optimal and requires n = 5 dimensions. Three interference signals,
i.e., one from each transmitter, must be aligned to a single dimension reserved for
interference only. A potentially perfect cyclic IA scheme at Rxi is constructed by
choosing one element from each of these three sets as implied by curly brackets:

{ diixpji

diixpki
} ≡ { dijxpjj

dijxpkj
} ≡ { dikxpjk

dikxpkk
} mod (x5 − 1), (3.140)

e. g., by taking the elements in the first row, we obtain:

diix
pji ≡ dijx

pjj ≡ dikx
pjk mod (x5 − 1), (3.141)

for a fully symmetric perfect IA scheme similar to the one in [37, SectionV-C]. IA
in one interference dimension directly implicates the complementary alignment of the
other interference dimension at the same receiver. For the example given in (3.141),
the complementary alignment is given by the second row of (3.140):

diix
pki ≡ dijx

pkj ≡ dikx
pkk mod (x5 − 1).

For notational convenience, we will denote auxiliary submatrices of D by:

Di,k,j,l = ( dij dil
dkj dkl

) .
Note that the determinant of Di,k,j,l also implies the following symmetries:

det(Di,k,j,l) ≡ det(Dk,i,l,j) ≡ −det(Dk,i,j,l) ≡ −det(Di,k,l,j) mod (xn − 1).
Theorem 3.11. Perfect cyclic IA with the messaging matrix M = 13×3 is infeasible
on the 3 -user X- network.

Proof:
EachDi,k,j,l corresponds to a subordinate 2×2X- channel matrix with distinct trans-

mitters Txj, Txl, and distinct receivers Rxi, Rxk. Note that for the 2 × 2 X- channel,
a non-zero determinant of the channel matrix is necessary to perform IA, as we have
already shown in [27, Theorem1 (a)].
Now, we assume that, e. g., det(Di,j,i,j) ≡ 0 mod (x5 − 1) holds and consider some

particular implications on (3.140). On the one hand, if diixpji ≡ dijxpjj mod (x5 − 1)
holds, the above assumption leads to djjxpjj ≡ djixpji mod (x5 − 1). But this con-
tradicts the multiple-access interference conditions. In analogy, aligning djjxpij ≡
djixpii mod (x5 − 1) would imply diixpii ≡ dijxpij mod (x5 − 1), yielding another vi-
olation of the separability conditions.
Contrariwise, by aligning diixpki ≡ dijxpkj with the initial assumption det(Di,j,i,j) ≡ 0

would implies djixpki ≡ djjxpkj . This is not a contradiction so far. Beyond that, the
above assumption is even a necessary condition when both of these two alignments are
used for the IA scheme.
However, the complementary alignment at Rxi to diixpki ≡ dijxpkj mod (x5 − 1) is

again the previously considered alignment diixpji ≡ dijxpjj mod (x5 − 1). Thus, the
separability conditions are violated for both det(Di,j,i,j) ≡ 0 and det(Di,j,i,j) ≢ 0. In
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other words, there is no feasible D available. This conflict carries over to all minors
of D analogously. ∎
Theorem3.11 entails that perfect cyclic IA is also infeasible for theK- userX- network

with K ≥ 3 users since there are (K3 ) embedded 3 - user X- networks.

Nonetheless, this problem does not exclude imperfect cyclic IA schemes with a num-
ber of n > 2K − 1 dimensions. But imperfect cyclic IA schemes do not achieve the
upper bound (3.38) exactly. A corresponding approach will not be discussed in this
dissertation.

3.5.3 Common Eigenvectors in Separate Subspaces - Revisited

The infeasibility of perfect cyclic IA shown here is also linked to the problem of the
common eigenvectors in perfect spatial IA schemes as discussed in Section 3.4.2 and
in the works [3, Section IV-D], [64], and [37, SectionV-C].

But the common eigenvector problem is only a subordinate part of the infeasibility
problem presented in Theorem3.11 above. To briefly elaborate this, we consider a
symmetric perfect cyclic IA scheme which is analogous to the spatial IA scheme in [37,
Equations (10)-(12)]:

diix
pji ≡ dijx

pjj ≡ dikx
pjk mod (x5 − 1), (3.142)

diix
pki ≡ dijx

pkj ≡ dikx
pkk mod (x5 − 1), (3.143)

for pairwise distinct indices i, j, k ∈ K. Due to symmetry, the alignment of (3.142) at
receiver Rxk corresponds to:

dkkx
pjk ≡ dkjx

pjj ≡ dkix
pji mod (x5 − 1), (3.144)

by a simple relabelling of indices. With (3.142), (3.144), we obtain:

diix
pji ≡ dijx

pjj mod (x5 − 1),
dkix

pji ≡ dkjx
pjj mod (x5 − 1),

⇒ diid
−1
ij dkjd

−1
ki x

pji ≡ xpji mod (x5 − 1). (3.145)

An analogous formulation arises in [37, Equation (15)] with corresponding diagonal
MIMO channel matrices and leads to the problem of common eigenvectors in perfect
spatial IA. But in the case of cyclic IA, the result of (3.145) only implies the additional
constraint det(Di,k,j,i) ≡ 0 mod (x5 − 1).

3.6 3 -User X- Networks with Minimal Backhaul

Since perfect cyclic IA is already shown to be an overconstrained problem, our upcom-
ing approach is to relax the restraining conditions by providing a limited number of
cognitive messages over a BHN to achieve sufficient feasibility.
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3.6.1 Cyclic IA with Minimal Feedforward Backhaul Networks

A first and very intuitive approach is to include a feedforward (FF) backhaul network
between some transmitters and receivers. A single FF-link θFF,ji between Txi and Rxj
with rate ΘFF,ji = 1 simply bypasses the channel dji for a single message so that the
actual transmission of the forwarded message may be omitted. The FF-BHN is also
shown at the bottom of Figure 5.4. Note that this approach corresponds to using one
cognitive receiver Rxj knowing Wji.
We propose the following alignment scheme and prove its optimality w. r. t. the

minimal necessary sum-rate ΘFF:
At Rxi, interference from Rxj and Rxk is perfectly aligned within two dimensions:

diix
pji ≡ dijx

pkj ≡ dikx
pjk mod (x5 − 1), (3.146)

diix
pki ≡ dijx

pjj ≡ dikx
pkk mod (x5 − 1). (3.147)

The dedicated and interfering signals at Rxj are aligned by:

djix
pki ≡ djjx

pkj ≡ djkx
pik mod (x5 − 1), (3.148)

djix
pii ≡ djkx

pkk mod (x5 − 1), (3.149)

djjx
pij ≡ djkx

pjk mod (x5 − 1), (3.150)

and similarly, we use the following Cyclic IA scheme at Rxk:

dkix
pii ≡ dkjx

pjj ≡ dkkx
pik mod (x5 − 1), (3.151)

dkjx
pij ≡ dkix

pji mod (x5 − 1), (3.152)

dkix
pki ≡ dkkx

pjk mod (x5 − 1). (3.153)

A relabelling of indices is not permitted in this asymmetric IA scheme. Note that
(3.150) and (3.153) explicitly violate the separability conditions. Independent of chan-
nel matrix D, the dedicated messages Wjk and Wki can not be decoded yet.

Theorem 3.12. The upper bound of 9
5 DoF for n = 5 on the 3 -user X - network is

achievable by Cyclic IA with feedforward for min(ΘFF) ≥ 1.
For the considered Cyclic IA scheme, we assume that the following conditions:

(i) dijdkidjk ≡ djidikdkj mod (x5 − 1),
(ii) diidjkdkj ≡ djjdikdki ≡ dkkdijdji mod (x5 − 1),
(iii) det(Di,k,i,k) ≢ 0 mod (x5 − 1),
(iv) det(Di,j,i,j) ≢ 0 mod (x5 − 1),
(v) det(Di,j,i,k) ≢ 0 mod (x5 − 1),
(vi) det(Di,j,j,k) ≢ 0 mod (x5 − 1),
(vii) det(Dk,j,k,i) ≢ 0 mod (x5 − 1),
(viii) det(Dk,j,k,j) ≢ 0 mod (x5 − 1),
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(ix) diidjjdkk ≢ dijdjkdki ≡ djidkjdik mod (x5 − 1),
(x) dkkdiidjjdkk ≢ djkdkjdikdki mod (x5 − 1),

diidiidjjdkk ≢ dijdjidikdki mod (x5 − 1),
djjdiidjjdkk ≢ dijdjidjkdkj mod (x5 − 1),

hold for distinct indices i, j, k ∈ K.
Proof:
(a) Necessity of ΘFF ≥ 1:

Since ΘFF = 0 would correspond to using no FF-link at all, the necessity of ΘFF ≥ 1
follows from Theorem3.11 evidently.

(b) Necessity of constraints (i) to (x) for the given scheme:
First, we consider the constraints (i), (ii) that are implied by the cyclic IA scheme given
in (3.146) to (3.153). We depict how the parameters are interlinked by the adjacency
graph shown in Figure A.1 of Appendix A. Other potentially valid alignment schemes
will imply a different set of constraints and hence another adjacency graph.
Constraint (i) is obtained by substituting the parameters pjj, pkk, pii in (3.147),

(3.148) and (3.151).
One part of constraint (ii) yields from substituting pjk, pji, pij in (3.146), (3.150),

(3.149). Another part from (ii) yields from substituting pjj, pkj, pik in (3.147),
(3.151), (3.148), and the remaining part from substituting pkj, pki, pjk in (3.148),
(3.153), (3.146).
Now, we consider the impact of the separability conditions. Note that the feasibility

of (3.150) and (3.153) is provided by the FF-BHN, as we will show in part (b), i. e.,
these particular violations are excluded. Constraint (iii) is derived from (3.131) and
(3.151). Constraint (iv) is derived by substituting pki, pji, pkj with (3.126), (3.146),
(3.148).
The remaining constraints (v) to (x) are proven analogously and w. r. t. all separa-

bility conditions at each receiver. The extensive proof of those constraints is given in
Appendix A. Note that the three constraints of (x) are equivalent due to (ii).

(b) Sufficiency of Cyclic IA with ΘFF = 1:
It suffices to bypass the transmission of the dedicated message Wjk over dji through
a single FF-link θFF,jk with sum-rate ΘFF = 1. Then, Txk may omit the transmis-
sion of Wjk over D, and Rxj can still decode Wjk from the FF-BHN. As Wjk is not
transmitted over D at all, Rxk can also decode Wki interference-free.
To show that the proposed cyclic IA scheme with FF is feasible now, all nine trans-

mission parameters must be resolved. As indicated by the adjacency graph in Fig-
ure A.1, we fix the topmost parameter pki, w.l.o.g. With (3.147), we obtain pjj, pkk,
(3.148) provides pkj, pik, and (3.153) yields pjk. With (3.149), pii yields from pkk. With
(3.146), pji yields from pkj. And with (3.150), pij yields from pjk.
A valid matrix, normalized w. r. t. the main diagonal is, e. g.:

D = ⎛⎜⎜⎝
1 x4 x2

x4 1 x2

x x 1

⎞⎟⎟⎠ ,
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as all 10 constraints (i) ≡ x2, (ii) ≡ x3, (iii) ≡ 1 − x3, (iv) ≡ 1 − x3, (v) ≡ x2 − 1, (vi)≡ x1 − x2, (vii) ≡ x4 − x3, (viii) ≡ 1 − x3, (ix) 1 ≢ x2, (x) 1 ≢ x1 for i = 1, j = 2, k = 3, are
fulfilled. A valid set of transmission parameters satisfying all conditions with a fixed
p31 = 4 is:

(p11, p21, p31, p12, p22, p32, p13, p23, p33) = (0,2,4,2,0,3,1,∅,2).
The transmitted signals are:

v1(x) =W11x
0 +W21x

2 +W31x
4,

v2(x) =W12x
2 +W22x

0 +W32x
3,

v3(x) =W13x
1 +W33x

2,

and the received signals are:

r1(x) ≡W11x
0+W12x

1+(W21+W32)x1+W13x
3+(W31+W22+W13)x4 mod (xn − 1),

r2(x) ≡W22x
0+W21x

1+W12x
2+(W13+W32+W31)x3+(W11+W33)x4 mod (xn − 1),

r3(x) ≡W31x
0+(W11+W22+W13)x1+W33x

2+(W12+W21)x3+W32x
4 mod (xn − 1).

Altogether, including the forwarded message W23 for Rx2 over the FF-BHN, 9
5 DoF

are achieved by cyclic IA with ΘFF = 1. ∎
Note that a delayed FF transmission only delays the decoding time, but it does not

affect the feasibility.
We would like to emphasize, that the given constraints on D are profoundly interde-

pendent with the proposed IA scheme. Nonetheless, the analysis of comparable Cyclic
IA schemes on this channel can be performed analogously to Theorem3.12.

3.6.2 Cyclic IAC over Minimal Receiver Backhaul Networks

Now, instead of a FF-BHN, we consider a receiver backhaul network (Rx-BHN). The
Rx-BHN only permits that receivers may exchange messages to resolve leaking inter-
ference in order to satisfy all separability conditions. The Rx-BHN is depicted in
Figure 5.4 on the right-hand side. A single link with rate ΘRx,ij in the Rx-BHN from
Rxi to Rxj is denoted by θRx,ji.
Similar to the previous section, our aim is to characterize the minimal sum-rate ΘRx

on the Rx-BHN, that is necessary to achieve the upper bound of 9
5 DoF on the 3 - user

X- network.

Lemma 3.13. The upper bound of 9
5 DoF for n = 5 on the 3 -user X- network is

achievable by cyclic IAC with ΘRx ≥ 2 for the conditions given in Theorem3.12.

Proof:
(a) Necessity of ΘRx ≥ 2:

As cyclic IA without cancellation is precluded by Theorem 3.11 for n = 5, it follows
that ΘRx > 0. In contrast to Theorem 3.12, no message can be neglected and bypassed
so that all must be sent over the channel D. Thus the case ΘRx = 1 demands that
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the interference at two receivers, say, Txi and Txj, must be perfectly aligned and only
one interfering signal may leak at the remaining receiver Txk. However, simultaneous
perfect cyclic IA at two receivers is already precluded by Theorem 3.11.

(b) Sufficiency of Cyclic IAC for ΘRx = 2:
We consider the same cyclic IA scheme as provided in (3.146) to (3.153) subject to
constraints (i) to (x) of Theorem3.12. Note that message Wjk is indeed transmitted
here. But now, the leaking interference in (3.150) and (3.153) is resolved by ΘRx = 2
messages over the Rx-BHN. In particular Wij is conveyed over θRx,ji, so that Wij can
be cancelled from the aligned Wij +Wjk to decode the dedicated message Wjk at Rxj.
In a subsequent step, Wjk is conveyed over θRx,kj, so that Wjk is cancelled from the
aligned Wjk +Wki to decode the dedicated message Wki at Rxk. ∎
A delayed Rx-BHN transmission does not affect feasibility as long as the backhaul

messages Wij and Wjk for cancellation adhere to the proposed sequence.

3.6.3 Cyclic IN over Minimal Transmitter Backhaul Networks

We now consider the reversed case: Transmitters are connected via a transmitter
backhaul network (Tx-BHN) instead. A backhaul link from Txi to Txj is described
by θTx,ji correspondingly. The sum-rate over the Tx-BHN is denoted by ΘTx. The
Tx-BHN is depicted in Figure 5.4 on the left-hand side.

Lemma 3.14. The upper bound of 9
5 DoF for n = 5 on the 3 - user X- network is

achievable by cyclic IN with ΘTx ≥ 2 for the conditions given in Theorem3.12.

Proof:
This scheme is a dual to Lemma3.13 for the Rx-BHN as considered above, so

that the necessity of ΘTx ≥ 2 is analogous. Again, we use the alignment scheme of
(3.146) to (3.153) subject to constraints (i) to (x) of Theorem3.12. But in contrast to
Lemma3.13, Wij is firstly conveyed over θTx,kj with ΘTx,kj = 1 and then the combined
message Wij−Wjk is conveyed over θTx,ik with ΘTx,ik = 1. Txk transmits the superposi-
tion Wjk−Wij instead of Wjk only, and Txi transmits the superposition Wij−Wki−Wjk

instead of Wki only. This change does not only maintain the decodability of the dedi-
cated signals received at Rxi or Rxj, but rather neutralizes the previously leaking
interference observed at Rxj and Rxk. ∎
In contrast to cyclic IAC over the Rx-BHN, the exchange of signals over the Tx-BHN

must be performed at any time before the actual transmission. This relationship also
endorses a related IAC-IN duality property reported in [23] for a linear deterministic
2-user interference channel with cooperation.

3.6.4 Combined Cyclic IAC and IN over Minimal Tx/Rx-BHNs

Moreover, if transmitters and receivers are each connected to a disjoint Tx-BHN and
Rx-BHN, the IAC and IN schemes of Sections 3.6.2 and 3.6.3 can be combined. The
sum-rate over both BHNs is denoted by ΘTR = ΘRx +ΘTx.
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x0 x1 x2 x3 x4

v1(x) W11 0 W21 0 W31

v2(x) W22 0 W12 W32 0

v3(x) W23 W13 W33 0 0

r1(x) W11 W12 W21+W32+W23 W13 W31+W22+W33

r2(x) W22 W21 W23+W12 W31+W32+W13 W11+W33

r3(x) W31+W23 W11+W22+W13 W33 W21+W12 W32

Figure 3.11: Example of cyclic IAC: The transmitted signals are vi(x) and the received
signals are ri(x), i ∈ K. Dedicated signals are highlighted in blue and
interference signals in red. Cyclic right-shifts are used here.

Corollary 3.15. The upper bound of 9
5 DoF for n = 5 on the 3 -user X-network is

achievable by cyclic IAC/IN with ΘTR ≥ 2.

Proof:
Using (3.146) to (3.153), Wij is provided over θTx,kj and Wjk−Wij replaces Wij at

Txk so that Wij is neutralized at Rxj. Rxk receives Wki+Wjk−Wij. Then, Wjk+Wji

is provided over θRx,kj. Rxk decodes (Wki+Wjk−Wij)−(Wjk+Wji)+(Wji+Wij) =Wki

using its interfered signal and (3.152). ∎

3.6.5 Examples for the Given Cyclic IA, IAC and IN Schemes

We use the following valid channel matrix for all examples in this section:

D = ⎛⎜⎜⎝
1 x4 x2

x4 1 x2

x x 1

⎞⎟⎟⎠ , (3.154)

and we fix the indices i = 1, j = 2, k = 3 and the parameter vector:

p = (0,2,4,2,0,3,1,0,2),
as in part (b) of the proof for Theorem3.12. The resulting transmitted and received
signals for this example are depicted in the table of Figure 3.11. It is easy to see that
all dedicated messages are decodable at Rx1,Rx2 and Rx3, except the messages W23

at Rx2 and W31 at Rx3.

Cyclic IAC with a FF-BHN

According to Theorem 3.12, Tx3 provides W23 to Rx2 via the FF-BHN, so that W23 is
decodable at Rx2 now. As the message W23 is not transmitted over the channel D at
all, W31 is also decodable at Rx3.

Cyclic IAC with a Rx-BHN

According to Lemma 3.13, Rx1 provides W12 to Rx2 via the Rx-BHN, so that W22 is
decodable at Rx2 now. After decoding W23 at Rx2, Rx2 provides W23 to Rx3 via the
Rx-BHN, so that W31 is decodable at Rx3.
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Cyclic IN with a Tx-BHN

According to Lemma 3.14, Tx2 provides W12 to Tx3 via the Tx-BHN, and then Tx3
provides the combined messageW12−W23 to Tx1 before the actual transmission of these
messages over D. Then, Tx3 transmits W23 −W12 instead of W23, and Tx1 transmits
W12 −W31 −W23 instead of W31. As a result, all interfering messages neutralize each
other and all dedicated messages are decodable.

Cyclic IAC and IN with Tx/Rx-BHNs

According to Corollary 3.15, Tx2 provides W12 to Tx3 over the Tx-BHN before trans-
mission. Tx3 transmits W23 − W12 instead of W23. On the receiver-side, Rx2 can
decode W23 as the interference is neutralized. Then Rx2 provides the combined mes-
sage W23+W21 to Rx3. As Rx3 receives W31+W23−W12, it adds the known interference
W21 +W12 and substracts W23 +W21 to finally decode W31. All dedicated messages are
decodable.

3.7 Summary

In this chapter, we have presented the three classical unidirectional communication
channels, the multiple-access, broadcast and interference channel, for an introductory
exposition of the cyclic polynomial channel model. Accordingly, three different and el-
ementary types of separability conditions have been defined to analyze the feasibility of
these channels: the multiple-access interference conditions, the intra-user interference
conditions, and the inter-user interference conditions. Those conditions strongly de-
pend on the interaction of dedicated and interfering messages between multiple users,
and also on the number of incident and outgoing subchannels. Given the fulfillment
of these conditions, the corresponding Degrees-of-Freedom have been derived for each
of these channels. We have shown that it suffices to use orthogonal multiple-access
schemes and linear encoding and decoding schemes to achieve the upper bounds on the
Degrees-of-Freedom. Then, we have proposed cyclic interference alignment schemes to
achieve the upper bounds on the Degrees-of-Freedom for the 2 -user X- channel and
the K-user interference channel. The results are in accordance with the Degrees-of-
Freedom of their counterpart Gaussian channels with single antennas.
In particular, we have observed a complementary reciprocal symmetry property of

interference alignment in the 2 -user X- channel. This property basically states that
aligning signals from both transmitters at a receiver Tx1 provides a particular inter-
ference pattern at receiver Tx2, and vice versa, aligning the same signals at receiver
Tx1 provides the reciprocal interference pattern observed before at receiver Tx1. This
property is shown to be significant for the optimal interference alignment scheme of
the 2 -user X- channel with arbitrary message lengths. To the best of our knowledge,
such a property has not been discussed in the literature yet.
Furthermore, we have related the separability conditions to the common eigenvector

problem of separate subspaces in MIMO interference alignment. We have observed that
a set of feasibility conditions for the cyclic polynomial K-user interference channel can
be formulated in analogy to the feasibility conditions for the MIMO channel model.
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3.7 Summary

Moreover, we have shown that perfect cyclic interference alignment is infeasible
in the 3 -user X- network and hence also for K-user X- networks with K ≥ 3 user-
pairs. In order to counteract the infeasibility we allowed a minimal manipulation:
We approached this infeasibility problem by providing a minimal number of cognitive
messages to a subset of users via limited backhaul networks. Therein, we observed
a duality relationship between cyclic interference alignment and cancellation with a
backhaul network at the receivers versus cyclic interference neutralization with a back-
haul network at the transmitters.
Altogether, the present chapter has provided Degrees-of-Freedom-achieving for sev-

eral unidirectional multi-user networks in terms of the cyclic polynomial channel model
using multiple-access, linear encoding and decoding and cyclic interference alignment
schemes.
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4 Multi-User Two-Hop and Two-Way
Relay-Networks

In this chapter, we extend our focus to the CPCM for a unidirectional two-hop inter-
ference network with two transmitters, two relays and two receivers:

The 2 × 2 × 2 relay-interference channel1,

and introduce the concept of cyclic interference neutralization (IN). Furthermore, we
extend the CPCM and cyclic IN to two-way (bidirectional) communications on:

The two-way 2 × 2 × 2 relay-interference channel2.

We also consider the following generalization of a multi-user two-way relay channel:

The cascaded two-way relay channel3.

4.1 Cyclic Interference Neutralization

So far, we observed that IA in single-hop multi-user networks is necessary to achieve
the maximal number of DoF. For communication scenarios with weak direct links
between the dedicated users, however, the use of relays is beneficial to boost the
data rate. We consider relays which forward their received signals to the dedicated
destination within two hops and we assume that there is no direct link between the
users. We assume for the sake of simplicity that relays have full-duplex capability and
can perfectly cancel the loop-back self-interference. The considered relays are only
intended to support communication, so that they do not desire to convey their own
messages to other users.
If signals are forwarded in cooperative multi-hop networks with multiple interjacent

relays, e. g., the 2×2×2 relay-interference channel as depicted in Figure 4.1, IA can be
extended to exploit interference neutralization (IN). Such a 2× 2× 2 relay-interference
channel comprises two sources Tx1,Tx2, two parallel non-interfering interjacent relays
R1,R2, and two destinations Rx1,Rx2. A source Txi intends to communicate a message
Wi to its dedicated destination Rxi with the aid of both relays R1 and R2 within two
hops. In the first hop, the signals from Tx1 and Tx2 interfere at both relays. In the
second hop, the relays forward and re-encode their superimposed messages which will
also interfere at the destinations Rx1 and Rx2.

1Parts of this work have been published in [28].
2Parts of this work have been published in [29].
3Parts of this work have been published in [31].
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Figure 4.1: Neutralization on the 2 × 2 × 2 relay-interference channel: Blue solid lines
describe the signal paths of message W1. Red dotted lines describe the
signal paths of message W2.

IN is a cooperative signalling scheme at both the sources and relays such that the
interfering signals at undesired destinations are literally ’erased over the air’. In other
words, the two incident paths of the corresponding interference signals at a destination
Rxi must exactly coincide and erase each other, while the dedicated signals remain (cf.
Figure 4.1). As both relays receive all signals from both transmitters, they forward
theses signals such that only the interference neutralizes itself at each receivers. This
approach generates an effective channel as if there were no interference present between
the sources and their dedicated receivers. Thus, the communication from a source Txi
to its destination Rxi becomes interference-free over two hops. Hence, the cut-set
upper bounds on the DoF of the relay-interference channel are achievable.

To our knowledge, the original idea of IN has been derived and discussed in [47] in
terms of the conceptual LDCM at first. A generalization to a Z-chain relay-interference
network, i. e., a K-fold concatenation of Z- shaped relay-interference channels, is per-
formed in [48].

For a MIMO 2×2×2 relay-interference channel with time-varying channel coefficients,
the work [63] introduces a closely related aligned IN scheme. In [65], an IN scheme
on a 2 × 2 × 2 relay-interference channel with interfering relays is investigated. The
approximate ergodic capacity of a 2 × 2 × 2 relay-interference channel based on IN
and ergodic IA is discussed in [66]. A finite-field 2 × 2 × 2 relay-interference channel is
considered in [56]. The authors of [67] provide a more generalized IN scheme by aligned
interference diagonalization on a K ×K ×K relay-interference channel to achieve the
corresponding cut-set upper bound.

In the following, we begin with the investigation of the (unidirectional) 2 × 2 × 2
relay-interference channel in terms of the CPCM. We apply a corresponding cyclic IN
scheme that asymptotically achieves its maximal number of DoF.

4.1.1 Cyclic Polynomial 2 × 2 × 2 Relay-Interference Channel

The sets of user-indices and relay-indices are KRx = KTx = KR = K = {1,2}. Each source
Txi desires to communicate a message wi to a dedicated destination Rxi for i ∈ K.
The message from Txi is represented by a vector n submessages:

wi = (W [0]
i ,W

[1]
i , ...,W

[n−1]
i ). (4.1)
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Figure 4.2: The polynomial 2 × 2 × 2 relay-interference channel with channel matrix
D = (dji)2×2 between transmitters Txi and relays Rj and channel matrix
E = (eji)2×2 between relays Ri and destinations Rxj.

The messaging matrix (for end-to-end communication from Tx1, Tx2 to Rx1, Rx2) is:

M = nI2×2 = ( n 0

0 n
) . (4.2)

There is no direct link between the sources and destinations. Thus, the communi-
cation is performed over two hops by the aid of two full-duplex relays R1 and R2. The
relays receive signals of the first hop at time-instant t. Concurrently, the relays apply
a causal relaying function to forward their received signals of the previous first hop of
time-instant t − 1.
The block of transmitted signals ui(x) in one hop has n dimensions. The subchannel

of the first hop is denoted by D = (dji)1≤i,j≤2 and the subchannel of the second hop by
E = (eji)1≤i,j≤2 with dji, eji ∈ D. Furthermore, the offset exponents are denoted by δji,
ηji ∈ N, so that dji = xδji and eji = xηji .
The sources Txi transmit n submessages in polynomials of n dimensions:

ui(x) = ∑n−1
k=0 u

[k]
i xk. (4.3)

The received polynomial at a relay Rj is a cyclically shifted superposition of the trans-
mitted polynomials from the sources Si:

rj(x) ≡ ∑i∈K djiui(x) mod (xn − 1). (4.4)

Both relays Ri map and encode their received polynomials ri(x) to construct the for-
warded polynomials vi(x). This mapping may involve a permutation of coefficients,
a change of sign, and even discarding some specified coefficients of the received poly-
nomials. After the signals are forwarded from R1 and R2, the received polynomial at
destination Rxj yields:

tj(x) ≡ ∑i
ejivi(x) mod (xn − 1). (4.5)

The whole model of the 2 × 2 × 2 relay-interference channel is also illustrated in Fig-
ure 4.2. The receivers Rxi can only resolve and decode their desired messages, if the
coefficients of the received polynomials tj(x) are linear interference-free.
The transmission vector of the first hop is denoted by u = (u1(x), u2(x)) and the

received vector by r = (r1(x), r2(x)) in the vectorized notation. Accordingly, the
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transmission vector for the second hop is v = (v1(x), v2(x)) and the received vector
is t = (t1(x), t2(x)). Then, the transfer functions of both hops can be compactly ex-
pressed by:

rT =DuT mod (xn − 1), (4.6)

tT =EvT mod (xn − 1), (4.7)

where the modulo-operation is component-wise.
In the following, we consider the upper bounds on the DoF of the 2 × 2 × 2 relay-

interference channel and the proposed achievable scheme.

4.1.2 Cut-Set Upper Bounds

The capacity is limited by the min-cut upper bounds [63] which are valid for both the
CPCM and the time-variant MIMO channel model. Thus, presuming that each mes-
sage is received interference-free at its dedicated receiver, each user-pair would achieve
the capacity of the corresponding point-to-point link. In total there is a maximum
number of M = 2n interference-free submessages, i. e., n submessages per user to be
conveyed over n dimensions so that the maximal data rate is upper bounded by the
cut-set bound of 2 DoF.

4.1.3 Achievability

Our main goal is to formulate an interference-free transmission for all messages from
each source to each dedicated destination. Note that instead of decoding single
messages at both relays, only functions of superimposed messages are decoded in a
network-coded fashion. These functions of superimposed messages are forwarded to
the destinations using a proper relaying function. In the following, let the superscript
indices in squared brackets be reduced by modulo n for notational convenience.
1) First hop: Each of the n submessages W

[k]
i , k = 0, ..., n − 1, from source Txi is

allocated to the corresponding dimension at offset xk. The transmitted polynomial
from source Txi yields:

ui(x) = ∑n−1
k=0 W

[k]
i xk. (4.8)

As given by (4.4), the relays Rj receive the following superposition of submessages per
dimension:

r
[k]
j =W

[k−δj1]
1 +W

[k−δj2]
2 . (4.9)

2) Second hop: The two relays forward their previously received polynomials by
v1(x) = xγ1r1(x) mod (xn − 1) and v2(x) = −xγ2r2(x) mod (xn − 1), using the offset
parameters γ1, γ2 ∈ {0, ..., n − 1}, respectively. Using (4.5) and (4.9), the destinations
Rx1 and Rx2 receive four submessages per dimension:

t
[k]
1 =W

[k−δ11−γ1−η11]
1 +W

[k−δ12−γ1−η11]
2 −W

[k−δ21−γ2−η12]
1 −W

[k−δ22−γ2−η12]
2 , (4.10)

t
[k]
2 =W

[k−δ11−γ1−η21]
1 +W

[k−δ12−γ1−η21]
2 −W

[k−δ21−γ2−η22]
1 −W

[k−δ22−γ2−η22]
2 . (4.11)

64



4.1 Cyclic Interference Neutralization

At both destinations, the dedicated submessages are superimposed by interference.
The concept of IN is translated to aligning and combining two identical inter-user
interference signals with complementary signs within the same dimension k, so that
their sum is zero. To suppress the inter-user interference at both destinations, these
two interference-neutralization conditions must hold:

δ12 + γ1 + η11 ≡ δ22 + γ2 + η12 (mod n), (4.12)

δ11 + γ1 + η21 ≡ δ21 + γ2 + η22 (mod n). (4.13)

In other words, the inter-user interference is aligned and neutralized over two hops
along the two possible paths to the non-dedicated receiver.
On the other hand, we must also ensure that the desired signals remain intact and

are not neutralized, i. e., the following no-signal-neutralization conditions must hold:

δ11 + γ1 + η11 ≢ δ21 + γ2 + η12 (mod n), (4.14)

δ12 + γ1 + η21 ≢ δ22 + γ2 + η22 (mod n). (4.15)

Let Γ = diag(xγ1 ,−xγ2) denote the relaying function as performed by both relays.
The above conditions (4.12) to (4.15) indicate that the matrix product EΓD must be
a diagonal matrix of full rank, similar to the expression in [66, Section IV]. If these
conditions are satisfied, the superposition of submessages given by (4.10) and (4.11) is
reduced to:

t
[k]
1 =W

[k−δ11−γ1−η11]
1 −W

[k−δ21−γ2−η12]
1 , (4.16)

t
[k]
2 =W

[k−δ12−γ1−η21]
2 −W

[k−δ22−γ2−η22]
2 . (4.17)

The superposition of desired submessages received at destination Rxj as given by
(4.16) and (4.17) is compactly expressed by:

tj(x) = (XCj)wT
j , (4.18)

for X = diag(x0, x1, x2, ..., xn−1) and the n × n coefficient matrix Cj = (cj,lm)0≤l,m≤n−1
with:

cj,lm =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 , if m − l ≡ δ1j + γ1 + ηj1 (mod n),
−1 , if m − l ≡ δ2j + γ2 + ηj2 (mod n),
0 , else.

(4.19)

The superimposed submessages of wj are resolvable by a linear decoding scheme, if
the condition det(Cj) ≠ 0 holds.

Lemma 4.1. A linear decoding scheme at destination Rxi can not resolve n desired
submessages W

[k]
i from the received vector ti for the given perfect interference neutra-

lization scheme.

Proof:
Cj corresponds to an n × n circulant matrix C̃j (cf. [68]) with entries cj,lm =

c̃j,(m−l modn). Thus, we have n eigenvectors of Cj, namely vi = 1√
n
(1, wi, w2

i , ..., w
n−1
i )T
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for the indices i = 0, ..., n − 1 with the roots of unity wi = exp( j2πin ) and the com-

plex symbol j = √−1. The n corresponding eigenvalues are λi = ∑n−1
k=0 c̃kw

k
i . Let νji =

δij + γi + ηji (mod n). The determinant det(Cj) is computed by the multiplication of
n eigenvalues:

det(Cj) =∏n−1
j=0 λj =∏n−1

j=0 (wνj1
j −w

νj2
j )

= (1νj1 − 1νj2) ⋅∏n−1
j=1 (wνj1

j −w
νj2
j ) = 0. (4.20)

Thence, the messages wj can not be linearly resolved. ∎
In other words, the conditions (4.12) to (4.15) are too strict for a perfect cyclic IN

scheme with a total number of 2n submessages. Thence, we propose an asymptotic IN
scheme for 2n − 1 submessages:
1) First hop: Let source Tx1 transmit n submessages as in (4.8) and let Tx2 trans-

mit only n − 1 submessages, discarding a single submessage W
[τ]
2 with the parameter

τ ∈ {0, ..., n − 1}:
u1(x) = ∑n−1

k=0 W
[k]
1 xk, (4.21)

u2(x) = ∑n−1
k=0,k≠τ W

[k]
2 xk. (4.22)

Now, the k = 0, ..., n − 1 received dimensions at relays Rj are:

r
[k]
j = ⎧⎪⎪⎨⎪⎪⎩

W
[k−δj1]
1 , if k ≡ τ + δj2,

W
[k−δj1]
1 +W

[k−δj2]
2 , otherwise.

(4.23)

2) Second hop: Relay R1 forwards all signal in its n dimensions and R2 forwards only
n − 1 of the n received dimensions. In particular, relay R2 discards forwarding the
dimension received at k2 ≡ τ + δ22 (mod n). One γ1, γ2 is arbitrarily chosen and the
other is computed by (4.12). The transmitted polynomials are:

v1(x) = xγ1r1(x) mod (xn − 1), (4.24)

v2(x) = −xγ2 ∑n−1
k=0,k≠k2 r

[k]
2 xk mod (xn − 1). (4.25)

The received signals at Rx1, Rx2 correspond to (4.10), (4.11). The discarded messages
for σji = τ + δi2 + γi + ηji (mod n) yield:

t
[σ11]
1 =W

[σ11−δ11−γ1−η11]
1 −W

[σ11−δ21−γ2−η12]
1 −W

[σ11−δ22−γ2−η12]
2 , (4.26)

t
[σ12]
1 =W

[σ12−δ11−γ1−η11]
1 +W

[σ12−δ12−γ1−η11]
2 , (4.27)

t
[σ21]
2 =W

[σ21−δ11−γ1−η21]
1 −W

[σ21−δ21−γ2−η22]
1 −W [σ21−δ22−γ2−η22]

2 , (4.28)

t
[σ22]
2 =W

[σ22−δ11−γ1−η21]
1 +W [σ22−δ12−γ1−η21]

2 . (4.29)

Theorem 4.2. The asymptotic interference neutralization scheme achieves 2n−1
n DoF

on the cyclic polynomial channel, if the interference-neutralization conditions (4.12),
(4.13) and no-self-neutralization conditions (4.14), (4.15) hold.
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Proof:
For the given conditions, the received signals at Rx1, Rx2 further simplify to (4.16),

(4.17) and to these special cases:

t
[σ1j]
1 =W

[σ1j−δ11−γ1−η11]
1 , (4.30)

t
[σ21]
2 = −W [σ21−δ22−γ2−η22]

2 , (4.31)

t
[σ22]
2 =W

[σ22−δ11−γ1−η21]
1 +W

[σ22−δ12−γ1−η21]
2 . (4.32)

Note that σ11 ≡ σ12 (mod n) holds here. Furthermore, the conditions (4.12) to (4.15)
imply a proper choice of γ1 and γ2. At destination Rx1, the coefficient matrix C1 has
almost the same structure as in (4.19). The exception is an additional zero-entry in C1

at row σ1j and column σ1j − δ21 − γ2 − η12 as given by (4.30). By Laplace’s formula, we
can recursively expand the determinant of C1 along the rows with only one non-zero
entry, i. e., row σ1j in the first iteration. The determinant yields det(C1) = 1 and each
submessage dedicated for Rx1 is linear decodable.
Destination Rx2 discards row σ22 and column τ in C2 since it only needs to decode

the remaining n−1 submessages and not submessageW
[τ]
2 . Furthermore, the interfering

submessage W
[σ22−δ11−γ1−η21]
1 in (4.32) is not neutralized anyway. Thus, we consider a

reduced coefficient matrix Ĉ2 which is a corresponding (n − 1) × (n − 1) matrix of C2.
Ĉ2 has a single row with only one non-zero entry at σ21 as given in (4.31). In analogy
to C1, the determinant yields det(Ĉ2) = 1, so that each submessage dedicated for Rx2
is also linear decodable.
Altogether, a total number of M = 2n − 1 submessages is conveyed interference-free

over n ≥ 2 dimensions using cyclic IN and linear decoding. The asymptotic scheme
achieves limn→∞ 2n−1

n = 2 DoF in the limit. ∎
Note that valid channel parameters for n ≥ 2 do exist, e. g., d12 = e12 = x1, d11 = d21 =

d22 = e11 = e21 = e22 = x0.

Corollary 4.3. The conditions of Theorem 4.2 also imply that:

(a) δ12 + δ21 + η11 + η22 ≡ δ11 + δ22 + η12 + η21 (mod n),
δ12 + δ21 + η12 + η21 ≢ δ11 + δ22 + η11 + η22 (mod n),

(b) det(D) ≢ 0 mod (xn − 1), det(E) ≢ 0 mod (xn − 1),
(c) and n ≥ 2 dimensions,

must hold for cyclic IN.

Proof:
(a) The first condition, is obtained by substituting (4.12) and (4.13) w. r. t. γ1 or γ2.

The same is done in (4.14) and (4.15) for the second condition, respectively.

(b) Assuming det(D) ≡ 0 mod (xn−1), yields δ11 + δ22 ≡ δ12+δ21 (mod n). Inserting
this into the first condition of (a), it follows det(E) ≡ 0 mod (xn−1). Further inserting
δ11 + δ22 ≡ δ12 + δ21 (mod n) and η11 + η22 ≡ η12 + η21 (mod n) into the second condition
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of (a), leads to a contradiction.

(c) By assuming n = 1, det(D) ≡ det(E) ≡ 0 mod(x − 1) always holds. This also
leads to a contradiction as shown in (b). ∎
An illustrative example of cyclic IN is given in Appendix B.

4.1.4 Aligned IN on MIMO 2 × 2 × 2 Relay-Interference Channels

The proposed asymptotic cyclic IA scheme of the previous section is not restricted
for the application on the CPCM. In this section, we elaborate how the scheme can
be extended to a generalized version of the aligned interference neutralization (AIN)
scheme of [63] for a time-varying 2 × 2 × 2 relay-interference channel.

System Model

We briefly recapitulate the channel model of the time-varying 2×2×2 relay-interference
channel for the AIN scheme as given in [63]. The aforementioned MIMO channel model
is depicted in Figure 4.3.
1) First hop: The subchannel from source Txi to relay Rj is characterized by a chan-

nel coefficient Fji ∈ C. The relay Rj receives a superposition of the signals transmitted
by the two sources Rxi plus additive i. i. d. Gaussian noise ZRj

(t) ∼ CN(0,1):
YRj

(t) = ∑2

i=1Fji(t)XTxi(t) +ZRj
(t). (4.33)

2) Second hop: The subchannel from relay Ri to destination Rxj is characterized
by a channel coefficient Gji ∈ C. The destinations Rxj receive a superposition of the
signals from the relays Ri plus additive i. i. d. Gaussian noise, ZRxj(t) ∼ CN(0,1):

YRxj(t) = ∑2

i=1Gji(t)XRi
(t) +ZRxj(t). (4.34)

All sources, relays and destinations are equipped with single antennas only. The
channel coefficients are generic and assumed to be time-varying in each discrete time-
instant t. The values of these coefficients are bounded between a non-zero minimum
and a finite maximum. Since the channel coefficients are generic, the matrices have
full rank almost surely and are invertible, accordingly.
An n-symbol extension over n time-slots, as also utilized in [3] and [63], provides

diagonal channel matrices over time-varying channel coefficients:

F ji(t) = diag(Fji(nt + 1), ..., Fji(nt + n)), (4.35)

Gji(t) = diag(Gji(nt + 1), ...,Gji(nt + n)). (4.36)

From now on, the time-instant t is dropped for notational brevity. We obtain the
following received signals at the relays Rj and at the destinations Rxk, as also depicted
in Figure 4.3:

Y Rj
= ∑2

i=1F jiXTxi +ZRj
, (4.37)

Y Rxk = ∑2

i=1GkiXRi
+ZRxk . (4.38)
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Figure 4.3: The channel model of [63] for the MIMO relay-interference channel with
diagonal channel matrices F ji between sources Txi, relays Rj and diagonal
channel matrices Gji between relays Ri and destinations Rxj for i, j ∈{1,2}.

X, Y , Z are n × 1 vectors, i. e., the n-symbol extensions of X,Y,Z. Sources and
relays encode their messages into Gaussian codebooks of length n, with codeword
symbols w

[k]
Txi

, w
[k]
Ri

, and use beam-forming vectors v
[k]
Txi

and v
[k]
Ri
, each of n × 1 dimen-

sions, to transmit the codewords over the given channel. The transmitted signals4

from the Txi and Ri are:

XTxi = ∑n−1
k=0 v

[k]
Txi

w
[k]
Txi

, (4.39)

XRi
= ∑n−1

k=0 v
[k]
Ri
w
[k]
Ri

. (4.40)

The average transmit power for each transmit vector is limited by P .

(Cyclic) Generalization of the Aligned Interference Neutralization
Scheme

An explanatory example for AIN is given in [63, Section I-D] for a symbol extension
of n = 2 symbols. A linear AIN scheme for general n ≥ 2 is given in [63, Section III-A].

Therein, AIN discards the symbols w
[n−1]
Tx2

, w
[n−1]
R2

and aligns the beam-forming vectors
for i = 0, ..., n − 2 by:

F 11v
[i+1]
Tx1

= F 12v
[i]
Tx2

, (4.41)

F 21v
[i]
Tx1

= F 22v
[i]
Tx2

, (4.42)

G11v
[i+1]
R1

= −G12v
[i]
R2
, (4.43)

G21v
[i]
R1

= −G22v
[i]
R2
. (4.44)

There, it is proven that 2n−1
n DoF are achievable on the relay-interference channel.

We now show how this scheme can be interpreted as a special case of Theorem 4.2
with the cyclic IN scheme.

1) First hop:

Source Rx1 sends n and Rx2 sends n − 1 symbols w
[0]
Txj

, ..., w
[n−1]
Txj

, along beam-forming

vectors v
[0]
Txj

, ...,v
[n−1]
Txj

, for j = 1,2, discarding w
[τ]
Tx2

along v
[τ]
Tx2

, respectively. In order

4Our notation of indices slightly differs from [63].
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to imitate the separate dimensions of the CPCM, the beam-forming vectors align at
the relays R1 and R2, for i = 0, ..., n − 1, as follows:

F 11v
[i−δ11]
Tx1

= F 12v
[i−δ12]
Tx2

, i ≢ τ + δ12 (mod n), (4.45)

F 21v
[i−δ21]
Tx1

= F 22v
[i−δ22]
Tx2

, i ≢ τ + δ22 (mod n). (4.46)

First, we equivalently express (4.45) and (4.46) by:

v
[i]
Tx2

= F −112F 11v
[i+δ12−δ11]
Tx1

, i ≢ τ (mod n), (4.47)

v
[i]
Tx2

= F −122F 21v
[i+δ22−δ21]
Tx1

, i ≢ τ (mod n), (4.48)

in order to substitute v
[i]
Tx2

:

F 11F
−1
12v

[i+δ12−δ11]
Tx1

= F −122F 21v
[i+δ22−δ21]
Tx1

, i ≢ τ (mod n).
Then, we resolve the resulting equation w. r. t. v

[i]
Tx1

:

v
[i+δ12−δ11+δ21−δ22]
Tx1

= F −111F 12F
−1
22F 21v

[i]
Tx1

.

Now, we use the following variables for brevity:

ΔD ≡ δ12 − δ11 + δ21 − δ22 (mod n), (4.49)

τ1 ≡ τ + δ12 − δ11 (mod n), (4.50)

F = F −111F 12F
−1
22F 21. (4.51)

Using these variables, we obtain the simpler expression:

v
[i+ΔD]
Tx1

= Fv
[i]
Tx1

. (4.52)

We fix v
[κ]
Tx1

= 1n×1 for some κ ∈ {0, . . . , n − 1}. To compute the corresponding vector

from Tx2 aligned to v
[κ]
Tx1

, we substitute v
[κ+ΔD]
Tx1

on the left-hand side with (4.48), and
obtain:

v
[κ+ΔD]
Tx2

= F −122F 21v
[κ+ΔD+δ22−δ21]
Tx1

⇒ v
[κ+ΔD−δ22+δ21]
Tx2

= F −122F 21Fv
[κ]
Tx1

.

Then, by substituting v
[κ+ΔD−δ22+δ21]
Tx2

= F −112F 11v
[κ+2ΔD]
Tx1

with (4.47), we obtain:

F −112F 11v
[κ+2ΔD]
Tx1

= F −122F 21v
[κ]
Tx1

⇒ v
[κ+2ΔD]
Tx1

= F 2v
[κ]
Tx1

.

Repeating these steps for all i = 1, ..., n − 1 vectors, yields:

v
[κ+iΔD]
Tx1

= F iv
[κ]
Tx1

.
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For the computation of each v
[κ+iΔD−δ22+δ21]
Tx2

, we obtain:

v
[κ+iΔD−δ22+δ21]
Tx2

= F −122F 21F
iv
[κ]
Tx1

⇒ v
[κ+iΔD−δ12+δ11]
Tx2

= F −122F 21F
i−1v[κ]Tx1

,

for general i = 1, ..., n− 1. Since only diagonal matrices are involved here, the multipli-
cation is commutative, providing:

v
[κ+iΔD−δ12+δ11]
Tx2

= F i−1F −122F 21v
[κ]
Tx1

. (4.53)

Hence, we have the following extension5 for the expressions in [63, Eqs. (48), (49)]:

v
[κ+iΔD]
Tx1

= F iv
[κ]
Tx1

, (4.54)

v
[κ+iΔD+δ21−δ22]
Tx2

= F iF −122F 21v
[κ]
Tx1

. (4.55)

Since det(D) ≢ 0 mod (xn − 1) is assumed for the CPCM, it is clear that also
ΔD ≢ 0 (mod n) holds. The initial offset for the allocation of the vectors from Tx1 is
chosen as:

τ1 = τ + δ12 − δ11. (4.56)

This offset is aligned at R1, so that it exactly fits into the offset-gap which was inten-
tionally left open by Tx2 at offset τ . We consider the following composite matrix for
the n transmission vectors from Tx1:

B = (v[τ1]Tx1
,v
[τ1+ΔD]
Tx1

,v
[τ1+2ΔD]
Tx1

, ...,v
[τ1+(n−1)ΔD]
Tx1

) (4.57)

= (v[τ1]Tx1
,Fv

[τ1]
Tx1

,F 2v
[τ1]
Tx1

, ...,F n−1v[τ1]Tx1
). (4.58)

To ensure that all n vectors are allocated, n and ΔD must be relatively prime, i. e.,
gcd(n,ΔD) = 1. Then, ΔD is a generator of the abelian (cyclic) additive group Zn.
It is yet to show that these vectors are not colinear in n dimensions. Let Bm denote

the m-th diagonal entry of F , so that (4.57) can also be represented by an n × n
Vandermonde matrix:

B = ⎛⎜⎜⎝
1 B1 B2

1 ⋯ Bn−1
1⋮ ⋮ ⋮ ⋱ ⋮

1 Bn−1 B2
n−1 ⋯ Bn−1

n−1

⎞⎟⎟⎠ . (4.59)

Its well-known determinant yields the Vandermonde polynomial:

det(B) =∏0≤i<j≤n−1(Bj −Bi) ≠ 0, (4.60)

since the Bm are distinct almost surely. Thus, the n beam-forming vectors in B
are linear independent. The n−1 beam-forming vectors transmitted from Tx2 are also

5The proposed IN scheme in [63, Equations (48), (49)] resembles the following choice of parameters:
δ21 = δ22 = δ11 = 0, δ12 = 1, τ = 0 ⇒ΔD = κ = 1.
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linear independent by an analogous computation. We consider the following composite
matrixC for the n−1 transmission vectors from Tx2: (with v

[τ1−δ12+δ11+iΔD]
Tx2

= v
[τ+iΔD]
Tx2

)

C = (v[τ+ΔD]
Tx2

,v
[τ+2ΔD]
Tx2

, ...,v
[τ+(n−1)ΔD]
Tx2

) (4.61)

= F −122F 21(v[τ1]Tx1
,Fv

[τ1]
Tx1

,F 2v
[τ1]
Tx1

, ...,F n−2v[τ1]Tx1
). (4.62)

Let Cm denote the m-th diagonal element of C. The according representation as an
n × n − 1 Vandermonde matrix is:

C = F −122F 21

⎛⎜⎜⎝
1 C1 C2

1 ⋯ Cn−2
1⋮ ⋮ ⋮ ⋱ ⋮

1 Cn−1 C2
n−1 ⋯ Cn−2

n−1

⎞⎟⎟⎠ . (4.63)

Likewise, its determinant is non-zero, almost surely, and the vectors are linear inde-
pendent:

det(F −122F 21C) = det(F −122) ⋅ det(F 21) ⋅∏0≤i<j≤n−1(Cj −Ci) ≠ 0. (4.64)

Using the given pre-coding scheme, the received signal Y Rj
is:

Y Rj
= F j1∑n−1

k=0 v
[k]
Tx1

w
[k]
Tx1

+F j2∑n−1
k′=0, k′≠τ v

[k′]
Tx2

w
[k′]
Tx2

+ZRj
. (4.65)

Then, the received signal is filtered by F −1jj Y Rj
:

F −111Y R1 = ∑n−1
k=0 v

[k]
Tx1

w
[k]
Tx1

+F −111F 12∑n−1
k′=0, k′≠τ v

[k′]
Tx2

w
[k′]
Tx2

+F −111ZR1

= ∑n−1
k=0 v

[k]
Tx1

w
[k]
Tx1

+∑n−1
k′=0, k′≠τ v

[k′−δ11+δ12]
Tx1

w
[k′]
Tx2

+F −111ZR1 ,

F −122Y R2 = F −122F 21∑n−1
k=0 v

[k]
Tx1

w
[k]
Tx1

+∑n−1
k′=0k′≠τ v

[k′]
Tx2

w
[k′]
Tx2

+F −122ZR2

= ∑n−1
k=0 v

[k−δ22+δ21]
Tx2

w
[k]
Tx1

+∑n−1
k′=0k′≠τ v

[k′]
Tx2

w
[k′]
Tx2

+F −122ZR2 .

Note that the filtered noise is negligible here due to the high SNR assumption. The
resulting symbols are analogously ordered (and cyclically shifted) for each dimension
as in the cyclic IN scheme proposed in Section 4.1.3.

2) Second hop:

An analogous construction to obtain the n separate dimensions is performed in the
second hop. The relays amplify and forward their received signals from the previous
hop. Furthermore, the forwarded symbols are also index-shifted by the offsets γ1, γ2
given in (4.24) and (4.25).

Relay R1 sends n and R2 sends a number of n − 1 symbols x
[0]
Rj
, ..., x

[n−1]
Rj

along

beam-forming vectors v
[0]
Rj
, ...,v

[n−1]
Rj

. Relay R2 discards to forward x
[τ+δ22+γ2]
R2

along
v
[τ+δ22+γ2]
R2

. The beam-forming vectors are aligned at the destinations Rx1 and Rx2, for
i = 1, ..., n − 2, as follows:

G11v
[i−η11]
R1

= −G12v
[i−η12]
R2

, i ≢ τ + δ22 + γ2 + η12 (mod n),
G21v

[i−η21]
R1

= −G22v
[i−η22]
R2

, i ≢ τ + δ22 + γ2 + η22 (mod n).
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The dependencies of the beam-forming vectors are similarly resolved w. r. t. v
[τ2]
R1

= 1n−1
as in the first hop, for i = 0, ..., n − 2:

v
[τ2+iΔE]
R1

=Giv
[τ2]
R1

, (4.66)

v
[τ2+iΔE+η21−η22]
R2

= −GiG−122G21v
[τ2]
R1

, (4.67)

using the parameters:

ΔE ≡ η12 − η11 + η21 − η22 (mod n), (4.68)

τ2 ≡ τ + δ22 + γ2 + η12 − η11 (mod n), (4.69)

G = (G−111G12G
−1
22G21). (4.70)

Note that (4.66) and (4.67) are basically analogous to (4.54) and (4.55).
Since det(E) ≢ 0 mod (xn −1) is assumed, ΔE ≢ 0 (mod n) holds, as well. As in the

first hop, n and ΔE must be coprime. Then, the linear independence of vectors can
be shown analogously to the scheme given for the first hop. The received signals Y Rxj

are filtered with G−1jj . The resulting symbols are comparably ordered as in (4.10) and
(4.11) with the special cases of (4.30) to (4.32).
As a result, we can apply the cyclic IA framework for IN of Section 4.1.3 on the

transmitted symbols, and achieve 2n−1
n DoF by Theorem 4.2.

The linear scheme of [63] expressed by (4.41) to (4.44) is translated to the CPCM
using n ∈ N dimensions, parameter τ = n − 1, and channel matrices D and E with the
following entries, d12 = e12 = x1, d11 = d21 = d22 = e11 = e21 = e22 = x0.

4.2 Two-Way Cyclic Interference Neutralization

Now, we further generalize the concept of cyclic IN to a two-way version of the full-
duplex 2 × 2 × 2 relay-interference channel. The arrangement of users in this channel
is similar to [69] and [70].

Figure 4.4: The 2 × 2 × 2 full-duplex two-way relay-interference channel: Transceivers
Ti transmit their signals ui(x) to relays Rj over the uplink channel ma-
trix D = (dji)1≤j≤2,1≤i≤4 and the relays receive rj(x). Relays Rj forward
signals vj(x), as functions of rj(x), over the downlink channel matrix
E = (eij)1≤i≤4,1≤j≤2 to transceivers Ti, who receive the corresponding ti(x).
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4.2.1 Cyclic Polynomial Two-Way 2 × 2 × 2 Relay-Interference
Channel

Such a channel comprises four full-duplex transceivers T1,T2,T3,T4, and two full-
duplex relays R1,R2, as depicted in Figure 4.4. Each transceiver Ti transmits a message
wi, i ∈ KT. The user-pair (T1,T3) desires to exchange messages w1 and w3 over the
given channel, and the user-pair (T2,T4) desires to exchange messages w2 and w4,
respectively. There are no direct links between the transceivers and no direct links
between the two relays. The messaging matrix (for end-to-end communication from
all Ti to all Tj) is:

M = n( I2×2 02×2
02×2 I2×2

) =
⎛⎜⎜⎜⎜⎝

0 n 0 0

n 0 0 0

0 0 0 n

0 0 n 0

⎞⎟⎟⎟⎟⎠
. (4.71)

Note that this channel can also be interpreted as a cognitive unidirectional 4 × 2 × 4
relay-interference channel with 4 dedicated transmitter-receiver pairs with cognitive
messages between pairs of Txi and Rxi for each i ∈ K. The related cognitive 3 × 2 × 3
relay-interference channel is included by simply removing a dedicated transmitter-
receiver pair, e. g., Tx4 and Rx2. Furthermore, the two-way 2 × 2 × 2 relay-interference
channel is a superposition of four (unidirectional) 2× 2× 2 relay-interference channels:

1) The dedicated links are T1 → T3 and T2 → T4

2) The dedicated links are T3 → T1 and T4 → T2

3) The dedicated links are T1 → T3 and T4 → T2

4) The dedicated links are T3 → T1 and T2 → T4.

The set of dedicated transmitter-indices for a receiver Ti is denoted by Di, i. e., the
singleton sets D1 = {3}, D2 = {4}, D3 = {1} and D4 = {2}. We combine the indices of
the two communicating user-pairs in the sets G13 = {1,3} and G24 = {2,4}. The set of
interfering transmitter-indices at a receiver Ri is denoted by Ii, i. e., I1 = I3 = {2,4}
and I2 = I4 = {1,3}.
In both two-hop and two-way relay communication systems, the channel access is

usually described by two different access phases: The multiple-access phase or first hop
describes the communication from transceivers to relays and the broadcast phase or
second hop describes the communication from relays to transceivers, accordingly. For
multiple-relays, we will term these phases as the uplink-phase and the downlink-phase.
To model individual cyclic shifts for each transmitter-receiver link, the uplink (UL)

from the four transceivers to the two relays is described by the UL channel matrix
D = (dji)1≤j≤2,1≤i≤4 and the downlink (DL) from the relays is described by the DL chan-
nel matrix E = (eij)1≤i≤4,1≤j≤2 with dji, eji ∈ D = {xk ∣ k ∈ N}, respectively. We denote
the offsets by δji, ηji ∈ N, i. e., dji = xδji and eij = xηij .
1) UL-phase: As in (4.3), the sources Ti, i ∈ KT, map their messages wi to a

polynomial ui(x) with n dimensions:

ui(x) = ∑n−1
k=0 W

[k]
i xk. (4.72)
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4.2 Two-Way Cyclic Interference Neutralization

The polynomials ui(x) are transmitted to the relays Rj, j ∈ KR, over the UL matrix D
so that the two relays Rj receive a superposition of interfering polynomials:

rj(x) = ∑4

i=1 djiui(x) mod (xn − 1). (4.73)

2) DL-phase: The relays Rj use a causal relaying function on their received poly-
nomials rj(x). These polynomials are mapped to the polynomials vj(x). Then, the
relays Rj forward their vj(x):

v1(x) = xγ1r1(x) mod (xn − 1), (4.74)

v2(x) = −xγ2r2(x) mod (xn − 1), (4.75)

to the four destinations Ti, i ∈ K, over the DL matrix E. A destination Ti receive the
following superposition:

ti(x) = ∑2

j=1 eijvj(x) mod (xn − 1). (4.76)

The superposition of the three non-dedicated messages at destination Ti causes unde-
sired interference. Only if all dedicated signals are received interference-free, the four
destinations can decode their dedicated messages ŵ1, ŵ2, ŵ3 and ŵ4, respectively.
The submessages wi, which return from the relays to their original transceiver Ti

during the DL-phase, are back-propagated self-interference [71]. Since the transceivers
Tj know their own signals transmitted in the previous UL-phase, they can completely
cancel their corresponding back-propagated self-interference.
The transmission vectors of the UL-phase are denoted by

u = (u1(x), u2(x), u3(x), u4(x)), (4.77)

r = (r1(x), r2(x)), (4.78)

respectively. In the DL-phase, we utilize the vectors:

v = (v1(x), v2(x)),
t = (t1(x), t2(x), t3(x), t4(x)).

Then, the transfer functions of the channel are:

rT =DuT mod (xn − 1), (4.79)

tT =EvT mod (xn − 1), (4.80)

where the modulo operation is taken component-wise.

4.2.2 Cut-Set Upper Bounds

For an interference-free transmission between four users with n dimensional signals, a
total number of M = 4n independent submessages must be decodable, i. e., n messages
per user. A total number of exactly 4 DoF would be achieved for four interference-
free subchannels. Such a result describes the cut-set upper bound on the DoF of the
2 × 2 × 2 two-way relay-interference channel. In the following, we propose a combined
cyclic SA and cyclic IN scheme that achieves the upper bound in the asymptotic limit
for n→∞.
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Figure 4.5: The interference-neutralization conditions in (4.81) demand that the iden-
tical signals transmitted by Ti coincide at each undesired transceivers Tj

with complementary signs, so that interference is ’erased over the air’.

4.2.3 Achievability

We begin with the separability conditions of the two-way cyclic IN scheme by extending
the previous separability conditions of the unidirectional 2 × 2 × 2 relay-interference
channel. First, we omit back-propagated self-interference, since it is cancelled at each
transceiver. Thus, no additional self-interference condition comes up in this regard.
However, on the one hand, we demand that the inter-user interference caused by the

two undesired transceivers in Ii is neutralized. The essential idea is again to combine
two identical inter-user interference signals with complementary signs within the same
dimension k, such that their sum vanishes. Thence, the interference-neutralization
conditions for all interfering pairs, with i ∈ KT, and j ∈ Ii, are:

δ1i + γ1 + ηj1 ≡ δ2i + γ2 + ηj2 (mod n). (4.81)

This condition is also illustrated in Figure 4.5. The dedicated submessages on the
other hand, may not be neutralized and must remain decodable. Accordingly, the
no-signal-neutralization conditions for all dedicated pairs, with i ∈ KT, and j ∈ Di, are:

δ1i + γ1 + ηj1 ≢ δ2i + γ2 + ηj2 (mod n). (4.82)

Altogether, assuming that the back-propagated self-interference signals are removed
and the conditions (4.81) and (4.82) are fulfilled, the transceivers Tj only receive a
superposition of two dedicated submessages per dimension k in the DL-phase:

t
[k]
j =W

[k−δ1i−γ1−ηj1]
i −W

[k−δ2i−γ2−ηj2]
i , j ∈ Di. (4.83)

Using the vectorized notation as in 4.1.3:

w = (W [0]
i ,W

[1]
i , ...,W

[n−1]
i ), (4.84)

X = diag(x0, x1, ..., xn−1), (4.85)

we can consider all n components of (4.83) together, yielding the received polynomial
tj(x) = (XCj)wT

j with an n × n coefficient matrix Cj = (cj,lm)0≤l,m≤n−1 with rows
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4.2 Two-Way Cyclic Interference Neutralization

indexed by l and columns by m. For i ∈ Dj, we obtain the following circulant matrix
with two non-zero bands:

cj,lm =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 , if m − l ≡ δ1i + γ1 + ηj1 (mod n),
−1 , if m − l ≡ δ2i + γ2 + ηj2 (mod n),
0 , else.

(4.86)

The received submessages are linear decodable, only if det(Cj) ≠ 0 holds. In Lemma 4.1,
we have already shown that cyclic IN is infeasible if all transmitting users allocate n
submessages in n dimensions in a unidirectional 2 × 2 × 2 relay-interference channel.
Thus, as none of the four contained unidirectional relay-interference channels sup-
ports perfect cyclic IN for the case of n submessages per user, the two-way 2 × 2 × 2
relay-interference channel does not support perfect cyclic IN either.
In order to enable cyclic IN with linear decoding nonetheless, we propose an extended

asymptotic cyclic IN scheme that generalizes the cyclic IN scheme in Section 4.1.3 to
the given 2 × 2 × 2 two-way relay-interference channel:

1) UL-phase:

The transceivers T1,T3 transmit n submessages whereas T2,T4 only transmit n − 1
submessages, discarding the submessages W

[τ2]
2 ,W

[τ4]
4 for τ2, τ4 ∈ {1, ..., n − 1}:

ui(x) = ∑n−1
k=0 W

[k]
i xk, i = 1,3, (4.87)

ui(x) = ∑n−1
k=0,k≠τi W

[k]
i xk, i = 2,4. (4.88)

The submessages received at the two relays per dimension k correspond to:

r
[k]
j = ∑4

i=1W
[k−δji]
i , (4.89)

except for the following cases with j ∈ KR, m ∈ {2,4}:
r
[τm+δjm]
j = ∑4

i=1,i≠mW
[τm+δjm−δji]
i . (4.90)

We choose the parameters τ2 and τ4 such that:

κ2 = τ2 + δ22 ≡ τ4 + δ24 (mod n) (4.91)

holds, i. e., both the discarded submessages will affect exactly one dimension κ2 at
receiver R2. Accordingly, we define κ12 ≡ τ2 + δ12 (mod n) and κ14 ≡ τ4 + δ14 (mod n)
to describe the dimensions at R1 that are affected by the discarded submessages from
T2 and T4. Due to the interference-neutralization conditions, the dimensions of these
discarded submessages are likewise aligned at R1. To show this, we consider (4.81) for
i ∈ {2,4} and j = 1:

δ12 + γ1 + η11 ≡ δ22 + γ2 + η12 (mod n),
δ14 + γ1 + η11 ≡ δ24 + γ2 + η12 (mod n).

By substituting γ1, we easily obtain:

δ12 − δ14 ≡ δ22 − δ24 (mod n). (4.92)

It follows from (4.91) and (4.92) that τ2 + δ12 ≡ τ4 + δ14 (mod n) holds, i. e., we may set
κ1 = κ12 ≡ κ14 (mod n).
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2) DL-phase:

Relay R1 forwards its received polynomial r1(x) according to:

v1(x) = xγ1r1(x) mod (xn − 1). (4.93)

R2 forwards only n− 1 dimensions of the received polynomial r2(x) and discards r
[κ2]
2 :

v2(x) = −xγ2 ∑n−1
k=0,k≠κ2

r
[k]
2 xk mod (xn − 1). (4.94)

Let σji = κi+γi+ηji for notational brevity. The received dimensions at the destinations
Tj are as given in (4.83). The following cases result from the discarded coefficients,
and from the self-interference cancellation for j ∈ G13, i ∈ Dj:

t
[σj1]
j = W

[σj1−δ1i−γ1−ηj1]
i −W

[σj1−δ2i−γ2−ηj2]
i −W

[σj1−δ22−γ2−ηj2]
2

+W
[σj1−δ14−γ1−ηj1]
4 −W

[σj1−δ24−γ2−ηj2]
4 , (4.95)

t
[σj2]
j = W

[σj1−δ1i−γ1−ηj1]
i −W

[σj2−δ2i−γ2−ηj2]
i +W

[σj1−δ12−γ1−ηj1]
2

+W
[σj1−δ14−γ1−ηj1]
4 −W

[σj1−δ24−γ2−ηj2]
4 , (4.96)

and for j ∈ G24, i ∈ Dj:

t
[σj1]
j = W

[σj1−δ11−γ1−ηj1]
1 −W

[σj1−δ21−γ2−ηj2]
1 −W

[σj1−δ2i−γ2−ηj2]
i

+W
[σj1−δ13−γ1−ηj1]
3 −W

[σj1−δ23−γ2−ηj2]
3 , (4.97)

t
[σj2]
j = W

[σj2−δ11−γ1−ηj1]
1 +W

[σj2−δ1i−γ1−ηj1]
i +W

[σj2−δ13−γ1−ηj1]
3 . (4.98)

By further including the interference-neutralization conditions from (4.81), the equa-
tions (4.95) and (4.96) reduce to:

t
[σj1]
j = W

[σj1−δ1i−γ1−ηj1]
i , i ≠ j ∈ G13, (4.99)

t
[σj2]
j = W

[σj2−δ2i−γ2−ηj2]
i , i ≠ j ∈ G13. (4.100)

By definition of σji and by condition (4.81), we observe that (4.97) and (4.98) coincide
for each j ∈ G13. According simplifications also apply to (4.97) and (4.98):

t
[σj1]
j = −W

[σj1−δ2i−γ2−ηj2]
i , i ≠ j ∈ G24, (4.101)

t
[σj2]
j = W

[σj2−δ1i−γ1−ηj1]
i +W

[σj2−δ11−γ1−ηj1]
1 +W

[σj2−δ13−γ1−ηj1]
3 , i ≠ j ∈ G24. (4.102)

The following theorem generalizes the (unidirectional) cyclic IN scheme in Theorem 4.2
of Section 4.1.3 to the present two-way case.

Theorem 4.4. Asymptotic cyclic interference neutralization on the 2×2×2 full-duplex
two-way relay-interference channel achieves 4n−2

n DoF if all the following conditions
hold:

(a) back-propagated self-interference is cancelled at each Ti,
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(b) the separability conditions (4.81) and (4.82) hold,

(c) and the number of signalling dimensions is n ≥ 2.

Proof:
The n dedicated submessages received at Tj, j ∈ G13, are described by (4.83) and

by the exceptions in (4.99) and (4.100). Now, the corresponding coefficient matrices
Cj have almost the same structure as (4.86), except that the single entry in row σj1

and column σj1 − δ1i − γ1 − ηj1 is zero. In this case, all n submessages at Tj with
j ∈ G13 are decodable, since det(Cj) = 1 holds as in Theorem 4.2 of Section 4.1.3 for
the unidirectional case.
The n − 1 dedicated submessages at Tj, j ∈ G24, are also decodable. In this case,

it suffices to consider a reduced (n − 1) × (n − 1) coefficient matrices C̃j, since only
n − 1 submessages per transceiver must be decoded. Moreover, the interference in the
remaining dimension is not neutralized anyway. In particular, the entry in row σj2

and column with W
[τi]
i , j ∈ Di, j ≠ i ∈ G24 is discarded. Then, det(C̃j) = 1 for j ∈ G13,

as analogously shown in Theorem 4.2.
By considering the derivation of (4.92), we observe that the proposed interference-

neutralization conditions demand a particular symmetry of the considered channel.
We subsume the symmetry for all analogous cases by the parameters α1, α2, β1, β2 ∈ N:

α1 = δ11 − δ21 ≡ δ13 − δ23 (mod n), (4.103)

α2 = δ12 − δ22 ≡ δ14 − δ24 (mod n), (4.104)

β1 = η11 − η12 ≡ η31 − η32 (mod n), (4.105)

β2 = η21 − η22 ≡ η41 − η42 (mod n). (4.106)

Using this parameterization, the interference-neutralization conditions yield:

α1 + γ1 ≡ γ2 − β2 (mod n), (4.107)

α2 + γ1 ≡ γ2 − β1 (mod n), (4.108)

and the no-signal-neutralization conditions are:

α1 + γ1 ≢ γ2 − β1 (mod n), (4.109)

α2 + γ1 ≢ γ2 − β2 (mod n). (4.110)

Substituting (4.107) and (4.108) into (4.109) and (4.110) yields:

α1 − α2 ≢ β2 − β1 (mod n). (4.111)

in both cases. Valid matrices that fulfil these simplified conditions clearly exist, if n ≥ 2
as demanded by condition (c).
Altogether, 4n − 2 submessages are conveyed interference-free over n dimensions.

In the asymptotic limit, the cyclic IN scheme achieves limn→∞ 4n−2
n = 4 DoF on the

two-way 2 × 2 × 2 relay-interference channel. ∎
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4.2.4 Discussion

In contrast to Section 4.1 on the (unidirectional) 2 × 2 relay-interference channel, the
present cyclic IN scheme can not be translated to a corresponding aligned IN scheme
for a MIMO system with time-varying channel coefficients in the same manner.
The main problem, we encounter here is that the signals from the transceivers T2

and T4 aligned at R1 are exactly the same ones aligned at R2, since κ12 ≡ κ14 (mod n)
holds as given in Section 4.2.2. Although this problem is neither an issue for in the
representation of the CPCM, nor for the closely related representation in the LDCM,
this might be an overconstrained problem for the aligned IN framework [63] which is
based on spatial IA and IN [3].
The related IN scheme given in [70] provides, among other results, that for all four

terminals with M antennas each and N antennas at each relay, a total number of
min(2M,4N) DoF is achievable for N ≤M . The authors also mention the correspond-
ing cut-set upper bounds of min(4M,4N) DoF. However, it is shown that the cut-set
upper bound of 4M DoF is indeed achievable, but under the condition that the relays
are equipped with a greater number of N > 4

3M antennas by using the particular IN
scheme provided in [70]. An interesting problem that remains to be solved is whether
there is a feasible aligned IN scheme that is capable to achieve the cut-set upper bound
of 4M DoF on the related Gaussian MIMO channel model with only M = N antennas
at the relays.

4.3 Cascaded Two-Way Relaying

We now consider two closely related two-way relay communication systems with full-
duplex users and full-duplex intermediate relays. The elementary network problem of
the well-known two-way relay channel [57] considers a pair of two users communicating
via one relay, that is used to forward the bidirectional messages. Achievable rate
regions for cooperation schemes are provided in [71] and [72] for two-way decode-
and-forward or two-way compress-and-forward, respectively. An approximate capacity
analysis of the two-way relay channel within 3 bits, involving the conceptual LDCM [9],
is provided in [73].
Generalizations to K ≥ 2 user-pairs communicating over a single relay are considered

in [74] and [75]. A multi-hop scheme for a single user-pair over a a line of K two-
way relays is presented in [76]. The given relaying scheme avoids the regeneration of
back-propagated self-interference at the relays in particular. Another generalization of
two-way relaying concerns multiple-unicast transmissions per user. For the case K = 3,
this is called a Y - channel [77], [78], and [79]. In that case, each of the 3 users intends
to transmit a single message to the other two users over a single two-way relay. Besides
IA, the communication schemes achieving the upper bounds on the DoF also involve
SA and the cancellation of back-propagated self-interference. Similar strategies are
used for two-way relaying with network-coding.
Another kind of generalizations for two-way relaying concerns multiple-unicast trans-

missions per user. For the case K = 3, this is called a Y - channel as discussed
in [77], [78], and [79]. In that case, each of the 3 users intends to transmit a sin-
gle message to the other two users over a single two-way relay.
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In this section, we investigate K cascaded concatenated two-way relay channels
w. r. t. the CPCM as depicted in Figure 4.6. To the best of our knowledge, this kind
of generalization of a two-way relay network has not been considered in the literature
so far. More precisely, we consider two closely related systems with a number of
K users and K, or K − 1, relays forming either an open-loop line network or a closed-
loop ring network, respectively. In contrast to the ordinary two-way relay channel,
the transmissions of each user are involved in up to two neighbouring two-way relay
channels. We provide an upper bound and an achievable scheme that is based on both
SA and IA and the cancellation of back-propagated self-interference. Furthermore, we
observe for the closed-loop case that switching the roles of users and relays yields a
dual network with reciprocal channels.

Figure 4.6: A cascaded two-way relay network: K users and K relays are alternately
arranged. User Ti, is only connected to its predecessor Ti−1 and its succes-
sor Ti+1 via two-way relays Ri−1 and Ri, respectively, for each i = 1, ...,K.
The UL channel E is described by solid lines and the DL channel F by
dashed lines. The open-loop case neglects Relay RK , as indicated in grey.

4.3.1 Cyclic Polynomial Cascaded Two-Way Relay Networks

We now describe the two cascaded two-way relay networks with K-users in terms of
the CPCM. We consider a full-duplex two-way relay network with K users Ti, i ∈ KT,
and K relays Rj, j ∈ KR, for K ≥ 3, as depicted in Figure 4.6. The sets of user-indicesKT and relay-indices KR are both defined by KT = KR = K.
Each user Ti, i ∈ K, intends to convey one message Wi−1,i to its predecessor Ti−1 over

relay Ri−1 and another message Wi+1,i to its successor Ti+1 over relay Ri. Thus, there
areM = 2K independent messagesWji in the system in total. For notational simplicity,
indices K + i correspond to i for a closed-loop of K users in a circular indexation. The
messages Ŵji to be decoded at each Tj are denoted with a hat. To compactly describe
the number of messages mj,i ∈ N from Ti to Tj for each communication involved, we
define a messaging matrix M = (mj,i)j,i∈K and set its entries to mi,i+1 =mi,i−1 = 1 and
mj,i = 0, else:

M = ( 01×K−1 1

IK−1×K−1 0K−1×1
) + ( 0K−1×1 IK−1×K−1

1 01×K−1
) . (4.112)
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In other words, almost all elements are zero, except the side-diagonals and the top-
right and the bottom-left entries. The total number of messages is M = 2K for the
given K ×K-matrix.
Next, we take a closer look at the signalling and the communication over the channel

itself. The transmitted signal from Ti is a polynomial with messages Wji for each
intended receiver Ti−1 and Ti+1:

ui(x) ≡Wi−1,ixpi−1,i +Wi+1,ixpi+1,i mod (xn − 1). (4.113)

The parameter pj,i ∈ {0, ..., n−1} allocates the message Wji to a particular offset within
n dimensions.
The UL channel matrix describes all subchannels from the users Ti to the relays Ri.

It is defined by E = (ej,i)j,i∈K and has the elements ej,i ∈ D with the set of monomialsD = {xk ∣ k ∈ Z+} describing the individual shifts from Ti to Rj. In E, most elements
are zero, except ei,i+1 and ei+1,i for all i ∈ K. The zero entries are similar to those in
the messaging matrix M . The DL channel matrix F = (fj,i)j,i∈K for subchannels from
Ri to Tj is defined accordingly for fj,i ∈ D with non-zero fi,i+1 and fi+1,i, for all i ∈ K.
In Figure 4.6, the UL subchannels are depicted by solid lines and the DL subchannels
by dashed lines. The transfer function of the UL channel is the congruence:

rT ≡EuT mod (xn − 1), (4.114)

with the 1 ×K input vector u and the 1 ×K output vector r:

u = (u1(x), ..., uK(x)), (4.115)

r = (r1(x), ..., rK(x)). (4.116)

The modulo operation is taken element-wise. The signals ri(x) received at Ri are
further processed as follows. For filtering certain dimensions from the received poly-
nomial ri(x), we define the element-wise product of two polynomials ri(x) and zi(x),
with maximal degree n − 1, by:

ri(x) ○ zi(x) = ∑n−1
k=0 r

[k]
i z

[k]
i xk. (4.117)

The yet unspecified filter polynomial zi(x) has filtering coefficients z
[k]
i ∈ {0,1} for

all offsets k ∈ {0,1, .., n − 1}. The entries in zi(x) are chosen such that the dimensions
with the undesired interference terms in ri(x) are removed (by multiplying zero) in the
element-wise product ri(x) ○ zi(x), whereas the dimensions of the dedicated signals in
ri(x) remain unchanged (by multiplying one). The filtered polynomial in (4.117) may
furthermore be cyclically shifted by xγi with offset γi ∈ N. The resulting polynomial
after filtering and cyclic shifting is forwarded by Ri and denoted:

vi(x) ≡ xγi(ri(x) ○ zi(x)) mod (xn − 1). (4.118)

The transfer function of the DL channel is the congruence:

tT ≡ FvT mod (xn − 1), (4.119)
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4.3 Cascaded Two-Way Relaying

for the 1 ×K input vector v and the 1 ×K output vector t:

v = (v1(x), ..., vK(x)), (4.120)

t = (t1(x), ..., tK(x)). (4.121)

To ensure interference-free decodability of all dedicated signals, the separability con-
ditions for i ∈ K as defined in Chapter 3 are adapted to this particular communication
problem as follows:

Multiple-access interference conditions: Dedicated messages to Ti transmitted
by different sources Ti−1 and Ti+1 must be separable from each other at desti-
nation Ti:

fi,i−1xγi−1ei,i−1xpi,i−1 ≢ fi,i+1xγiei,i+1xpi,i+1 mod (xn − 1). (4.122)

Intra-user interference conditions : Messages from the same source Ti, but dedi-
cated for different destinations, must be distinct:

xpi+1,i ≢ xpi−1,i mod (xn − 1). (4.123)

Inter-user interference conditions : The dedicated messages from Ti−1 to Ti−2
and from Ti+1 to Ti+2 may not interfere with any of the dedicated signals for Ti:

fi,i−1xγi−1ei,i−1xpi−2,i−1 ≢ fi,i+1xγiei,i+1xpi,i+1 mod (xn − 1), (4.124)

fi,i−1xγi−1ei,i−1xpi,i−1 ≢ fi,i+1xγiei,i+1xpi+2,i+1 mod (xn − 1). (4.125)

4.3.2 Upper Bounds

For a fixed messaging matrix M the minimal number of dimensions necessary is
bounded by (cf. the lower bound in (3.38)):

n ≥max
mji

(∑K

i=1mji +∑K

j=1mji −mji). (4.126)

In other words, the lower bound on n is determined by the row j and column i of messa-
ging matrix M that maximizes the sum in (4.126). For K ≥ 3, the given messaging
matrix M will always provide n = 2 for each i, j ∈ K and M = 2K, so that:

DoF ≤ M

n
= 2K

2
=K. (4.127)

Note that the case K = 2 corresponds to the elementary two-way relay channel which
is also covered by this bound, since for M = 12×2 − I2×2, (4.126) provides n = 1 and
hence the upper bound yields DoF ≤ M

n = 2
1 = 2.
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4 Multi-User Two-Hop and Two-Way Relay-Networks

Figure 4.7: UL-phase: Signal alignment (solid arrows) of dedicated signals and inter-
ference alignment (dashed arrows) is performed at each relay Ri.
DL-phase: Superimposed dedicated messages at Ti are allocated by
multiple-access and the self-interference is successively cancelled at Ti.

4.3.3 Achievability

In order to achieve the upper bound on the DoF as stated above, we propose a two-way
relaying scheme including both network-coded cyclic SA and cyclic IA.
UL-phase: We consider the alignment scheme at the receiving relay Ri for all i ∈ K.

The two dedicated signals to be exchanged between Ti, Ti+1 are aligned at Ri by SA:

ei+1,ixpi+1,i ≡ ei,i+1xpi,i+1 mod (xn − 1). (4.128)

The dedicated signals, superimposed at Ri, yield a network-coded messages, i. e.,
Wi+1,i +Wi,i+1. Likewise, the corresponding interference at Ri is aligned by IA:

ei+1,ixpi−1,i ≡ ei,i+1xpi+2,i+1 mod (xn − 1). (4.129)

DL-phase: We now consider the alignment scheme at the receiving user Ti for all
i ∈ K. The interference aligned in (4.129) is zero-forced by (4.118) with the zero-forcing
particular polynomial:

zi(x) = ei,i+1xpi,i+1 ≡ ei+1,ixpi+1,i mod (xn − 1). (4.130)

As a result, no inter-user interference is forwarded by Ri, so that the inter-user inter-
ference conditions (4.124) and (4.125) always hold. This is in contrast to the SA and
IA schemes for the Y - channel in [77], where the inter-user interference is yet forwarded
by the relays, but zero-forced at the destinations. The remaining dedicated network-
coded signals from Ti−1 to Ti are forwarded by Ri−1 and the signals from Ti+1 to Ti

are forwarded by Ri.
This is a multicast problem, since each relay demands to convey a single albeit

network-coded message to two transceivers simultaneously. The two forwarded signals
received at Ti must yet satisfy the multiple-access conditions (4.122). To satisfy these
conditions, a tuple of feasible parameters (γ1, ..., γK) is to be determined, if it exists.
Ti also receives back-propagated self-interference from Ri−1 and from Ri. We apply

self-interference cancellation at each Ti to remove the corresponding self-interference
Wi−1,i and Wi+1,i. Then, only the dedicated signals Wi,i−1 and Wi,i+1 remain, and can
be decoded interference-free, if they satisfy the multiple-access conditions.
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4.3 Cascaded Two-Way Relaying

Case 1 - Open-Loop: Line Network

We first discuss the simpler case of the open-loop line network, discarding relay RK

w.l.o.g., so that the links between T1 and TK are severed and the parameters pK,1,
p1,K are neglected. In Figure 4.6, the affected links are highlighted in grey.

Theorem 4.5. Cyclic IA achieves K − 1 DoF on the given line network of K trans-
ceivers and K − 1 relays a number of n = 2 dimensions.

Proof:

(a) Necessity of n ≥ 2:
The multiple-access interference conditions (4.122) demand that two signals are decod-
able in the DL at each Ti, i ∈ K, so that n ≥ 2 is clearly necessary. The edge-transceivers
T1 and TK are an exception and demand only n ≥ 1, accordingly.

(b) Sufficiency of Cyclic IA with n = 2:
UL-phase: We may fix the UL-transmission parameter p2,1 at T1 w.l.o.g. At T2, we
use the given SA in (4.128), to obtain the parameter p1,2. As T2 also has a dedicated
message for transmission to T3, we fix the parameter p3,2 at T2, satisfying the intra-
user interference conditions in (4.123). At T3, we use the given SA in (4.128) and the
IA-condition in (4.129) to compute the parameters p2,3 and p4,3, respectively. Both
satisfy the intra-user interference conditions in (4.123).

This is an iterative allocation procedure and it is analogously performed for each
subsequent user i ≤ K − 1. At TK , only the SA of (4.128) is needed to determine the
parameters pK−1,K as p1,K = 0 produces no interference at TK . There are no constraints
on the channel matrix E of the UL and each parameter can be determined uniquely.

DL-phase: The zero-forcing polynomial of R1 in (4.117) only contains the dimension
of the dedicated signals, i. e., z1(x) ≡ e1,2xp1,2 ≡ e2,1xp2,1 . The other coefficients in z1(x)
are zero. As a result, the content of the complementary offset e1,2xp3,2 , with the
interfering message W2,1 in r1(x), is removed by r1(x) ○ z1(x).
We can fix the parameter γ1 for R1 w. l. o. g. Due to the multiple-access interference

conditions in (4.122), the signal from R1 to T2 may not align to the forwarded signal
from R2 to T2, i. e., xγ1f2,1 ≢ xγ2f2,3 must hold. A unique solution exists for γ2 if n = 2.
Analogously, the γi for all other 3 ≤ i ≤K − 1 can also be determined uniquely. There
are no constraints on the channel matrix F of the DL either. The back-propagated
self-interference is known at the transceivers and cancelled from the received signal.

As each Ti, with 2 ≤ i ≤ N − 1, sends two dedicated messages, and the edge-
transceivers T1 and TK send one dedicated message each, a total number of 2K−2 mes-
sages is conveyed interference-free over n = 2 dimensions, yielding 2K−2

2 =K−1 DoF. ∎

Case 2 - Closed-Loop: Ring Network

In this case, we consider the closed-loop ring network as depicted in Figure 4.6 (in-
cluding the grey links) with an active relay RK and non-zero messages between T1 and
TK . We observe that this network imposes a constraint on E and F .
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Furthermore, UL and DL channels are called reciprocal, if:

e−1i,j ≡ fj,i mod (xn − 1), (4.131)

holds for all i ≠ j ∈ K.
Theorem 4.6. A cyclic IA/SA scheme achieves DoF ≤K for n = 2 dimensions on the
ring network with K transceiver and K relays, if the following UL- and DL-conditions
for the channel matrices hold:

∏K

i=1 e
−1
i+1,iei,i+1 ≡ 1 mod (xn − 1), (4.132)

∏K

i=1 f
−1
i,i+1fi+1,i ≡ 1 mod (xn − 1). (4.133)

Proof:
(a) Necessity of n ≥ 2:

Cf. proof in Theorem 4.6(a), but without the edge-transceivers.

(b) Necessity of the UL-condition (4.132):
For a fixed p1,K in the SA-condition (4.128), we obtain:

xp1,K ≡ e−11,KeK,1x
pK,1 . (4.134)

Then, we substitute the parameter xpK,1 by xpK,1 ≡ e−12,1e1,2x
p3,2 from the IA-condition

(4.129) into (4.134):

xp1,K ≡ e−11,KeK,1e
−1
2,1e1,2x

p3,2 .

In the next step, xp3,2 is substituted by using the SA-condition (4.128). By a simple
unrolling of the dependencies with an alternating application of the IA and SA condi-
tions in (4.128) and (4.129), for all 1 < i <K, we obtain an additional product-term of
e−1i,i+1ei+1,i for each i. In the last step, xp1,K appears on both sides of the congruence.
Clearly, the congruence is only true if the UL-condition (4.132) on E holds.

(c) Sufficiency of Cyclic SA and IA in the UL with n = 2:
The achievable scheme is analogous to Theorem 4.5 for the allocation of the parameter
values pi,i+1 and pi+1,i for all i ∈ {1,2, ...,K − 1} for n = 2. A feasible solution for the
two remaining parameters pK,1 and p1,K , satisfying the separability conditions, only
exists if (4.132) holds.

(d) Necessity of the DL-condition (4.133):
For an arbitrary DL-matrix F , a reciprocal UL-matrix Erpr can be computed easily
by (4.131). If Erpr satisfies the UL-condition (4.132), then F will satisfy (4.133). As
already given by parts (a), (b), and (c) of this proof, a feasible cyclic SA/IA scheme for
the reciprocal UL with Erpr exists. For the multicast transmission in the reciprocal DL
channel F , the superimposed dedicated signals are send back over exactly the same
dimensions over which they have been received in the reciprocal UL with Erpr. As
the intra-user interference conditions already hold in the reciprocal UL, the multiple-
access conditions hold analogously in the DL by channel reciprocity. And conversely, if
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(4.133) is violated, the parameters γi can not be determined uniquely for all i = 1, ...,K.

(e) Sufficiency of Cyclic SA in the DL with n = 2:
The inter-user interference conditions (4.124), (4.125) always hold since the inter-user
interference is removed at each Ri by using the corresponding filtering polynomial.
Now, the superimposed dedicated signals are multicast by each Ri and received at
Ti and Ti+1. We may fix parameter γ1. Again, xγifi+1,i ≢ xγifi+1,i+1 must hold for
all γi with i = 1, ...,K, to ensure that the multiple-access conditions are not violated.
This is valid for any F that satisfies (4.133). In the last step, the back-propagated
self-interference is cancelled. Altogether, a total number of 2K

2 =K DoF is achieved. ∎
If the given UL- and DL-matrices are reciprocal, the conditions (4.132) and (4.133)

become equivalent.
In case that at least one condition of Theorem 4.6 does not hold, the first straight-

forward approach is to demand at least n = 3 dimensions. Then, only a total number of
2K
3 DoF is achievable. However a second and more efficient approach is to exploit the
unconstrained Theorem 4.5 to achieve K−1 DoF by neglecting the dedicated messages
between a single arbitrary pair (Ti,Ti+1) in both the UL and DL phases. For each
transmission, a different pair of messages chosen by a scheduled round-robin scheme or
chosen i.i.d. is neglected. The second approach clearly outperforms the first approach,
since 2K

3 <K − 1 holds for K > 3.

4.3.4 User-Relay Duality

A dual network of the closed-loop case is physically the same network as the primary
network with E and F , but with former users operating as relays and former relays
operating as users instead. Although the indexation of such a dual network is not
unique for the closed-loop case of the cascaded two-way channel, it is obvious that the
resulting dual network is indeed unique, since the equivalent indexation do not change
the setup of dedicated messages between neighbouring users. W.l.o.g., we may relabel
Ri → Ti and Ti+1 → Ri, i. e., the labels are cyclically right-shifted by one position. Let
Z̃K denote a particular circulant matrix with z̃K−1 = 1, and all other z̃j = 0. The UL
and DL matrices of the dual network are cyclically rotated versions F and E from the
primary network:

Edual = Z̃KF , (4.135)

F dual =EZ̃
T

K . (4.136)

The corresponding dual UL and DL conditions yield:

∏K

i=1 fi,i+1f
−1
i+1,i ≡ 1 mod (xn − 1), (4.137)

∏K

i=1 ei+1,ie
−1
i,i+1 ≡ 1 mod (xn − 1). (4.138)

Hence, Edual satisfies the dual UL condition, if F satisfied the primary DL condition
and F dual satisfies the dual DL condition, if E satisfied the primary UL condition.
Any cyclically right-shifted relabelling by an odd number of positions will yield the
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same dual conditions as given in (4.137) and (4.138). As a result, we observe that the
following relationship:
User-Relay Duality: If a cyclic SA and IA scheme is feasible on the primary

network, it will also be feasible on any dual network.

4.4 Summary

In this chapter, we have included full-duplex relays in order to extend the unidirectional
communication schemes of the previous chapter and to enhance the achievable Degrees-
of-Freedom.
First, we have considered an interference channel which was extended by two inter-

mediate relays - a 2 × 2 × 2 relay-interference channel. To achieve the cut-set upper
bounds on the Degrees-of-Freedom, we have applied interference neutralization as in-
troduced by Mohajer et al. in [47] in terms of the proposed cyclic polynomial channel
model.
A particular gain of our provided problem description was the emphasis on the

interference-neutralization conditions and no-signal-neutralization conditions. The ap-
proach has also allowed us to generalize the asymptotic MIMO interference alignment
and neutralization scheme of Gou et al. in [63]. Afterwards, we have further equipped
the users with perfect full-duplex capabilities and we have considered a two-way gene-
ralization of cyclic neutralization scheme. The given scheme has also incorporated the
concept of signal alignment (dedicated signals are aligned), and of back-propagated
self-interference cancellation.
In the last part of this chapter, we have focussed on a cascaded version of the well-

known two-way relay channel. A user-relay duality and a unicast-multicast duality,
which was exploited for the optimal DoF-achieving communication scheme, has been
discussed in particular.
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Three Users

In this chapter, we pursue the following goals:

Characterizing DoF-achieving and capacity-achieving schemes for the
3 -way channel and the 3 -user Y - channel in terms of:

○ The cyclic polynomial channel model (CPCM),

○ the linear deterministic channel model1 (LDCM), and

○ the Gaussian MIMO channel model2 (GMCM).

Device-to-Device Communications: 3 -Way versus Y - Channels

A natural communication scenario with multiple users is multi-way device-to-device
(D2D) conferencing. Especially in wireless multi-user communication networks, this
will involve multiple simultaneous transmissions causing interference that impairs the
maximal achievable data rates per user. The D2D approach in [80], [81], and [82]
is intended to increase the spectral efficiency of multi-way networks without the uti-
lization of base stations for data transmission (except for low-rate top-level control
mechanisms). As a countermeasure to deal with the impairment caused by inter-
ference, all transmission signals must be carefully designed so that mutual interference
is minimized.

The 3 -way channel (or Δ-channel) is an instance of a D2D-communication net-
work with 3 users mutually communicating to each other, i. e., each user transmits
2 messages, one per receiver. We assume that all participating users employ perfect
full-duplex devices. Note that the related conferencing 3 -way channel in [83] considers
a single message per user that is multicast to the two other receivers.

A 3 -user Y - channel as in [77], [78], and [79], is a closely related 3 -way communi-
cation system, but it has an intermediate relay and no direct links between the users.
Each transceiver Ti sends two messages to the relay R, and the relay forwards three
network-coded messages back to the dedicated users. The DoF of the MIMO 3 -user
Y - channel with an Mi antennas per user Ti (There is an equal number of transmit and
receive antennas, but a different number of antennas among different users) and MR

relay antennas are provided in [78]. Its generalization to a MIMO 4 -user Y - channel is
considered in [84] and [85]. In [79], the capacity region of the related 3 -user Y - channel
in the LDCM is derived.

1Parts of this work have been published in [34].
2Parts of this work have been published in [30] and [33].
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The schemes proposed in the works on the Y - channel mainly rely on SA. Recall
from the previous chapter, that SA is a particular adaptation of IA to multi-way relay
networks, such that bidirectional dedicated signals (and not the interference signals)
are aligned at the intermediate two-way relay.
Interestingly, the 3 -way channel demands a combined scheme of various important

communication techniques: IA, SA, IN, and backward decoding (BD).

Comparison of the GMCM and LDCM to the CPCM

Moreover, we have already pointed to several interesting properties that were also
observed in the LDCM and the GMCM in the previous chapters: Up to now, we
already enlightened the analogous representation of the upper bound on the DoF for
KR ×KT X- networks in Section 3.2, the problem of common eigenvectors in invariant
subspaces discussed in Section 3.4.2 and 3.5.3, and the duality relationship of cyclic
IAC and cyclic IN in Section 3.6.4, for instance. We will further elaborate conceptual
connections between those different models within this chapter for the Y - channel and
the 3 -way channel.

5.1 Cyclic Interference Alignment for 3 -Way and
Y - Channels

We begin with the consideration of the 3 -user Y - channel and the 3 -way channel in
terms of the CPCM. This approach serves us to provide a first-order understanding
of the two aforementioned multi-way networks. Since the achievable scheme for the
Y - channel is quite similar to the one in [79] for the LDCM, we would like to emphasize,
that the provided scheme covers the case of arbitrary non-reciprocal shifts. Then, we
investigate the Y -Δ product relationship as it occurs for the CPCM. To the best of our
knowledge, such a product relationship has not been reported in terms of information
theory for multi-user communications yet.

5.1.1 Cyclic Polynomial 3 -User Y - Channel

In the Y - channel there are three users T1,T2, and T3 linked to an intermediate full-
duplex relay R. However, there is no direct link between the three transceivers. This
arrangement is also depicted in Figure 5.1. The set of user-indices is KT = K = {1,2,3}.
The number of submessages per dedicated user-pair (end-to-end) is given by the messa-
ging matrix:

M = ⎛⎜⎜⎝
0 m12 m13

m21 0 m23

m31 m32 0

⎞⎟⎟⎠ . (5.1)

Since there are no messages to the transmitting user itself, the main diagonal is
assigned with zero values. The total number of submessages amounts to:

M =m12 +m21 +m13 +m31 +m23 +m32.
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Figure 5.1: The Y - channel with three transceivers T1,T2 and T3 and one intermediate
relay R1, has six independent dedicated messages wji. The influence of
the channel is parameterized by the corresponding eRi and fjR. The solid
arrows describe the UL and the dashed arrows the DL subchannels.

The UL-phase denotes the transmission in the first hop from the transceivers Ti to
the relay R. Signals transmitted from Ti are represented by a polynomial ui(x), with
messages allocated to distinct offset parameters p

[t]
ji ∈ N:

ui(x) ≡ ∑3

j=1,j≠i uji(x), (5.2)

uji(x) ≡ ∑mji−1
t=0 W

[t]
ji x

p
[t]
ji . (5.3)

The UL channel vector is e = (eR1, eR2, eR3), with eR1, eR2, eR3 ∈ D. At relay R, the
received signal is a shifted superposition of the three signals from all Ti:

rR(x) ≡ euT ≡ ∑3

i=1 eRiui(x). (5.4)

The DL-phase denotes the transmission from relay R back to the three transceivers
Tj in the second hop. The DL channel is denoted by a vector f = (f1R, f2R, f3R) with
the entries f1R, f2R, f3R ∈ D. The relay forwards its previously received superimposed
signals back to all transceivers:

rT ≡ fTrR(x) ≡ (f1R, f2R, f3R)T rR(x). (5.5)

The two channel vectors e and f are independent w.l.o.g. With the perfect full-duplex
operation, the UL-phase and DL-phase is performed simultaneously in each time-step.
But due to causality in time, a DL transmission is delayed by one time-instant w. r. t. its
previous UL transmission. For distinct user-indices i, j, k ∈ K and submessage-indices
t and t′, the separability conditions of the 3 -user Y - channel are given as follows:

Multiple-access interference conditions, for t ∈ {0, ...,mji −1}, t′ ∈ {0, ...,mjk −1}:
eRifjRx

p
[t]
ji ≢ eRkfjRx

p
[t′]
jk mod (xn − 1) (5.6)

⇒ eRix
p
[t]
ji ≢ eRkx

p
[t′]
jk mod (xn − 1), (5.7)

intra-user interference conditions, for t ∈ {0, ...,mji − 1}, t′ ∈ {0, ...,mki − 1}:
xp
[t]
ji ≢ xp

[t′]
ki mod (xn − 1), (5.8)
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inter-user interference conditions, for t ∈ {0, ...,mji − 1}, t′ ∈ {0, ...,mik − 1}:
eRifjRx

p
[t]
ji ≢ eRkfjRx

p
[t′]
ik mod (xn − 1),

⇒ eRix
p
[t]
ji ≢ eRkx

p
[t′]
ik mod (xn − 1) (5.9)

Before approaching an optimal communication scheme for the Y - channel, we introduce
the closely related 3 -way channel.

5.1.2 Cyclic Polynomial 3 -Way Channel

For the 3 -way channel, the messaging matrix M is identical to (5.1). However, there
are only direct links between the users and there is no intermediate relay involved.
It has only one channel matrix which is defined by D = (dji)1≤j,i≤3 with independent
elements dji ∈ D. The diagonal elements of D are zero. Such a 3 -way channel is
depicted in Figure 5.2.

Figure 5.2: The 3 -way channel with three transceivers T1,T2 and T3 has six indepen-
dent dedicated messageswji. The influence of the channel is parameterized
by the corresponding dji.

In this case, the received signal at Tj, j ∈ K, is a superposition of shifted poly-
nomials ui(x):

rj(x) ≡ ∑3

i=1 djiui(x) mod (xn − 1). (5.10)

We can express this compactly by rT ≡DuT mod (xn−1), with r = (r1(x), r2(x), r3(x))
and u = (u1(x), u2(x), u3(x)).
In analogy to the 3 user Y - channel, we also define the set of separability conditions

with pairwise distinct i, j, k ∈ K:
Multiple-access interference conditions for t ∈ {0, ...,mji − 1}, t′ ∈ {0, ...,mjl − 1}:

djix
p
[t]
ji ≢ djlx

p
[t′]
jl mod(xn − 1), (5.11)

intra-user interference conditions for t ∈ {1, ...,mji − 1}, t′ ∈ {1, ...,mki − 1}:
xp
[t]
ji ≢ xp

[t′]
ki mod(xn − 1), (5.12)
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inter-user interference conditions for t ∈ {0, ...,mji − 1}, m′ ∈ {0, ...,mki − 1}:
djix

p
[t]
ji ≢ djlx

p
[t′]
ki mod(xn − 1) (5.13)

Having defined the channel models and the separability conditions of the Y - channel
and the 3 -way channel, we are now ready to investigate their upper bounds on the DoF.

5.1.3 Upper Bounds

In the case of a 3 -way channel, we consider KT = KR = 3 and hence K = {1,2,3}.
At each receiver Tj, the minimal necessary number of dimensions is lower bounded
by max(n1, n2, n3) for nj = mji +mjk +max(mik,mki). The two dedicated messages
received at Tj must demand at least mji+mjk dimensions. The intra-user interference
of both transmitters Ti and Tj must cover at least n ≥ max(mik,mki) dimensions,
since each Ti must allocate its two different dedicated signals linearly independent,
such that mji +mki dimensions is necessary. This leads to the following expression for
the upper bound on the DoF:

DoF ≤ m12 +m21 +m13 +m31 +m23 +m32

max (n1, n2, n3) , (5.14)

for distinct i, j, k ∈ K. Note that this term coincides with the general upper bound on
the DoF for KT ×KR X - channels (cf. (3.38)) for the specific M given in (5.1):

DoF ≤ m12 +m21 +m13 +m31 +m23 +m32

max
i≠j∈K

(∑3
k=1,k≠j mjk +∑3

l=1,l≠imli −mji)
For the 3 -user Y - channel, the upper bound is actually the same: The transmitters

Ti and Tj must satisfy the multiple-access conditions, and transmit mji +mki and
mij +mkj submessages, respectively. At relay R, the signals dedicated to be forwarded
to Tk must be distinct from the intra-user interference from Ti and Tj. These dedicated
signals must cover at leastmki+mkj dimensions to be linearly decodable. The intra-user
interference of Ti and Tj is aligned at R and covers at least max(mji,mij) dimensions.
Then, relay R must forward and broadcast all received messages to all three users,
since each submessage is dedicated for one receiver. This does not preclude that the
received signals at Ti may be interfered with back-propagated self-interference. Hence,
in order to provide a decodable signal for Tk, a number of nk =mki+mkj+max(mji,mij)
dimensions is necessary. Combining these conditions for all users k ∈ K, we obtain the
lower bound:

n ≥max(n1, n2, n3), (5.15)

which is obviously the same lower bound on the dimensions n as for the 3 -way channel.

5.1.4 Achievable Scheme for the Y - Channel

First, we investigate an achievable scheme for the non-reciprocal 3 -user Y - channel
with general message lengths. A closely related scheme for a reciprocal Y - channel in
the LDCM is given in [79]. Both schemes are mainly based on SA and LEaD.
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Theorem 5.1. On the 3 -user Y - channel, a cyclic SA scheme achieves:

DoF ≤ m12 +m21 +m13 +m31 +m23 +m32

max(n1, n2, n3) ≤ 2,

within n ≥max(n1, n2, n3) dimensions for distinct i, j, k ∈ K for:

nj =mji +mjk +max(mik,mki).
Proof:
(a) Necessity of n ≥max(n1, n2, n3) dimensions:

The lower bound on the number of dimensions n has already been provided in Sec-
tion 5.1.3.

(b) Sufficiency of the Cyclic SA scheme:
In the UL-phase, the signals from each Ti are aligned at R within 3 main blocks:

A) Bidirectional: There are non-zero pairs of mji,mij for two users i ≠ j.

B) Cyclic: There are non-zero triplesmji,mik,mkj for three distinct users i, j, k ∈ K.
C) Unidirectional: None of the above cases holds.

The communication scheme for the signal alignment at the relay R is briefly outlined
as follows. For submessages satisfying (a), the bidirectional communication scheme
allocates two submessages per dimension. Then, the remaining submessages satisfying
(b) are allocated by the cyclic communication scheme with 3

2 submessages per dimen-
sion. The yet remaining submessages are allocated by the unidirectional scheme with
one submessage per dimension.
In the DL, these received signals aligned at R are simply forwarded to all Ti. The Ti

use linear decoders and self-interference cancellation to resolve their dedicated signals.

Uplink

A) Bidirectional Communication

We define three parameters a1, a2, a3, and their cumulative sum a, for distinct indices
i, j, k ∈ K:

aj =min(mik,mki), (5.16)

a = a1 + a2 + a3. (5.17)

The transmitted signals of each Ti are aligned in bidirectional pairs of submessages
with the following offsets of relay R:

offset SA at Relay R index t

xt ∶ eR2xp
[t]
32 ≡ eR3xp

[t]
23 mod (xn − 1), t = 0, ..., a1 − 1,

xa1+t ∶ eR1xp
[t]
31 ≡ eR3xp

[t]
13 mod (xn − 1), t = 0, ..., a2 − 1,

xa1+a2+t ∶ eR1xp
[t]
21 ≡ eR2xp

[t]
12 mod (xn − 1), t = 0, ..., a3 − 1.
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This allocation provides a unique choice for the subset the parameters p
[t]
ji with the

given ranges of t.
The matrix M ′ contains the residual submessages yet to be allocated and is de-

noted by:

M ′ =M −A, (5.18)

with the symmetric matrix:

A = ⎛⎜⎜⎝
0 a3 a2
a3 0 a1
a2 a1 0

⎞⎟⎟⎠ . (5.19)

After this allocation procedure, there are at most three non-zero elements left over
in M ′.

B) Cyclic Communication

For two mutually exclusive cases of M ′, a cyclic communication scheme is utilized.
We define two parameters b1, b2, and their cumulative sum b:

b1 =min(m′21,m′13,m′32), (5.20)

b2 =min(m′12,m′23,m′31), (5.21)

b = b1 + b2, (5.22)

The term cyclic communication is due to the clock-wise/counter clock-wise cyclic in-
dexation of the indices. Parameter b1 > 0 indicates clock-wise cyclic communication,
and b2 > 0 indicates counter clock-wise cyclic communication. From the bidirectional
communication applied before in scheme A), these two cases exclude each other:

if b1 = b > 0⇒ b2 = 0, (5.23)

if b2 = b > 0⇒ b1 = 0, (5.24)

otherwise b1 = b2 = 0. (5.25)

For clock-wise cyclic communication, we align the signals at the offsets of R by:

offset SA at Relay R index t

xa+t ∶ eR1xp
[a3+t]
21 ≡ eR2xp

[a1+t]
32 mod (xn − 1), t = 0, ..., b1 − 1,

xa+b1+t ∶ eR2xp
[a2+t]
13 ≡ eR2xp

[a1+t]
32 mod (xn − 1), t = 0, ..., b1 − 1.

For counter clock-wise cyclic communication, we similarly align:

offset SA at Relay R index t

xa+t ∶ eR2xp
[a3+t]
12 ≡ eR1xp

[a2+t]
31 mod (xn − 1), t = 0, ..., b2 − 1,

xa+b2+t ∶ eR2xp
[a1+t]
23 ≡ eR2xp

[a2+t]
31 mod (xn − 1), t = 0, ..., b2 − 1.

In both of these cyclic communication schemes, the inter-user interference conditions
seem to be violated. However, the receivers can linearly decode the dedicated signals in
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the DL using known back-propagated self-interference for cancellation. We will briefly
elaborate this decoding scheme when discussing the DL-phase of this scheme. With the
circulant matrix B for (either clock-wise or counter clock-wise) cyclic communication:

B = ⎛⎜⎜⎝
0 b2 b1
b1 0 b2
b2 b1 0

⎞⎟⎟⎠ , (5.26)

the matrix M ′′ of the residual submessages yet to be allocated is:

M ′′ =M ′ −B =M −A −B. (5.27)

C) Unidirectional Communication

There are still at most 3 non-zero submessages in M ′′, if scheme b = 0, or at most 2
non-zero submessages, if b > 0. Based on the previous allocation, there are six possible
cases with non-zero submessages that are not yet covered by the previous schemes
A and B. We define the six parameters for unidirectional communication and their
cumulative sum by:

Case 1 ∶ c1,12 =m′′12, c1,13 =m′′13, c1,23 =m′′23 ⇒ b2 ≥ 0, b1 = 0 (5.28)

Case 2 ∶ c2,12 =m′′12, c2,13 =m′′13, c2,32 =m′′32 ⇒ b1 ≥ 0, b2 = 0 (5.29)

Case 3 ∶ c3,21 =m′′21, c3,23 =m′′23, c3,13 =m′′13 ⇒ b1 ≥ 0, b2 = 0 (5.30)

Case 4 ∶ c4,21 =m′′21, c4,23 =m′′23, c4,31 =m′′31 ⇒ b2 ≥ 0, b1 = 0 (5.31)

Case 5 ∶ c5,31 =m′′31, c5,32 =m′′32, c5,12 =m′′12 ⇒ b2 ≥ 0, b1 = 0 (5.32)

Case 6 ∶ c6,31 =m′′31, c6,32 =m′′32, c6,21 =m′′21 ⇒ b1 ≥ 0, b2 = 0, (5.33)

c = ∑6

i=1 ci,12 + ci,13 + ci,21 + ci,23 + ci,31 + ci,32. (5.34)

These six cases are pairwise exclusive. The non-zero submessages in M ′′ are each
allocated to an individual frame in a multiple-access scheme. E.g., in Case 1, we align:

offset R index t

xa+2b+t ∶ eR2xp
[a3+b+t]
12 , t = 0, ..., c1,12 − 1,

xa+2b+c1,12+t ∶ eR3xp
[a2+b+t]
13 , t = 0, ..., c1,13 − 1,

xa+2b+c1,12+c1,13+t ∶ eR3xp
[a1+b+t]
23 , t = 0, ..., c1,23 − 1.

(5.35)

Note that c has at most three non-zero components in each case, e. g., c = c1,12 + c1,13 +
c1,23 in Case 1. The other five cases for the unidirectional communication scheme are
similarly allocated at R within a frame of c dimensions. We consider all six cases in a
combined view, and define the matrix C for unidirectional communication by:

C = ⎛⎜⎜⎝
0 c1,12 + c2,12 + c5,12 c1,13 + c2,13 + c3,13

c6,21 + c4,21 + c3,21 0 c4,23 + c1,23 + c3,23
c6,31 + c4,31 + c5,31 c6,32 + c2,32 + c5,32 0

⎞⎟⎟⎠ . (5.36)
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All submessages in the original messaging matrix M are completely allocated, if we
set C =M ′′. The auxiliary matrices of all three schemes are combined to:

M =A +B +C. (5.37)

We expand n in its explicit form so that it is the maximum of all 6 lower bounds:

n =max(m12 +m13 +m23,m12 +m13 +m32,m21 +m23 +m13,

m21 +m23 +m13,m31 +m32 +m12,m31 +m32 +m21). (5.38)

It remains to show that the separability conditions of the Y - channel hold. Since
each Ti aligns its transmitted submessages to specific dimensions at R only, we do
not have to take signals into account, that are aligned at other receivers. Hence, the
corresponding transmit signals can be easily derived from the (aligned) received signal
at r(x).
As both the aligned interference signals and the dedicated signals are distinctly

allocated within successively arranged frames at R, valid transmission signals always
exist. The separability conditions hold by construction, if the total number of used
dimensions satisfies the lower bound of n.
We now show that the proposed scheme achieves the upper bound on the DoF:

n =min(m23,m32) +min(m13,m31) +min(m12,m21)+
2min(m′21,m′13,m′32) + 2min(m′12,m′31,m′23)+⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m′′12 +m′′13 +m′′23, if Case 1 holds

m′′12 +m′′13 +m′′32, if Case 2 holds

m′′21 +m′′23 +m′′13, if Case 3 holds

m′′21 +m′′23 +m′′31, if Case 4 holds

m′′31 +m′′32 +m′′12, if Case 5 holds

m′′31 +m′′32 +m′′21, if Case 6 holds

= a1 + a2 + a3 + 2b1 + 2b2+⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m12 − a3 − b2 +m13 − a2 − b1 +m23 − a1 − b2, if Case 1 holds (b1 = 0)

m12 − a3 − b2 +m13 − a2 − b1 +m32 − a1 − b1, if Case 2 holds (b2 = 0)

m21 − a3 − b1 +m23 − a1 − b2 +m13 − a2 − b1, if Case 3 holds (b2 = 0)

m21 − a3 − b1 +m23 − a1 − b2 +m31 − a2 − b2, if Case 4 holds (b1 = 0)

m31 − a2 − b2 +m32 − a1 − b1 +m12 − a3 − b2, if Case 5 holds (b1 = 0)

m31 − a2 − b2 +m32 − a1 − b1 +m21 − a3 − b1, if Case 6 holds (b2 = 0)

=max(m12 +m13 +m23,m12 +m13 +m32,m21 +m23 +m13,

m21 +m23 +m31,m31 +m32 +m12,m31 +m32 +m21).
In other words, the number of dimensions n used for the proposed communication
scheme is sufficient to convey all submessages in M for all six cases in (5.38).

Downlink

The received signal r(x) of the UL at R is forwarded over the subchannels fiR to
all receivers Ti. The signals received at each Ti are only cyclically shifted versions
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of the forwarded signal r(x) without further superimposed interference from other
transmitters. Each receiver Ti cancels its back-propagated self-interference and also
cancels the aforementioned interference from the cyclic communication.

For instance, T1 cancels the known self-interference eR3xp
[a3+t]
21 and decodes the re-

maining non-dedicated signal eR2xp
[a1+t]
32 for t = 0, ..., b1 − 1. Next, this decoded inter-

ference signal is cancelled from the other received signal eR2xp
[a2+t]
13 + eR2xp

[a1+t]
32 , so that

the dedicated signal eR2xp
[a2+t]
13 remains and can be decoded successfully. The other

users perform analogous procedures for the interference in the cyclic communication
schemes.

Altogether, it is shown that the given upper bound on the DoF is achievable. The
DoF are only maximized if the bidirectional scheme A) can already align all dedicated
messages. Hence, if m23 = m32 = m1,m13 = m31 = m2 and m12 = m21 = m3 hold, we
obtain n = n1 = n2 = n3 = m1 +m2 +m3, so that at most 2(m1+m2+m3)

m1+m2+m3
= 2 DoF are

achievable. ∎

5.1.5 Δ-Y Transformation

We have already seen that the upper bounds on the DoF of the considered 3 -user
Y - channel and the 3 -way channel coincide exactly, even for arbitrary message lengths
in M . The upper bounds for the 3 -user Y - channel have been shown to be achievable
in the theorem above. In the following, we will show that the upper bounds of the
3 -way channel are also achievable.

From the perspective of an electrical engineer, a similar equivalence occurs in wired
resistor-networks to some extend. There is a so-called Δ-Y transformation3 which
is a well-known method from elementary circuit theory as, e. g., in [86], [87]. The
basic statement of this transformation is that the external resistance behaviour of a
Δ-shaped resistor circuit can be equivalently described by a Y -shaped resistor circuit
and vice versa.

In this section, we explore a conceptually similar Δ-Y transformation for the 3 -user
Y - channel and the 3 -way channel. To the best of our knowledge, such a transfor-
mation has not been considered in terms of multi-user interference channels in the
literature yet.

To elaborate the transformation, we commence with considering a Y - channel of
three users T̃1, T2,T3 and a relay R. In the first step, this channel is extended by an
additional bidirectional link between two users, e. g., T2 and T3. The shape of a 3 -way
channel occurs between T2, R and T3. Next, we unite user T̃1 and relay R to a single
device T1 by permitting full cooperation for them. Now, each subchannel from Ti to
Tj is renamed to dji, correspondingly. As a result, we obtain the 3 -way channel.

This transformation procedure is depicted in Figure 5.3. We assume that the (vir-
tual) subchannel between the relay R and T̃1 imposes no further shift w.l.o.g. The
subchannels d23 and d32 represent the main difference between an ordinary Y - channel
and this extended Y - channel.

3This transformation is also known as Π-T transform in [86], [87].
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Figure 5.3: The 3 -way channel is transformed into an extended (upside-down)
Y - channel including an additional bidirectional link between T2 and T3.
The additional link is drawn with dotted lines.

5.1.6 Achievable Scheme for the 3 -Way Channel

Theorem 5.2. Cyclic SA on the 3 -way channel achieves the upper bound:

DoF ≤ m12 +m21 +m13 +m31 +m23 +m32

max(n1, n2, n3) ≤ 2,

within n ≥max(n1, n2, n3) for nj =mji +mjk +max(mik,mki) with distinct i, j, k ∈ K.
Proof:
(a) Necessity of n ≥max(n1, n2, n3) dimensions:

The lower bound on the number of dimensions n is already provided in Section 5.1.3.

(b) Sufficiency of Cyclic IA for n =max(n1, n2, n3):
We basically apply the same achievable scheme that was used for the 3 -user Y - channel
to the extended Y - channel. We only include some minor adaptations to compensate
the additional interfering signals conveyed over d23 and d32. We consider a finite
communication scheme over N + 1 time-instants with N UL-transmissions and N DL-
transmissions. The entire decoding procedure at the receivers is postponed to the
last, i. e., the (N +1)-th time-instant. The last time-instant is only a DL-transmission
from R and there will be no additional interference over d23 and d32, since the UL-
transmitters of T2 and T3 are already silent. There are only two classes of additional
interference over d23 and d32 to be analyzed:

(a) The interference over dij, for i ≠ j ∈ {2,3}, received at Ti is a dedicated signal
from Tj, which will also be forwarded from R to Ti in the next time instant.

(b) The interference over dij, for i ≠ j ∈ {2,3}, received at Ti is an interfering signal
from Tj that is dedicated for T1.

Class (a): The interference of class (a) only contains messages that are dedicated
for the receiver of T2 (or of T3). After the (N+1)-th time-instant, the receivers T2 (and
T3) can completely decode all the forwarded dedicated signals that were transmitted
in the UL of the last, N -th, time-instant without interference over d23 and d32. These
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dedicated signals can now be used to cancel the additional interference of class (a) from
the received signals of T2 (and T3) that were both transmitted and received during the
N -th time-instant. If the interference of class (b) (this will be explained in the next
paragraph) is fully removed as well, all the dedicated messages from the N -th hop can
also be decoded completely. These steps of decoding and cancellation are continued in
a backward decoding procedure until all interfering signals of class (a) are cancelled.
Note that in the first time-instant, no DL-transmission has been performed yet. Thus,
the class (a) interference is not harmful in the first time-instant and simply ignored.
Class (b): The interference of class (b) only contains messages that are dedicated

for receiver T1 and hence they represent interference for T2 (or T3), respectively. In this
case, we apply an IN scheme. In particular, T2 (or T3) additionally pre-transmits the
corresponding interference signals with a complementary sign over d32 (or d23) of time
instant l one time-instant in advance, i. e., at time-instant l−1. These pre-transmitted
signals are aligned at the relay R, such that the forwarded signals from R in time-
instant l will exactly coincide with the original interference signals of class (b) over d32
(or d23) at time instant l. This is clearly feasible for T2 (and T3), since it can align its
signals to any of the n levels at R. As a result, the two complementary interference
signals of class (b) coincide and neutralize each other completely. Note that the pre-
transmitted signals which are back-propagated to their original senders are known and
can be cancelled. Moreover, since the pre-transmitted signals are dedicated signals
for T1, T1 can cancel those signals via a backward decoding procedure as discussed
analogously for the interference of class (a). The pre-transmitted signals over d32 (or
d23) arriving at T3 (or T2) are again neutralized by another pre-transmission. This
pre-transmission procedure is iterated backwards to the first transmission, where the
signals over d32 (or d23) may be discarded at T3 (or T2).
Altogether, we have shown that the additional interference over the subchannels d32

or d23 can be compensated and thence we have proven that the upper bounds on the
3 -way channel are achievable. ∎
We conjecture that there might also be an DoF-achieving scheme for the 3 -way

channel that is based on IA and not on SA. Then, the subchannels d32 or d23 are also
used to convey some dedicated signals directly, without relaying over T1. Such an
optimal scheme would certainly also rely on closely related bidirectional, cyclic and
unidirectional schemes as discussed similarly for the 3 -user Y - channel. A symmetric
case of this problem is investigated in Section 5.2.7 in terms of the LDCM.

5.1.7 Discussion

In contrast to most of the previously considered channels, e. g., the 2 -user X- channel,
the K-user interference channel, or the 2×2×2 relay-interference channel, the channel
matrices of the 3 -way channel and the Y - channel are not subject to further conditions,
i. e., the schemes can be applied on any channel matrix D,E, and F , with entries inD. It turns out, that this is a useful property when regarding the the corresponding
Gaussian MIMO 3 -way channel. A direct consequence is that the problem of common
eigenvectors in separate subspaces, as discussed in 3.4.2, vanishes, so that it is possible
to formulate closed-form IA schemes for the MIMO 3 -way channel with constant chan-
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nel coefficients that are capable to achieve the upper bounds on the DoF. Note that
these formulations do not resort to infinite symbol-extensions as in [3] for instance.
Subsequently, we consider the 3 -way channel in terms of the LDCM and GMCM.

5.2 Capacity Region of the Reciprocal Linear
Deterministic 3 -Way Channel

Similar to the CPCM, the linear deterministic 3 -way channel and the linear deter-
ministic 3 -user Y - channel [79] are closely related. Motivated by this, we consider the
reciprocal 3 -way channel in terms of the LDCM. We first provide cut-set bounds and
genie-aided upper bounds describing the outer bound on the capacity region. Achieving
this capacity region interestingly relies upon SA and on BD, as well. Our main tool is
again a Δ-Y transformation of the 3 -way channel to an (extended) Y - channel, as mo-
tivated by elementary electrical circuit theory. However, due to the linear shift in the
LDCM, the approach differs at several points. Furthermore, we integrate a capacity-
achieving scheme for a symmetric 3 -way subchannel that is also based on signal-scale
interference alignment (IA) as in [3], [88], and [22], without resorting to BD.

Figure 5.4: The linear deterministic 3 -way channel (or Δ- channel) with three trans-
ceivers T1,T2 and T3 has six independent messages Wj,i transmitted and
six corresponding estimated messages Ŵj,i received by the nodes, for
i ≠ j ∈ K. The channel gains are parameterized by nj ∈ N, j ∈ K.

5.2.1 System Model: Linear Deterministic 3 -Way Channel

In the linear deterministic 3 -way channel, a user Ti is a combined full-duplex trans-
mitter Txi and receiver Rxi. We consider six independent messages Wji dedicated
to be conveyed from Ti to Tj with Wji ∈ Wji = {1, ...,2nRji}, Rji ∈ R+, for distinct
i, j ∈ K = {1,2,3}. The vector of all messages is denoted by:

w = (W12,W21,W13,W31,W23,W32). (5.39)

The rate tuple R and the total sum-rate RΣ are defined for rates Rji ∈ R+ between
Txi and Rxj by:

R = (R12,R21,R13,R31,R23,R32), (5.40)

RΣ = R12 +R21 +R13 +R31 +R23 +R32. (5.41)
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Tj encodes its messages into a codeword4 xN
j . The l-th symbol of xN

j is an element of

an alphabet X encoded as xj(l) = fj,l(Wij,Wkj,yl−1
j ) for distinct i, j, k ∈ K. Therein,

yl−1
j are all received symbols at Tj until time-instant l−1 with encoding function fj,l(⋅).

A receiving Ti decodes (Ŵij, Ŵik) = gi(yN
i ,Wij,Wik) with the decoding function gi(⋅).

An error occurs if (Ŵij, Ŵik) ≠ (Wij,Wik). The collection of messages, encoders, and
decoders defines a code for the 3 -way channel. Furthermore, rate tuple R is called
achievable if there is a sequence of codes such that the average error probability εN
becomes arbitrarily small by increasing N . The set of all achievable rate tuples is the
capacity region CΔ.
In the LDCM, the physical channel between Ti and Tj is modelled by nji ∈ N bit

pipes, and the transmitted symbols xj(l) are bit-vectors in X = F
q
2 with a number

of q = maxi≠j∈K(nji) dimensions. The received signals yi at receivers Rxi, i ∈ K, are
deterministic functions of the transmitted signals for distinct i, j, k ∈ K:

yi = Sq−nijxj ⊕Sq−nikxk, (5.42)

where S is a q × q lower shift matrix, having unit entries on the lower side-diagonal.
The effect of noise is mimicked by clipping linearly shifted symbols. Note that loop-
back self-interference is entirely cancelled from (5.42) due to the perfect full-duplex
operation.

In a wireless channel, it is valid to assume reciprocity for the bidirectional links
such that we may use the following parametrization nij = nji =∶ nk holds for distinct
i, j, k ∈ K. We also assume:

n3 ≥ n2 ≥ n1, (5.43)

as an ordering of parameters w.l.o.g., and obtain n3 = q. We denote this linear deter-
ministic reciprocal 3 -way channel by D3C(n1, n2, n3).

5.2.2 Outer Bounds of Capacity Region: 3 -Way Channel

Cut-set upper bounds

The cut-set bounds of broadcast and multiple-access channels as in [9] state that users
Ti can not receive more bits than the number of incoming bit-levels and they cannot
transmit more bits than the number of outgoing bit-levels available:

Rij +Rik ≤max(nk, nj), (5.44)

Rji +Rki ≤max(nk, nj), (5.45)

for distinct i, j, k ∈ K. These cut-set bounds already provide a loose upper boundCΔ,cut−set on the actual capacity region CΔ. To obtain a tight capacity characterization,
we include further genie-aided upper bounds similar to those derived in [79].

4We use vN denote a sequence of N -vectors (v(1), ...,v(N)).
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Genie-aided upper bounds

Receiver T1 intends to decode the dedicated messages W12 and W13 using its received
signal yN

1 and its own messages W21,W31, with a reliable decoding strategy. Let the
interfering message W23 be provided to node T1 as genie-aided side-information. Since
T1 already knows W13 and W23, it can reconstruct x3(1). From yN

1 and x3(1), T1

can derive x2(1) from the deterministic function (5.42). T1 then constructs y3(1)
from x1(1) and x2(1). With W13,W23 and y3(1), T1 can generate x3(2). These
steps are repeated accordingly for all time-instants from 2 to N until yN

3 is completely
constructed. Therefore, by knowing yN

1 ,W21,W31 andW23 at T1, it can reliably decode
W12 andW13, and then reconstruct yN

3 to reliably decodeW32. All messages are known
at node T1 now. Thus, for the genie-aided channel, any reliable code allows decoding
W32. From Fano’s inequality [45], we can derive:

N(R12 +R13 +R32) (5.46)

≤ I(W12,W13,W32;y
N
1 ,W21,W31,W23) +NεN

≤ H(yN
1 ) −H(yN

1 ∣w) +NεN

≤ H(yN
1 ) +NεN

≤ N(max(n3, n2) + εN)
= N(n3 + εN),

where εN → 0 as N →∞. By lettingN →∞, we get R12+R13+R32 ≤ n3. Similar bounds
can be derived by considering different receivers and side-information (cf. AppendixC).

Outer Bound Region

By considering the genie-aided and non-redundant cut-set bounds jointly, we obtain
the following set of upper bounds on the capacity region CΔ:

R31 +R32 ≤ n2, (5.47)

R13 +R23 ≤ n2, (5.48)

R12 +R13 +R32 ≤ n3, (5.49)

R12 +R13 +R23 ≤ n3, (5.50)

R21 +R23 +R13 ≤ n3 + n2 − n1, (5.51)

R21 +R23 +R31 ≤ n3, (5.52)

R31 +R32 +R21 ≤ n3, (5.53)

R31 +R32 +R12 ≤ n3 + n2 − n1. (5.54)

From (5.49) and (5.52) for instance, the sum-capacity upper bound yields RΣ ≤ 2n3.
This set of bounds leads to the following lemma. Note that this sum-rate upper bound
coincides with the sum-rate upper bound of the (reciprocal) deterministic two-way
channel [89].

Lemma 5.3. The capacity region CΔ of the D3C(n1, n2, n3) is outer bounded by CΔ,
i.e., CΔ ⊆ CΔ, where:

CΔ = {R ∈ R6
+ ∣R satisfies (5.47)-(5.54)}.
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5 Multi-Way Communications with Three Users

This outer bound is in fact achievable. The achievability of this bound is proven via
a Δ-Y transformation utilizing the optimal scheme for the Y - channel as a building
block. Next, we briefly recapitulate the related Y - channel and its capacity region in
terms of the LDCM as characterized in [79].

5.2.3 System Model: Linear Deterministic Y - Channel

The linear deterministic reciprocal 3 -user Y - channel5 DYC(ñ1, ñ2, ñ3) is depicted in
Figure 5.5. The definitions of the message vector, the rate tuple, the transmission sym-

Figure 5.5: The reciprocal Y - channel with three transceivers T1,T2, and T3 has six
independent messages Wji transmitted and six corresponding estimated
messages Ŵji received by the nodes, i ≠ j ∈ K. The channel gains are
parameterized by ñj ∈ N, for j ∈ K.

bols and the encoding/decoding functions carry over from those given in Section 5.2.1,
but are denoted with the tilde-notation to distinguish between the two models. In
contrast to the 3 -way channel, all users Tj are connected via bidirectional reciprocal
links to an intermediate relay R. The channel gain from R to user Tj is denoted by
ñj . The gains are ordered w.l.o.g. by:

ñ1 ≥ ñ2 ≥ ñ3, (5.55)

so that q = maxi∈K(ñi) = ñ1. Note that this ordering is reversely oriented when com-
paring it with (5.43). The transmitted signals are vectors xj,xR ∈ Fq

2 from Tj and R,
respectively. The received signal at R and the received signals at Tj are given by

yR = ∑3

j=1S
q−njxj, (5.56)

yj = Sq−njxR, (5.57)

respectively. Next, we re-state the capacity region of the linear shift determinis-
tic Y - channel, which will be an essential part of the proof of the achievability of
Lemma 5.3.

5Our notation slightly differs from [79] w.r.t. swapped indexation and tilde.
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5.2 Capacity Region of the Reciprocal Linear Deterministic 3 -Way Channel

5.2.4 Outer Bounds of Capacity Region: Y - Channel

The capacity region CY of the DYC(ñ1, ñ2, ñ3) has already been characterized in [79],
and is given by the set of rate tuples R̃ = (R̃12, R̃21, R̃13, R̃31, R̃23, R̃32), satisfying:

R̃31 + R̃32 ≤ ñ3, (5.58)

R̃13 + R̃23 ≤ ñ3, (5.59)

R̃12 + R̃13 + R̃32 ≤ ñ2, (5.60)

R̃12 + R̃13 + R̃23 ≤ ñ2, (5.61)

R̃21 + R̃23 + R̃13 ≤ ñ1, (5.62)

R̃21 + R̃23 + R̃31 ≤ ñ2, (5.63)

R̃31 + R̃32 + R̃21 ≤ ñ2, (5.64)

R̃31 + R̃32 + R̃12 ≤ ñ1. (5.65)

There is an interesting resemblance between the bounds (5.58)-(5.65) and (5.47)-(5.54).
This resemblance will be exploited to design an optimal scheme for the 3 -way channel
next.

5.2.5 Δ-Y Transformation

Equating the upper bounds of the D3C(n1, n2, n3) in (5.47)-(5.54) and the upper
bounds of DYC(ñ1, ñ2, ñ3) in (5.58)-(5.65) yields:

ñ1 = n2 + n3 − n1 (5.66)

ñ2 = n3, (5.67)

ñ3 = n2. (5.68)

In other words, the outer bound for the D3C(n1, n2, n3) coincides with the capacity
region of a DYC(ñ1, ñ2, ñ3). Note that the ordering of the channel gains in (5.43) and
(5.55) still holds.
In order to show the achievability of the outer bound in Lemma 5.3, we first express

the 3 -way channel in terms of an extended Y - channel as depicted in Figure 5.6 (cf.
Section 5.1.5 for the CPCM). User T1 is extended such that it behaves like a virtual
relay R which is also connected to a virtual user T̃1 via an artificial sub-channel
parametrized by ñ1. At R, the topmost levels ñ2 + 1, ..., ñ1 are only accessible by T̃1

and not visible for T2 and T3 (see Figure 5.7) and hence only virtual within T1. The
residual link with n1 from the previous D3C(n1, n2, n3) remains as a weak bidirectional
link between T2 and T3 in the extended Y - channel eDYC(ñ1, ñ2, ñ3, n1). The channel
gain n1 is still the weakest one, since:

n1 ≤ n2 = ñ3 ≤ ñ2 = n3 ≤ n3 + n2 − n1 = ñ1. (5.69)

The optimal scheme for the Y - channel already achieves the outer bound CΔ for n1 = 0.
However, in general we have n1 ≥ 0. Hence, we have to modify our scheme to deal with
the additional interference signals over n1.
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Figure 5.6: The reciprocal 3 -way channel D3C(n1, n2, n3) is transformed into an ex-
tended (upside-down) Y - channel eDYC(ñ1, ñ2, ñ3, n1) including an addi-
tional bidirectional link n1 between T2 and T3.

5.2.6 Achievability of CΔ
Let all (virtual) users T̃1, T2, T3 and R apply the capacity-achieving SA scheme
described in [79] as if it would be applied on a DYC(ñ1, ñ2, ñ3), but without decoding
at the receivers yet. We consider N uplink and N transmissions, over N + 1 time-
instants. We call this scheme the ’original’ scheme. In Figures 5.7 and 5.8, we depict
a signal-level representation of the eDYC(ñ1, ñ2, ñ3, n1) with the uplink on top, the
downlink at the bottom, and with the additional interference links with channel gain
n1 crossing in the middle.
In contrast to the original scheme for the DYC(ñ1, ñ2, ñ3), the achievable scheme

for the eDYC(ñ1, ñ2, ñ3, n1) must be adapted to deal with the signals inherently trans-
mitted over n1. We will overlay the adapted scheme on top of the original scheme.
In particular, any signal transmitted by Ti, i ∈ {2,3}, appearing on the topmost

levels ñ1 − n1 + 1, ..., ñ1, will interfere at receiver Tj on the lowermost levels 1, ..., n1.
We discern three classes of interference over n1 that are potentially received at T2 and
T3 when applying the original scheme:

(a) The interference over n1 received at Ti is a dedicated signal from Tj to Ti, which
will also be forwarded from R to Ti in the next time-instant.

(b) The interference over n1 received at T3 is a dedicated signal from T2 to T1.

(c) The interference over n1 received at T2 is a dedicated signal from T3 to T1.

The signal levels of the uplink to R for instance comprise three components: the
topmost {ñ2+1, ..., ñ1} levels accessible by T1 only, the levels {ñ3+1, ..., ñ2} accessible
by T1 and T2, and the lowermost {1, ..., ñ3} levels accessible by all three uplink users.
Class (a): To compensate interference of class (a), we postpone decoding until

the last signals of the (N + 1)-th time-instant are received. The transmission scheme
does not change w.r.t. the original one. Since the (uplink) transmitters of T2 and
T3 are silent on the (N + 1)-th time-instant, the (downlink) receivers of T2 and T3

receive no signal over n1 at the (N + 1)-th time-instant. Hence, T2 and T3 can decode
their dedicated signals as received in the last hop. In fact, the downlink signals of
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the (N + 1)-th time-instant behave analogously to the (N + 1)-th hop of the original
scheme. Since the class (a) interference of the N -th hop is a subset of the dedicated
signals in the (N + 1)-th hop, it is cancelled after decoding the dedicated signals of
the (N + 1)-th hop. With such a BD scheme, the interference of class (a) is cancelled
analogously for all preceding time-instants N − 1, ...,2,1.

Figure 5.7: Auxiliary illustration for interference of class (b).

Class (b): To compensate the interference of class (b), i. e., those bits received at
T3 over n1 carrying a dedicated signal from T2 to T1, say x12, we apply an IN scheme.
In detail, T2 pre-transmits the interference signal (x12(l)) one time-instant in advance
(in time-instant l − 1) as follows. Assume that T3 receives [x′TR,3(l),xT

R,3(l)]T from
R in the downlink at time-instant l, where x′R,3(l) and xR,3(l) are binary vectors of
lengths n1 and ñ3−n1, respectively (see Figure 5.7). Moreover, assume that T3 receives
interference from x12(l) over some bits of xR,3(l). To deal with this interference, T2

pre-transmits x12(l) in time-instant l − 1 in the uplink, over exactly the same levels
where xR,3(l) is received in the uplink6. By doing so, T3 receives x12(l) twice over
xR,3(l) in the downlink, once from T2 and once from R. Since x12(l) is a binary vector,
the addition of x12(l) to itself results in interference neutralization.
It remains to make sure that the pre-transmission does not disturb any other node.

Clearly, x12 does not disturb T2 since it originates from the same node T2. Also, x12

does not disturb T1 since x12 is a desired signal at T1, and thus the interfering x12 is
removed by BD.
One more problem remains. Our approach using IN only works if xR,3(l) is received

over levels that are accessible by T2 in the uplink, i. e., the levels 1, ..., ñ2 at R. However,

6Note that xR,3(l) is received at R at time-instant l − 1, and transmitted at time-instant l.
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xR,3(l) might contain information from T1, say x31, which might not be accessible by
T2 in the uplink. This is exactly the case if T1 sends x31 over levels ñ2 + 1, ..., ñ1

at R (blue area in Figure 5.7). However, the given problem can be solved easily by
noting that the number of levels in the blue area in Figure 5.7 is ñ1 − ñ2. We have
ñ1−ñ2 = ñ3−n1 by (5.66), i. e., the same number of levels in the non-interfered downlink
levels at T3 (green area in Figure 5.7). Therefore, we exploit this interesting equality
of the transformation: R forwards x31 over the non-interfered downlink levels at T3

and the given problem is avoided. By pursuing such an approach, the impact of class
(b) interference is completely eliminated.

Figure 5.8: Auxiliary illustration for interference of class (c).

Class (c): To compensate the interference of class (c) at T2 received over n1, i. e.,
a dedicated signal x31 from T3 to T1, we apply a similar IN scheme. T3 likewise
additionally pre-transmits class (c) interference one time-instant in advance. T3 can
access ñ3 levels in the uplink to R that are potentially forwarded to T2 in the downlink
during the next time-instant.
However, the levels ñ3 + 1, ..., ñ1 (blue area in Figure 5.8) are not accessible by T3

in the uplink. Thus, if the signal received by T2 from R in the downlink over levels
1, ..., n1 are sent over relay levels ñ3 + 1, ..., ñ1 in the uplink, then, T3 can not perform
IN. However this scenario can be avoided by sending all signals received in the uplink
on the blue levels in Figure 5.8, over the green levels in the downlink. This is possible
since ñ2 −n1 = ñ1 − ñ3 holds by (5.66). In this case, these signals do not interfere with
the levels 1, ..., n1 at T2 which renders T3 capable of performing IN.
For the downlink from R to T3, the pre-transmitted signals which are back-propa-

gated to T3 are known self-interference and cancelled. For the downlink of T1, these
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pre-transmitted signals are dedicated for T1 and cancelled by BD. Thus, the inter-
ference of class (c) is eliminated as well.
In all three classes, the interference over the bidirectional link n1 is cancelled or

neutralized and all dedicated signals are decodable by BD after N + 1 time-instants.
Altogether, this proves the achievability of CΔ leading to the following Theorem.

Theorem 5.4. The capacity region CΔ of the D3C(n1, n2, n3) is given by CΔ defined
in Lemma 5.5.

At this point, the achievability of the capacity region is fully proven by means of
SA, IN and BD.

5.2.7 Capacity Region of the Symmetric Case by IA

Interestingly, signals conveyed over the weak link n1 are not used for direct communica-
tion. The interfering signals over n1 are cancelled or neutralized by the communication
scheme proposed in Section 5.2.6, so that the impact of the link n1 is effectively elim-
inated. A certain drawback of our previous scheme is that the receivers must wait
for N + 1 time-instants to apply the BD procedure. This is a very limiting property,
especially for delay-limited communications [90].
As a contrary approach, we now propose a purely IA-based communication scheme

for the symmetric D3C(m,m,m) that achieves the corresponding capacity region.
The communication scheme for the D3C(m,m,m) based on IA is proven with similar
methods as the one in [79]. In this case, there is no need for BD and IN.

Theorem 5.5. An interference alignment scheme based on bidirectional, cyclic and
unidirectional communication suffices to achieve the outer bounds on the capacity re-
gion of a symmetric D3C(m,m,m) with m ∈ N.
Proof:
We consider a communication scheme of three components (cf. Theorem 5.1):

A) Bidirectional: For distinct i, j ∈ K, the pair of rates Rji,Rij is non-zero.

B) Cyclic: For distinct i, j, k ∈ K, the triple of rates Rji,Rjk,Rki is non-zero,
whereas Rij = Rkj = Rik = 0.

C) Unidirectional: None of the above cases holds.

We now outline our proposed IA scheme based on the components A, B and C. We
will begin with scheme A on the D3C(m,m,m) operating at 2 bits per level. Pairs of
users communicate bidirectionally. Then, we reduce the channel to D3C(m′,m′,m′)
by removing the already used levels from scheme A. Next, scheme B with 3/2 bits
per level is applied. Again we reduce the channel to D3C(m′′,m′′,m′′) removing the
levels occupied by scheme B. In the last step, we apply scheme C allocating 1 bit
per level. If the rate tuple to be achieved does not satisfy one of conditions A, B,
and C, the corresponding scheme is merely discarded. We will show in the following
that these schemes suffice to achieve the outer bounds of the capacity region for the
D3C(m,m,m).
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A) Bidirectional Communication on the D3C(m,m,m)
We define the following transmission parameters a, b, c ∈ N:

a =min(R12,R21), b =min(R13,R31), c =min(R23,R32). (5.70)

If a = b = c = 0 holds, scheme A is skipped and we continue with scheme B. We
propose a signal allocation such that 2 bits per level are achieved. The signals are
x12,x21 ∈ Fa

2, x31,x13 ∈ Fb
2, and x32,x23 ∈ Fc

2. To transmit these signals, a + b + c ≤ m
levels are allocated as depicted in Figure 5.9. The interference signals xji and xij are
aligned at Tk with pairwise distinct i, j, k ∈ K.

k xk yk intervals of levels

1 0 x32+x23 a+b+1, ..., a+b+c
1 x31 x13 a+1, ..., a+b
1 x21 x12 1, ..., a

2 x32 x23 a+b+1, ..., a+b+c
2 0 x13+x31 a+1, ..., a+b
2 x12 x21 1, ..., a

3 x23 x32 a+b+1, ..., a+b+c
3 x13 x31 a+1, ..., a+b
3 0 x21+x12 1, ..., a

Figure 5.9: A) Allocation of signals to bit-levels for the bidirectional scheme over the
D3C(m,m,m). The 1st column denotes the considered user, the 2nd col-
umn the transmitted signal, the 3rd column its received signal, and the
4th column describes the interval of levels concerned. The lowest bit-level
is indexed by 1.

This allocation scheme is only feasible if enough levels are available at the trans-
mitters and receivers for all bidirectional streams. For R ∈ C, the following must hold
on a, b, c:

a + b + c
(5.70)≤ R12 +R13 +R32

(5.49)≤ m. (5.71)

This is also true for all other upper bounds. For the yet unused levels, we still need to
achieve the residual rate-vector:

R′ = (R12 − a,R21 − a,R13 − b,R31 − b,R23 − c,R32 − c)
= (R′12,R′21,R′13,R′31,R′23,R′32). (5.72)

So far, at least three components will already be zero due to the min-expressions in
(5.70). We remove the allocated levels so that the reduced D3C(m′,m′,m′) is para-
meterized by:

m′ =m − a − b − c. (5.73)

Clearly, the reduced channel remains symmetric.
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i xi yi intervals of levels

1 0 x13+x32 d+1, ...,2d
1 x21 x32 1, ..., d

2 x32 x13 d+1, ...,2d
2 x32 x21 1, ..., d

3 x13 x32 d+1, ...,2d
3 0 x21+x32 1, ..., d

Figure 5.10: B) Allocation of signals to bit-levels for D3C(m′,m′,m′) for clock-wise
cyclic communication.

i xi yi intervals of levels

1 0 x12+x23 e+1, ...,2e
1 x31 x12 1, ..., e

2 x12 x23 e+1, ...,2e
2 x12 x23 1, ..., e

3 x23 x12 e+1, ...,2e
3 0 x12+x31 1, ..., e

Figure 5.11: B) Allocation of signals to bit-levels for D3C(m′,m′,m′) for counter clock-
wise cyclic communication.

B) Cyclic Communication on D3C(m′,m′,m′)
Given that the conditions for scheme B hold, and depending on the residual rate-vector
R′ computed in (5.72), we apply either clock-wise cyclic communication 1→ 2→ 3→ 1
with parameter d or counter-clock-wise cyclic communication 1→ 3→ 2→ 1 with para-
meter e. The parameters d, e ∈ N are:

d =min(R′21,R′13,R′32), e =min(R′12,R′31,R′23). (5.74)

Note that either d or e must be zero, since bidirectional communication is already
taken care of by the previous scheme A. The definitions in (5.74) provide two cases:

d > 0⇒ e = 0, a = R12, b = R31, c = R23, (5.75)

e > 0⇒ d = 0, a = R21, b = R13, c = R32. (5.76)

If both d = e = 0, this section is skipped and we continue with scheme C. In the
following, we propose a signal allocation scheme such that 3

2 bits per level are achieved.

For case (5.75), R′12 = R′31 = R′23 = 0 and R′21,R
′
13,R

′
32 are non-zero. The signals

are x21, x13, x32 ∈ Fd
2, allocated in blocks of d levels as depicted in Figure 5.10. The

constraint 2d ≤m′ must hold at each user to provide a feasible allocation. Signal x32 is
transmitted by T2 on both intervals of size d and T1 applies interference cancellation
to decode x13 from x13 +x32. The interference signals x21 and x32 are aligned at T3.

Sufficiently many levels are available for scheme B on the reduced D3C(m′,m′,m′)
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if R ∈ C, since:
2d

(5.74)≤ R′13 +R′32
(5.72)= R13 +R32 − b − c

(5.47)≤ m −R12 − b − c

(5.75)= m − a − b − c
(5.73)= m′. (5.77)

The second case (5.76) for counter clock-wise communication is derived analogously,
but with the indices swapped and with an adapted allocation (cf. Figure 5.11). In
particular, we have R′21 = R′13 = R′32 = 0 and R′12,R

′
31,R

′
23 are non-zero. In analogy to

(5.77), the allocations for counter-clock-wise communication with parameter e satisfies
R ∈ C:

2e
(5.74)≤ R′31 +R′23 ≤m − a − b − c =m′.

For the yet unused levels, the residual rate-vector is:

R′′ = (R′12 − d,R′21 − e,R′13 − e,R′31 − d,R′23 − d,R′32 − e)
= (R′′12,R′′21,R′′13,R′′31,R′′23,R′′32), (5.78)

over the D3C(m′′,m′′,m′′) (where either d or e is zero) with:

m′′ =m′ − 2d − 2e. (5.79)

C) Unidirectional Communication on the D3C(m′′,m′′,m′′)
Six possible non-zero rate tuples remain that are not yet covered by the previous
schemes A and B:

(R′′21,R′′31,R′′32) ≠ 01×3, (R′′21,R′′31,R′′23) ≠ 01×3,

(R′′12,R′′13,R′′23) ≠ 01×3, (R′′12,R′′13,R′′32) ≠ 01×3,

(R′′12,R′′31,R′′32) ≠ 01×3, (R′′21,R′′13,R′′23) ≠ 01×3.

These cases pairwise exclude each other. W.l.o.g., we only consider the unidirectional
case (R′′12,R′′13,R′′23) ≠ 01×3, here. The remaining cases are derived by analogous steps.
We have R′′21 = R′′31 = R′′32 = 0 and we parameterize the 3 non-zero rates by f, g, h ∈ N:

R′′12 = f, R′′13 = g, R′′23 = h. (5.80)

The signals are x12 ∈ Ff
2 , x13 ∈ F

g
2, x23 ∈ Fh

2 . A number of f + g + h ≤ m′′ levels are
allocated as depicted in Figure 5.12.

Since we demand R′′ ∈ C, we discern two cases depending on the previous scheme B.
In the first case, we assume that clock-wise cyclic communication was applied before.
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k xk yk intervals of levels

3 0 x23 f +g+1, ..., f +g+h
3 0 x13 f +1, ..., f +g
3 0 x12 1, ..., f

1 0 x23 f +g+1, ..., f +g+h
1 0 x13 f +1, ..., f +g
1 x12 0 1, ..., f

2 x23 x12 f +g+1, ..., f +g+h
2 x13 0 f +1, ..., f +g
2 0 0 1, ..., f

Figure 5.12: C) Allocation of signals to bit-levels in unidirectional communication over
D3C(m′′,m′′,m′′).

Recall that either d or e must be zero. If d > 0 and e = 0, then:

f + g + h = R′′12 +R′′13 +R′′23
(5.78)= R′12 +R′13 +R′23 − 2d

(5.72)= R12 +R13 +R23 − a − b − c − 2d

(5.47)≤ m − a − b − c − 2d

(5.73)= m′ − 2d. (5.81)

Otherwise, if e > 0 (counter clock-wise) and d = 0, then:

f + h + g
(5.78),(5.72)= R12 +R13 +R23 − a − b − c − e

(5.76)≤ R12 +R13 − a − b − e

(5.52)≤ m −R23 − a − b − e

≤m − (e + c) − a − b − e (5.82)

=m′ − 2e. (5.83)

For (5.82), we use e ≤ R′23 = R23 − c from (5.80) and (5.72). Since either d or e is zero,
combining (5.81) and (5.83) yields:

f + g + h ≤m′ − 2d − 2e
(5.79)= m′′. (5.84)

Hence, sufficiently many levels are also available for the D3C(m′′,m′′,m′′). Altogether,
there are enough levels to communicate all a + b + c + 2d + 2e + f + g + h bits. The
application of schemes A to C achieves the upper bounds of the capacity region for the
D3C(m,m,m) proving Theorem 5.5. The remaining steps, showing that each corner
point of the capacity region is achievable is analogous to [79, Theorems 3&4] and
omitted here. ∎
Note that, by considering the CPCM of the 3 -way channel first, we were able to

facilitate the analysis of the 3 -way channel within the LDCM.
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5.3 Degrees of Freedom of the MIMO Mi ×Mi 3 -Way
Channel

In the following, we investigate MIMO IA on the Gaussian 3 -way channel with mul-
tiple antennas. The DoF of several unidirectional multi-user interference networks
with particular antenna configurations have already been studied thoroughly in the
literature (cf. References of [12]). Therein, a particular focus concerns the DoF for
MIMO IA with constant channel coefficients. For instance, the DoF of the 2-user
MIMO interference channel using zero-forcing are provided in [35], the sum-DoF and
the DoF-region of the 2-user MIMO X- channel are considered in [11] and [38], respec-
tively, where MIMO IA was used. The DoF of the general MIMO K-user interference
channel with an arbitrary number of antennas at the transmitters and receivers are
yet unknown and a full derivation of the remains quite challenging so far.
In this section, we study the DoF of the MIMO 3 -way channel with constant channel

coefficients. In this first case, we assume an arbitrary number of Mi transmit antennas
and also Mi receive antennas at each transceiver Ti. We derive cut-set and genie-
aided upper bounds and on the sum-DoF of the MIMO 3 -way channel. A MIMO
IA and zero-forcing scheme is proposed to show that the derived upper bound is
achievable. We observe that the sum-DoF are limited by the strongest channel (the
one with the largest rank), and therefore, the sum-DoF are achievable by just letting
the two strongest users communicate similar to the single-input single-output (SISO)
case [91]. Since this does not serve all users in a fair manner, we propose an alternative
scheme which also achieves the sum-DoF upper bound while serving all three users
simultaneously. The achievable DoF of this alternative scheme is expressed in terms
of a linear programming optimization problem which can be solved by using the well-
known simplex method. As in the cases of the CPCM and the LDCM, the considered
MIMO 3 -way channel is closely related to the MIMO 3 -user Y - channel [77], [78].

Figure 5.13: The MIMO 3 -Way Δ- channel with an equal number of MTxi =Mi trans-
mit antennas and MRxi =Mi receive antennas at each user i = 1,2,3.

5.3.1 MIMO Mi ×Mi 3 -Way Channel

The MIMO 3 -way channel comprises three full-duplex users Ti with user-indices i in
the set K = {1,2,3}. A message from Ti to Tj is denoted by Wji and has rate Rji

for i ≠ j ∈ K. Each user desires to communicate a message to the two other users. In
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general, a transceiver Ti is equipped with an arbitrary number of MTxi ∈ N transmit
antennas and a number of number of MRxi ∈ N receive antennas. However in this
section, we consider the symmetric special case, where the number of transmit and
receive antennas is assumed to be equal to MTxi = MRxi = Mi per Ti, for i ∈ K. We
may assume w.l.o.g. that the number of antennas is ordered among the three users by:

M1 ≥M2 ≥M3. (5.85)

As defined in Section 2.2, the received signal for the 3 -way channel is particularly
defined by:

y1(n) =H12x2(n) +H13x3(n), (5.86)

y2(n) =H21x1(n) +H23x3(n), (5.87)

y3(n) =H31x1(n) +H32x2(n). (5.88)

The considered channel coefficients of each Hji are assumed to be constant throughout
the whole duration of the transmission and the coefficients are fully known at each user.

Encoding and Decoding Functions

After receiving yj(n), Tj constructs xj(n + 1) as:

xj(n + 1) = Ej,n(Wij,Wkj,y
n
j ), (5.89)

where Ej,n is the encoding function of Tj at time-instant n, and sends xj(n+ 1) in the
next transmission. After N transmissions, where N is the length of one transmission
block (codeword), Tj decodes Wji and Wjk as follows:

(Wji,Wjk) = Dj(Wij,Wkj,y
N
j ), (5.90)

where Dj is the decoding function of Tj. We will neglect the time-index n for notational
simplicity unless necessary.

5.3.2 Intersection Subspace of Random Matrices

For the derivation of the capacity-achieving schemes, we need to compute the intersec-
tion subspaces of the spaces spanned by the channel matrices. This is accomplished
by the following lemma7.

Lemma 5.6. If A1 and A2 are complex L ×M1 and L ×M2 random matrices, re-
spectively, whose entries are drawn randomly i. i. d., then there exists an intersection
subspace of [min(M1, L)+min(M2, L)−L]+ dimensions between the two column spaces
of A1 and A2, almost surely.

Proof:

7The proof is a slightly generalized version of [77, Lemma1].
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Let an L×1 vector q lie in span(A1)∩ span(A2). Then, there exists qi ∈ CMi×1, with
i = 1,2, such that:

q =A1q1 =A2q2. (5.91)

In matrix form this yields:

[ IL×L −A1 0L×M2

IL×L 0L×M1 −A2
]⎛⎜⎜⎝

q

q1

q2

⎞⎟⎟⎠ =Mx = 02L×rank(M). (5.92)

Note that rank(Ai) = min(Mi, L) holds, almost surely. We compute the dimension of
span(A1) ∩ span(A2) by computing the dimension of the nullity of M . Since:

rank(M) =min(2L,min(M1, L) +min(M2, L) +L)
holds for i.i.d. matricesA1 andA2 almost surely, we can conclude with the rank-nullity
theorem of linear algebra, that:

dim(null(M))
=min(M1, L) +min(M2, L) +L − rank(M)
= [min(M1, L) +min(M2, L) −L]+ (5.93)

holds, almost surely. ∎

5.3.3 Main Result

The main result of Section 5.3 is a sum-DoF characterization for the MIMO 3-way
channel as provided in the following theorem.

Theorem 5.7. The DoF of the MIMO 3 -way channel with Mi antennas at user Ti,
and M1 ≥M2 ≥M3, are given by:

dΣ = d12 + d21 + d13 + d31 + d23 + d32 = 2M2. (5.94)

The converse of this theorem is provided in Section 5.4.2 and the achievability in
Section 5.4.3. This theorem states that the sum-DoF in this case is given by twice the
rank of the channel matrix between T1 and T2, which is the channel of largest rank.
Therefore, this DoF is achievable by letting these two users communicate while leaving
T3 silent. Albeit this achieves 2M2 DoF, it completely excludes T3 and it does not
distribute the resources fairly between the three users. In Section 5.4.3, we provide
an alternative scheme which achieves the DoF while maintaining non-zero DoF for
all users.
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5.3.4 Upper Bounds

Cut-Set Bounds

We begin with considering the cut-set bounds for the MIMO 3-way channel:

dji + dki ≤min(Mi,Mj +Mk), (5.95)

dij + dik ≤min(Mj +Mk,Mi). (5.96)

The right-hand side of (5.95) is the rank of the MIMO channel between Ti and a
receiver formed by enabling full cooperation between Tj and Tk, with channel matrix[HT

jiH
T
ki]T. A similar interpretation holds for the second bound.

Similar to [78], the cut-set bounds provide bounds on the sum of the DoF of two
messages at a time. However, using genie-aided arguments, it is possible to establish
bounds on the sum of the DoF of three messages, which are tighter than the cut-set
bounds. The key idea is to allow some user to decode one more message in addition
to its two desired messages by enhancing this user with some side-information.

Genie-Aided Bounds

Assume every node can obtain its dedicated messages with an arbitrary small proba-
bility of error. This means that T2 for instance can decode its dedicated messages
W21 and W23 reliably from its available information, i. e., from its own transmitted
W12,W32, and from its received signal yN

2 . Now let us enhance T2 by providing the
message W31 as side-information. We also provide T2 with the correction-noise signal:

z̃N
2 = zN

1 −H13H23z
N
2 , (5.97)

as side-information8.
At this point, T2 knows W21 (decoded) and W31 (side-information). With W21, W31,

T2 can generate x1(1). By subtracting H21x1(1) from y2(1), and multiplying the
result withH23, T2 can recover a noisy observation of x3(1) given by x3(1)+H23z2(1).
Next, T2 multiplies this noisy observation by H13, and adds H12x2(1) and z̃2(1) to
it to obtain y1(1). Thus, T2 obtains the first instance of yn

1 . Knowing y1(1), W21

and W31, T2 can generate x1(2) (cf. (5.89)). Using x1(2) again with y2(2), T2 can
generate y1(2) and x1(3). T2 proceeds this way until all instances (up to the N -th
instance) of yN

1 have been generated. Now, having yN
1 , W21, and W31, i. e., the same

information as T1, T2 can decode W13 (cf. (5.90)). Therefore, given W13 and z̃N
2 as

side-information, T2 can decode W21, W23 and W13. Hence, the DoF of these messages
are almost surely upper bounded by:

d21 + d23 + d31 ≤ rank([H21H23]) (5.98)

=min(M2,M1 +M3) (5.85)= M2. (5.99)

We can apply a similar approach to bound d31 + d32 + d12 by M2. However, in this
case, we need to enhance T3 with M2 −M3 antennas to make it as strong as T2. The

8H23 exists since H23 is an M2 ×M3 matrix with M2 ≥M3.
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effective channel output at T3 after this enhancement becomes:

ỹ3(n) = H̃31x1(n) + H̃32x2(n) + z̃3(n), (5.100)

for n = 1, ...,N , where H̃31 and H̃32 are M2×M1 and M2 ×M2 matrices with rank M2,
respectively, and z̃3 is a Gaussian noise vector with M2 dimensions. T3 can decode
W31, W32 having ỹn

3 , W13, W23. By providing W21 and:

z̃N
3 = zN

1 −H12H̃
−1
32z

N
3 (5.101)

to the enhanced T3 with M2 antennas, it can generate x1(1). We use analogous
operations as applied for (5.99) to obtain yN

1 and to decode W12. This leads to the
upper bound:

d31 + d32 + d12 ≤ rank([H̃31 H̃32]) (5.102)

=min(M2,M1 +M2) =M2, (5.103)

almost surely. Concluding the converse proof by combining (5.99) and (5.103) yields
the sum-DoF upper bound of Theorem 5.7:

dΣ =d12+d21+d13+d31+d23+d32 ≤ 2M2. (5.104)

To achieve the upper bound on the sum-DoF, we propose a beam-forming and zero-
forcing scheme using MIMO interference alignment [78] in the following sections.

5.3.5 Achievability

Pre-coding

We consider the receive signal space at T1 at first. Note that as T2 and T3 each
have less antennas than T1, they can not beam-form interference into the null space
of T1. Instead of zero-forcing beam-forming, we use interference alignment. In order
to minimize the number of dimensions spanned by the interference caused by T2 and
T3 at T1, we align the interference caused by the bidirectional communication between
T2 and T3 (signals u32 and u23, respectively) in the intersection subspace of the spaces
spanned by the columns of H12 and H13. From Lemma 5.6, the columns of H12 and
H13 intersect in an M̃1-dimensional subspace, where M̃1 = [M2+M3−M1]+. To achieve
this alignment, T2 and T3 pre-code the signal streams u32 ∈ Cd̃32 and u23 ∈ Cd̃23 with:

0 ≤ d̃32 = d̃23 ≤ M̃1 (5.105)

dimensions, into V 32u32 and V 23u23, respectively, where the beam-forming matrices
V 32 ∈ CM2×d̃32 and V 23 ∈ CM3×d̃32 satisfy the following alignment at T1:

span(H13V 23) = span(H12V 32). (5.106)

This accounts for a total of 2d̃32 streams that can be exchanged by T2 and T3 while
causing interference in only d̃32 dimensions at T1.
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Now, we consider the receive signal space at T2. As T1 has more antennas than
T2, T1 can send a signal ū31 ∈ Cd̄31 to T3 in the null space of H21. The maximal
number of such streams that can be beam-formed to this null space is bounded by
min(M1 −M2,M3). Thus, T1 sends streams of:

0 ≤ d̄31 ≤min(M1 −M2,M3) (5.107)

dimensions beam-formed into the null space of H21. To realize this, T1 designs a
zero-forcing beam-forming matrix V̄ 31 ∈ CM1×d̄31 that satisfies:

H21V̄ 31 = 0M2×d̄31 , (5.108)

and pre-codes ū31 by V̄ 31ū31. The remaining streams sent from T1 to T3 (if any)
can be aligned to the streams sent from T3 to T1 within the receive signal space
of T2. This alignment is possible since the columns of H21 and H23 intersect in an
M3-dimensional subspace as given by Lemma 5.6. To this end, T1 and T3 construct
Ṽ 31ũ31 and V 13u13, respectively, where ũ31 ∈ Cd̃31 and u13 ∈ Cd̃13 have:

0 ≤ d̃31 = d̃13 ≤M3 (5.109)

dimensions, and where the beam-forming matrices defined by V 13 ∈ CM3×d̃31 , and
Ṽ 31 ∈ CM1×d̃31 satisfy:

span(H23V 13) = span(H21Ṽ 31). (5.110)

The aligned interference of ũ31 and u13 occupies d̃31 ≤ M3 dimensions at the receive
signal space of T2.
Considering the interference space at T3, we see that T3 has less antennas than T1

and than T2. Thus, T1 beam-forms a signal ū21 ∈ Cd̄21 into the null space of H31 of
size min(M2,M1 −M3), which requires:

0 ≤ d̄21 ≤min(M2,M1 −M3) (5.111)

dimensions. This is accomplished by designing a zero-forcing beam-forming matrix
V̄ 21 ∈ CM1×d̄21 such that:

H31V̄ 21 = 0M3×d̄21 , (5.112)

and by pre-coding ū21 with V̄ 21ū21. Then, T2 beam-forms ū12 ∈ Cd̄12 into the null
space at T3 of size M2 −M3, where:

0 ≤ d̄12 ≤M2 −M3. (5.113)

To realize this, we design a zero-forcing beam-forming matrix V̄ 12 ∈ CM2×d̄12 such that:

H32V̄ 12 = 0M3×d̄12 , (5.114)

and pre-code ū12 by V̄ 12ū12. The remaining streams from T1 to T2 and vice versa (if
any) are aligned at T3. The spaces spanned byH31 andH32 intersect inM3 dimensions
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as given by Lemma 5.6. We choose the beam-forming matrices Ṽ 21 ∈ CM1×d̃21 and
Ṽ 12 ∈ CM2×d̃21 such that:

span(H32Ṽ 12) = span(H31Ṽ 21), (5.115)

and use them to pre-code ũ21 and ũ12 with:

0 ≤ d̃21 = d̃12 ≤M3 (5.116)

dimensions into Ṽ 21ũ21 and Ṽ 12ũ12.
Finally, the transmitters send the following signals:

x1 = [Ṽ 21 V̄ 21] [ ũ21
ū21

] + [Ṽ 31 V̄ 31] [ ũ31
ū31

] , (5.117)

x2 = [Ṽ 12 V̄ 12] [ ũ12
ū12

] +V 32u32, (5.118)

x3 = V 13u13 +V 23u23. (5.119)

In total, T1 sends d21 = d̃21 + d̄21 and d31 = d̃31 + d̄31 streams to T2 and T3, respectively,
T2 sends d12 = d̃12 + d̄12 and d32 = d̃32 streams to T1 and T3, respectively, and T3 sends
d13 = d̃12 and d23 = d̃23 streams to T1 and T2, respectively.

Post-coding

The received signal at T1 can be written as:

y1 =H12[Ṽ 12 V̄ 12] [ ũ12
ū12

] + [H12V 32u32 +H13V 23u23] +H13V 13u13 + z1. (5.120)

The desired signals from T2 occupy d̃21 + d̄21 dimensions. The aligned interference
in the second part of the summation, i. e., H12V 32u32 + H13V 23u23, occupies d̃32
dimensions, and the desired signal from T3 occupies d̃13 dimensions. The desired
signals can be resolved from the interference as long as they are linearly independent
of the interference and also among each other. Namely, the columns of the following
M1 × (d̃12 + d̄12 + d̃32 + d̃13) matrix must be linearly independent:

[H12Ṽ 12 H12V̄ 12 H12V 32 H13V 13] , (5.121)

which requires:

0 ≤ d̃12 + d̄12 + d̃32 + d̃13 ≤M1. (5.122)

Under this condition, this linear independence can be guaranteed (almost surely) by
designing V̄ 12 according to (5.114), and choosing Ṽ 12, V 32, and V 13 randomly.
Given this linear independence, T1 can use zero-forcing matrices N 12 and N 13 of

d12 ×M1 and d13 ×M1 dimensions, to zero-force the interference and to separate the
two dedicated information signals. These zero-forcing matrices must satisfy:

N 12H13(V 13 +V 23) = 0d12×(d13+d23), (5.123)

N 13H12(Ṽ 12 + V̄ 12 +V 32) = 0d13×(d12+d32). (5.124)
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Note that by zero-forcing H13V 23, also H12V 32 is zero-forced (and vice-versa) by
(5.106). By using the proposed null-space beam-forming and zero-forcing, receiver T1

obtains:

N 12y1 =N 12H12(Ṽ 12ũ12 + V̄ 12ū12) +N 12z1, (5.125)

N 13y1 =N 13H13V 13u13 +N 13z1. (5.126)

Thus, T1 recovers d12 linearly independent noisy observations of ũ12 and ū12, and also
d13 linearly independent noisy observations of u13 as N 1 = [NT

12N
T
13]T has sufficient

row rank d12+d13 almost surely. Thus T1 can decode all dedicated signals and achieves
a number of d12 + d13 DoF.
On the receiver side of T2, we have:

y2 =H21[Ṽ 21 V̄ 21] [ ũ21
ū21

] + [H21Ṽ 31ũ31 +H23V 13u13]H23V 23u23 + z2. (5.127)

Note that ū31 is not observed by T2 due to (5.108). Similarly to T1, we need the
following constraint to guarantee the linear independence of the desired signals and
the interference:

0 ≤ d̃21 + d̄21 + d̃31 + d̃23 ≤M2. (5.128)

We use zero-forcing matrices N 21 and N 23 of d21 ×M2 and d23 ×M2 dimensions, re-
spectively, satisfying:

N 21H23(V 23 +V 13) = 0d21×(d23+d13), (5.129)

N 23H21(Ṽ 21 + V̄ 21 + Ṽ 31) = 0d23×(d21+d̃31), (5.130)

to zero-force the interference and to separate the two dedicated information signals.
By zero-forcing H23V 13, also H21Ṽ 31 is zero-forced (and vice-versa) by (5.110). With
this scheme, receiver T2 obtains:

N 21y2 =N 21H21(Ṽ 21ũ21 + V̄ 21ū21) +N 21z2, (5.131)

N 23y2 =N 23H23V 23u23 +N 23z2. (5.132)

T2 recovers d21 linearly independent noisy observations of ũ21 and ū21, and d23 linearly
independent noisy observations of u23 from y2 since N 2 = [NT

21N
T
23]T has sufficient

row rank d21 + d23 almost surely. Hence, T2 achieves a number of d21 + d23 DoF.

On the receiver side of T3, we have:

y3 =H31[Ṽ 31 V̄ 31] [ ũ31
ū31

] + [H31Ṽ 21ũ21 +H32Ṽ 12ũ12] +H32V 32u32 + z3. (5.133)

At T3, the signals ū21 and ū21 are not observed due to (5.112) and (5.114). We need
the following constraint to guarantee the linear independence of the desired signals
and the interference:

0 ≤ d̃31 + d̄31 + d̃21 + d̃32 ≤M3. (5.134)
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We use zero-forcing matrices N 31 and N 32 of dimensions d31 ×M3 and d32 ×M3, sat-
isfying:

N 31H32(V 32 + Ṽ 12) = 0d31×(d32+d̃12), (5.135)

N 32H31(Ṽ 31 + V̄ 31 + Ṽ 21) = 0d23×(d31+d̃21), (5.136)

to zero-force the interference space and to separate the two dedicated information
signals. With this scheme, receiver T3 obtains:

N 31y3 =N 31H31(Ṽ 31ũ31 + V̄ 31ū31) +N 31z3, (5.137)

N 32y3 =N 32H32V 32u32 +N 32z3. (5.138)

Thus, T3 can recover d31 linearly independent noisy observations of ũ31 and ū31, and
d32 linearly independent noisy observations of u32 from y3 since N 3 = [NT

31N
T
32]T has

sufficient row rank d31 + d32 almost surely. Hence, T2 can decode its dedicated signals
and achieves d31 + d32 DoF.

Assembling all constraints on the achievable DoF, yields:

d̃32 = d̃23 ≤ [M2 +M3 −M1]+,
d̄31 ≤min(M3,M1 −M2),
d̄21 ≤min(M2,M1 −M3),
d̄12 ≤M2 −M3,

d̃12 + d̄12 + d̃32 + d̃13 ≤M1,

d̃21 + d̄21 + d̃31 + d̃23 ≤M2,

d̃31 + d̄31 + d̃21 + d̃32 ≤M3.

Note that real-valued DoF can be approximated by using signal-extensions over mul-
tiple time-slots [38, 78]. By maximizing dΣ subject to these non-negative constraints,
we get the maximum achievable sum-DoF of this scheme. This maximization is a
linear optimization problem which can be solved by using the simplex method. The
maximization yields a sum-DoF of 2M2. To verify this, we set:

d̃32 = d̃23 = (M2 +M3 −M1)+, (5.139)

d̄31 =min(M3,M1 −M2), (5.140)

d̄21 =min(M2,M1 −M3), (5.141)

d̄12 =M2 −M3. (5.142)

This allocation satisfies all the DoF constraints above, and leads to:

dΣ = 2d̃32 + d̄31 + d̄21 + d̄12 = 2M2.
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5.4 Symmetric Degrees of Freedom of the MIMO
MTx ×MRx 3 -Way Channel

In the previous section, it has been shown that the DoF of the Mi ×Mi 3 -way channel
are limited by M2, i. e., the rank of the strongest subchannel. In this section, we
investigate how the DoF are limited when using a symmetrical number ofMTx transmit
and MRx receive antennas. For multi-way conferencing situations with eminently high
and almost symmetric rate demands, as in video conferences for instance, using such
homogeneously equipped devices is clearly beneficial when compared to heterogeneous
devices. Another particular gain from this homogeneous setup is that the symmetric
DoF allocation providing complete fairness among all users is sum-DoF optimal.

Figure 5.14: The homogeneous MIMO 3 -way channel (or Δ- channel) with MTx trans-
mit and MRx receive antennas at each user Ti, with i = 1,2,3.

5.4.1 MIMO MTx ×MRx 3 -Way Channel

We study the DoF of the homogeneousMTx×MRx MIMO 3 -way channel with constant
channel coefficients and with a number of MTxi = MTx transmit antennas at each
transceiver and MRxi =MRx receive antennas.
The system model of the MTx ×MRx 3 -way channel is closely related to the model

defined in Section 5.3.1. The input-output relationship is analogously defined by (5.86)
to (5.88), but for the given homogeneous antenna configurations. The encoding and
decoding functions defined in Section 5.3.1 also carry over to this channel model.

5.4.2 Upper Bounds

Cut-set bounds

We begin with considering the cut-set bounds for the MIMO 3-way channel:

dji + dki ≤min(MTx,2MRx), (5.143)

dij + dik ≤min(2MTx,MRx). (5.144)

The right-hand side of (5.143) is the rank of the MIMO channel between Ti and a
receiver formed by enabling full cooperation between Tj and Tk, with channel matrix
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[HT
jiH

T
ki]T. A similar interpretation holds for the second bound. Combining (5.143)

and (5.144) provides the sum-DoF bound:

dΣ ≤min(3MTx,3MRx). (5.145)

Genie-aided bounds

We first assume that MRx ≥ MTx. Assume every node can obtain its dedicated mes-
sages with an arbitrary small probability of error. Hence, T2 can decode W21,W23

reliably from its available information, i. e., from yN
2 , W12 and W32, as shown in (5.90).

Furthermore, we provide W31 to T2 as side-information. We also provide T2 with the
correction-noise signal:

z̃N
2 = zN

1 −H13H23z
N
2 , (5.146)

as side-information9. Now, T2 knows its decoded W21 and W31 by side-information.
With W21, W31, user T2 can generate x1(1). By subtracting H21x1(1) from y2(1),
and multiplying the result with H23, T2 can recover a noisy observation of x3(1) given
by x3(1) +H23z2(1). Next, T2 multiplies this noisy observation by H13, and adds
H12x2(1) and z̃2(1) to it to obtain y1(1). Thus, T2 obtains the first instance of yN

1 .
Knowing y1(1), W21 and W31, T2 can generate x1(2) (cf. (5.89)). Using x1(2) again
with y2(2), T2 can generate y1(2) and x1(3). T2 proceeds this way until all instances
(up to the N - th instance) of yN

1 have been generated. Now, having yN
1 , W21, and W31,

i. e., the same information as T1, T2 can decode W13 (cf. (5.90)). Therefore, given
W13 and z̃N

2 as side-information, T2 can decode W21, W23 and W13. Hence, the DoF
of these messages are almost surely upper bounded by:

d21 + d23 + d31 ≤ rank([H21H23]) (5.147)

=min(MRx,2MTx). (5.148)

We can apply a similar approach to bound:

d31 + d32 + d12 ≤ rank([H31H32]) (5.149)

=min(MRx,2MTx), (5.150)

by providing W21 and the correction noise-signal:

z̃N
3 = zN

1 −H12H32z
N
3 (5.151)

to T3. As a result, T3 can construct yN
1 and decode W12 reliably. Combining (5.148)

and (5.150), bounds the sum-DoF to:

dΣ ≤min(2MRx,4MTx). (5.152)

For the contrary case, we assume that MRx < MTx holds. We enhance the number
of receive antennas at all receivers to M̊Rx =MTx. The effective channel output at T3

becomes:

ẙ3(n) = H̊31x1(n) + H̊32x2(n) + z̊3(n), (5.153)

9The pseudo-inverse H23 exists almost surely, since H23 is an MRx ×MTx matrix with MRx ≥MTx.
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with the extended MTx ×MTx matrices10 H̊31, H̊32, and the extended MTx × 1 noise
vector z̊3(n). We can apply the upper bounds derived in (5.148) and (5.150) now,
leading to:

d21 + d23 + d31 ≤MTx, (5.154)

d31 + d32 + d12 ≤MTx, (5.155)

dΣ = 2min(M̊Rx,2MTx) =min(2MTx,4MTx) = 2MTx. (5.156)

Combining these bounds with the cut-set upper bounds yields:

dΣ ≤min(2MRx,4MTx,3MRx,3MTx)
=min(2MRx,3MTx), if MTx ≤MRx, (5.157)

dΣ ≤min(2MTx,3MRx,3MTx)
=min(2MTx,3MRx), if MTx >MRx. (5.158)

Theorem 5.8. The DoF of the MTx ×MRx MIMO 3 -way channel with MTx transmit
antennas and MRx receive antennas at each user Ti are:

dΣ = ⎧⎪⎪⎨⎪⎪⎩
min(2MRx,3MTx), if MTx ≤MRx,

min(2MTx,3MRx), if MTx >MRx.
(5.159)

5.4.3 Achievability

The following two communication schemes provide achievability of the upper bounds
in Theorem 5.8. Note that, symbol-extensions on the constant MIMO channels over
multiple time-slots are used to achieve non-integer DoF per user, cf. [38], [78]. We
discern two cases: either MTx ≤MRx or MTx >MRx holds.

Case MTx ≤MRx with dΣ = 3MTx

The dominant term in (5.159) yields 3MTx if 3MTx ≤ 2MRx holds. We use the following
symmetric DoF allocation:

d = dij = dji. (5.160)

We further decompose the symmetric DoF d further for IA (tilde-notation, d̃) and for
beam-forming (bar-notation, d̄):

d̄ = d̄ij = d̄ji, (5.161)

d̃ = d̃ij = d̃ji, (5.162)

d = d̄i + d̃i. (5.163)

In other words, we demand that bidirectional signals pairwise occupy the same
number of DoF. According to the assumptions on MTx and MRx, the following bounds
must hold:

0 ≤ 2d ≤MTx, (5.164)

0 ≤ 3d ≤min(MRx,2MTx), (5.165)

10The inverses exist almost surely.
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so that all upper bounds provided in Section 5.4.2 are satisfied.
Messages Wji are encoded into complex-valued symbol streams ũji ∈ Cd̃×1 and ūji ∈

Cd̄×1. These symbol streams are pre-coded at the transmitters and post-coded at the
receivers, so that the proposed sum-DoF are achieved. For pre-coding, we use beam-
forming matrices Ṽ ji ∈ CMTx×d̃ and V̄ ji ∈ CMTx×d̄. Transmit signals xi are constructed
from the pre-coded symbol streams as:

xi = [Ṽ ji V̄ ji] [ ũji

ūji
] + [Ṽ ki V̄ ki] [ ũki

ūki
] . (5.166)

First, we consider the intersection space of the two incident subchannels at the re-
ceiver of Tj. The number of dimensions for span(Hji) ∩ span(Hjk) is computed by
Lemma 5.6 as given in the appendix. It has 0 ≤ [2MTx −MRx]+ ≤ 1

3MRx dimensions,
since 3MTx ≤ 2MRx. We fix:

d̃ = [2MTx −MRx]+, (5.167)

and design Ṽ ji such that the two dedicated signals remain distinct, while the undesired
interference is aligned at each undesired receiver:

span(HjiṼ ki) = span(HjkṼ ik). (5.168)

After this first part of pre-coding, a number of:

M̄Tx =MTx − 2d̃ ≥ 0, (5.169)

M̄Rx =MRx − 3d̃ ≥ 0, (5.170)

transmit and receive dimensions remain available at each user, respectively. Since the
complete intersection space is already consumed by IA, we have [2M̄Tx − M̄Rx]+ = 0
and hence, 2M̄Tx ≤ M̄Rx holds. The remaining DoF are allocated by:

d̄ = 1
2M̄Tx, (5.171)

for all k ∈ K. The beam-forming matrices V̄ ji and V̄ jk are chosen such that the two
signals xi and xk received are linearly independent at Tj. This allocation satisfies
both upper bounds. The received signals at Tj yield:

yj = (Hji[Ṽ ji V̄ ji] [ ũji

ūji
] +Hjk[Ṽ jk V̄ jk] [ ũjk

ūjk
])+

(Hji[Ṽ ki V̄ ki] [ ũki
ūki

] +Hjk[Ṽ ik V̄ ik] [ ũik
ūik

]) + zj.

The first sum in brackets describes the dedicated signals. The second sum in brackets
describes the interfering signals at Tj (with HjiṼ ki and HjkṼ ik aligned). The signal
and interference subspaces are linearly independent, since the compositeMRx×(3d̃+4d̄)
matrix

[Hji[Ṽ ji V̄ ji Ṽ ki V̄ ki]Hjk[Ṽ jk V̄ jk V̄ ik]], (5.172)

has full column rank, almost surely, due to:

3d̃ + 4d̄ = 2MTx − [2MTx −MRx]+ <MRx. (5.173)
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In the post-coding step, each receiver Tj uses a composite zero-forcing matrix N j =[NT
jiN

T
jk]T to separate and decode its two dedicated signals and to eliminate the

interfering signals. The received signals yj are filtered by the two corresponding zero-
forcing matrices N ji,N jk ∈ Cd×MRx , with:

N ji[Hjk(Ṽ jk+V̄ jk+Ṽ ik+V̄ ik)+HjiV̄ ki]=0d×(2d+d̄), (5.174)

N jk[Hji(Ṽ ji+V̄ ji+Ṽ ki+V̄ ki)+HjkV̄ ik]=0d×(2d+d̄), (5.175)

so that filtering with N jiyj and N jkyj provides dji + djk = 2d noisy interference-free
streams of dedicated signals at Tj:

N jiyj =N jiHji [Ṽ jiũji + V̄ jiūji] +N jizj, (5.176)

N jkyj =N jkHjk [Ṽ jkũjk + V̄ jkūjk] +N jkzj. (5.177)

Thus, each user Tj can decode its two dedicated streams with:

dji + djk = 2d = 2(d̃ + d̄) =MTx. (5.178)

Altogether, 3MTx DoF in the first term of (5.159) are achieved:

dΣ ≤ 6d = 3MTx.

Case MTx ≤MRx with dΣ = 2MRx

On the other hand, the dominant term in (5.159) yields 2MRx if 2MRx ≤ 3MTx holds.
Then, span(Hji)∩ span(Hjk) at Tj has 2MTx−MRx > 1

3MRx dimensions. We allocate:

d = d̃ = 1
3MRx. (5.179)

for all i ∈ K. This allocation satisfies all upper bounds:

0 ≤ 2d ≤MTx, (5.180)

0 ≤ 3d ≤MRx, (5.181)

and no remaining dimensions are left at the receivers. The symbol streams ũji ∈ Cd̃×1

are pre-coded by the beam-forming matrices Ṽ ji ∈ CMTx×d̃ and are aligned analogously
to (5.168). We have no symbol streams ūji ∈ Cd̄×1, since d̄ = 0. Hence the received
signal at Tj is:

yj = (HjiṼ jiũji +HjkṼ jkũjk)+ (5.182)

(HjiṼ kiũki +HjkṼ ikũik) + zj.

The composite MRx × 3d̃ - dimensional matrix:

[HjiṼ ji HjkṼ jk HjiṼ ki], (5.183)

has full column rank, almost surely, so that dedicated and interfering signals are lin-
early independent.
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For post-coding, the zero-forcing matrices are chosen as:

N ji(HjkṼ jk +HjiṼ ki) = 0d̃×2d̃, (5.184)

N jk(HjiṼ ji +HjkṼ ik) = 0d̃×2d̃, (5.185)

such that the filtered signals yield:

N jiyj =N jiHjiṼ jiũji +N jizj, (5.186)

N jkyj =N jkHjkṼ jkũjk +N jkzj. (5.187)

Each user Tj can decode noisy but interference-free versions of its two dedicated
streams and achieves:

dji + djk = 2d̃ = 2
3MRx, (5.188)

so that the sum-DoF are:

dΣ = 6d = 2MRx. (5.189)

Thence, the upper bound min(2MRx,3MTx) is shown to be achievable.

Case MTx >MRx with dΣ = 2MTx

The upper bound (5.159) yields 2MTx if 2MTx ≤ 3MRx holds. Again we use the
symmetric DoF allocation as defined in (5.160) to (5.163). In this case, the following
upper bounds must hold:

0 ≤ 2d ≤MRx, (5.190)

0 ≤ 3d ≤MTx. (5.191)

Since MTx >MRx, zero-forcing beam-forming [77,78] is applicable and we allocate:

d̄ =MTx −MRx < 1
2MRx (5.192)

dimensions. Analogous to Section 5.4.3, we pre-code the symbol-streams ūji and
ũji to construct the transmit signal xi as in (5.166). The beam-forming matrix
V̄ ki has MTx × d̄ dimensions and is designed to cast the interfering signal into the(MTx −MRx) - dimensional null-space of Tj:

HjiV̄ ki = 0MRx×d̄. (5.193)

For the next step, the number of remaining transmit and receive dimensions per user
available for IA are:

M̃Tx =MTx − 2(MTx −MRx) = 2MRx −MTx, (5.194)

M̃Rx =MRx − 2(MTx −MRx) = 3MRx − 2MTx. (5.195)
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Since 2M̃Tx > M̃Rx holds, the remaining dimensions suffice for IA. Furthermore, since
3M̃Tx > 2M̃Rx, more than M̃Rx/3 dimensions are available for IA between each user
pair (cf. Lemma 5.6). To establish a fair scheme, we set:

d̃ = 1
3M̃Rx =MRx − 2

3MTx. (5.196)

The beam-forming matrices Ṽ ki and Ṽ ik, each with MTx × d̃ dimensions, are chosen
such that the bidirectional interference signals are aligned at receiver Tj, as analogously
done in (5.168). Due to zero-forcing beam-forming, the symbol streams ūki and ūik

are not received at Tj, so that we obtain:

yj = (Hji[Ṽ jiV̄ ji] [ ũji

ūji
] +Hjk[Ṽ jkV̄ jk] [ ũjk

ūjk
])+ (5.197)

(HjiṼ kiũki +HjkṼ ikũik) + zj.

The signal and interference subspaces are linearly independent, almost surely, since
the composite matrix:

[Hji[Ṽ ji V̄ ji Ṽ ki] Hjk[Ṽ jk V̄ jk]], (5.198)

of MRx×(3d̃+2d̄) dimensions (HjiṼ ki and HjkṼ ik are aligned) has full column rank.
For post-coding at the receivers, we use zero-forcing matrices N ji of d ×MRx di-

mensions as given in (5.174) and (5.175), but for differently allocated d according to
(5.197). Analogously, the following signals are obtained after filtering:

N jiyj =N jiHji [Ṽ jiũji + V̄ jiūji] +N jizj,

N jkyj =N jkHjk [Ṽ jkũjk + V̄ jkūjk] +N jkzj.

Tj decodes two noisy but interference-free dedicated streams:

dji + djk = 2d = 2(d̃ + d̄) = 2
3MTx, (5.199)

so that the sum-DoF of 2MTx are achieved:

dΣ = 6d = 2MTx. (5.200)

Case MTx >MRx with dΣ = 3MRx

In the case 2MTx ≥ 3MRx, the upper bound (5.159) yields 3MRx. Now it suffices to use
zero-forcing beam-forming only. IA is actually not necessary for this case. We allocate
the DoF:

d = d̄ = 1
2MRx (5.201)

for all k ∈ K, satisfying (5.190) and (5.191). We use the beam-forming matrices V̄ ji

with MTx × d̄ dimensions and cast interference to the null-space of the undesired recei-
vers:

HjiV̄ ki = 0MRx×d̄. (5.202)
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Figure 5.15: Sum-DoF dΣ for the parameter plane of 0 ≤ MTx ≤ 6 transmit antennas
and 0 ≤MRx ≤ 6 receive antennas.

The received signal at receiver Tj is:

yj =HjiV̄ jiūji +HjkV̄ jkūjk + zj. (5.203)

The dedicated signals are linearly independent, almost surely, since the composite
MRx × 2d̄ matrix has full column rank:

[HjiV̄ ji HjkV̄ jk]. (5.204)

For post-coding at receiver Tj, we use the zero-forcing matrices N ji and N jk of
d̄ ×MRx dimensions each so that (5.184) and (5.185) hold. We obtain the following
filtered signals:

N jiyj =N jiHjiV̄ jiūji +N jizj, (5.205)

N jkyj =N jkHjkV̄ jkūjk +N jkzj. (5.206)

Each receiver Tj can decode:

dji + djk = 2d = 2d̄ =MRx, (5.207)

and achieves the sum-DoF of:

dΣ = 6d = 3MRx. (5.208)

Altogether, the upper bound min(2MTx,3MRx) is also shown to be achievable. Note
that complete fairness is maintained in each case. This concludes the proof of Theo-
rem 5.8.

5.4.4 Discussion

The parameter plane of the symmetric DoF depicted in Figure 5.15 provides a sym-
metry along the intersecting line MT = MR for all parameters MT and MR. At that
line, the antenna parameters of the achieved DoF are swapped since null-space beam-
forming and linear independent beam-forming are swapped.
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5.5 Extending the CPCM by Multi-Antenna
Constraints

In order to expose further analogies between the CPCM and the GMCM, additional
constraints are imposed to the CPCM of the 3 -way channel, for distinct i, j, k ∈ K:

mji ≤min(MTx,MRx), (5.209)

mji +mki ≤MTx, (5.210)

mij +mik ≤MRx. (5.211)

These inequalities are intended to mimic the MIMO antenna constraints for a num-
ber of MTx transmit antennas and MRx receive antennas at each user Ti. We now
investigate the intersection subspace of two transmitted polynomials within a received
polynomial (cf. Lemma 5.6) in terms of the CPCM.
Let qi(x) denote a polynomial of MRx dimensions for each transmitter Txi, i ∈ {1,2}:

qi(x) = ∑MRx−1
k=0 q

[k]
i xk. (5.212)

The two polynomials q1(x) and q2(x) from the transceivers Tx1 and Tx2 have MRx di-
mensions, since the intersection space of all dedicated signals must be decodable within
the received signal space of a receiver Rx. We use binary coefficients q

[0]
i , ..., q

[MRx−1]
i ∈{0,1}, to simplify the computation of the number of intersecting dimensions at Rx.

At each Txi, a number of only min(MTx,MRx) coefficients in q
[⋅]
i is set to value one

at random positions, to indicate that these dimensions are occupied by information.
The remaining [MRx−min(MTx,MRx)]+ unused coefficients are set to zero at each Txi.
Next, we compute the intersection space of the non-zero coefficients from the shifted

polynomials q1(x) and q2(x) as received at Rx. The received polynomial q(x) has also
MRx dimensions and is expressed by:

q(x) = d11q1(x) ∧ d21q2(x) (5.213)

= ∑MRx−1
k=0 q[k]xk, (5.214)

with the bit-wise and-operation (symbol: ∧). The sought intersection space corre-
sponds to the number of non-zero coefficients in q(x) which is simply computed by the
accumulative sum of the received coefficients q[k] ∈ {0,1}:

q(1) = ∑MRx−1
k=0 q[k].

Lemma 5.9. The intersection space of two MRx-dimensional interfering polynomials
q1(x) and q2(x) of qi(1) = min(MTx,MRx) non-zero coefficients, with i ∈ {1,2}, is
bounded by:

0 ≤ [2min(MTx,MRx) −MRx]+ ≤ q(1) ≤min(MRx,MTx) (5.215)

non-zero coefficients in the MRx-dimensional received polynomial q(x).
Proof:
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(a) Upper bound: min(MTx,MRx) ≥ q(1) dimensions:
The maximal number of non-zero coefficients in the intersection d11q1(x)∧d21q2(x)
is q(1) = min(MTx,MRx) and it is achieved if the non-zero coefficients of both
shifted polynomials d11q1(x) and d12q2(x), each with qi(x) = min(MTx,MRx)
non-zero coefficients, fully overlap at Rx. Then, it holds q1(x) = q2(x) = q(x),
and we obtain q(1) =min(MTx,MRx).

(b) Lower bound: 0 ≤ [2min(MRx,MTx) −MRx]+ ≤ q(1) dimensions:
At least min(MRx,MTx) coefficients are non-zero in both polynomials q1(x) and
q2(x). Let MTx <MRx, so that min(MTx,MRx) =MTx <max(MTx,MRx) =MRx.
Let Tx1 fix its MTx non-zero coefficients first. This leaves (MRx −MTx)+ di-
mensions available for MTx non-zero coefficients in q(x). In case MRx ≥ 2MTx

holds, it is possible that all MTx non-zero coefficients are distinct from the
MTx already fixed coefficients at Tx1, yielding q(1) = 0. Otherwise, if MRx ≤
2MTx holds, there will always be an intersection of non-zero coefficients in at
least [2min(MTx,MRx) −MRx]+ dimensions. Thus, we obtain the lower bound[2min(MTx,MRx) −MRx]+.

As a result, the present lemma is proven. ∎
Note that the lower bound provided here exactly coincides with the number of dimen-
sions of the intersection subspaces as in Lemma 5.6 for MTxi = MTx. By imposing
these antenna constraints, we established an interesting analogy in the CPCM and the
GMCM regarding the intersection space of two transmitted signals.

5.6 Summary

In this chapter, we have investigated the 3 -way channel and its relationship to the 3 -
user Y - channel. We have observed that the Degrees-of-Freedom of the two aforemen-
tioned channels coincide when considering the cyclic polynomial channel model. Our
main result was that these channels were interlinked via a Δ-Y relationship, which was
inspired by the well-known transformation in the circuit theory of resistor networks.
Furthermore, in contrast to most of the other previously considered channels, these
two channels were not subject to further constraints on the channel matrices. In order
to gain from these insights as given by our proposed channel model, we have exam-
ined the 3 -way channel w. r. t. two other well-established channel models: the linear
deterministic channel model and the Gaussian MIMO channel model with constant
coefficients.
Within the linear deterministic channel model, the Δ-Y relationship was also ex-

tended to characterize the capacity region of the linear deterministic 3 -way channel
with reciprocal channel coefficients in the uplink and downlink. We have investigated
a capacity-achieving signal alignment scheme that has performed two-way relaying
over a single user, and also a capacity-achieving interference alignment scheme for a
symmetric special case.
Then, we have considered two cases of the MIMO 3 -way channel: The Mi ×Mi

3 -way channel and the MTx × MRx 3 -way channel. Due to the absence of further
constraints on the channel matrices, the problem of common eigenvectors in separate
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subspaces has disappeared for the related MIMO channels. Thus, we have discussed a
3 -way channel with Mi transmit and receive antennas at each user. We have provided
a scheme that achieved the upper bound of 2M2 Degrees-of-Freedom. Basically, it has
already sufficed to ignore messages between on the weakest subchannel. But in order
to maintain fairness between the users, we have employed a MIMO IA and zero-forcing
scheme to provide a fair rate-allocation, that has achieved the sum-Degrees-of-Freedom
of 2M2. In the second case, we have discussed a 3 -way channel with symmetrically
equipped users having MTx transmit and MRx receive antennas at each transceiver.
Accordingly, we have provided IA schemes that have achieve the upper bounds on the
symmetric Degrees-of-Freedom.
Altogether, this chapter has provided a comparison between the three different chan-

nel models of interest for the example of the 3 -way channel.
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6 Exploring Practical Applications for
Cyclic Interference Alignment

Up to this point, we discussed optimal communication strategies for several multi-user
channels described by the CPCM. Now, we turn our attention to some practical issues
of IA and cyclic IA by propagation delay on the CPCM in particular:

Potential practical applications of cyclic IA, and

Node placement in Euclidean space for cyclic IA by propagation delay1.

6.1 On Practical Implementations of IA

The high rate-gains theoretically achievable by IA as introduced in [3] allured numerous
researchers in the past few years. There are plenty of works dealing with IA under
idealized assumptions as those ones cited in the survey [12]. However, embedding the
theoretical concepts of IA into practical systems remains a very challenging task [92].
The restrictions and demands of IA are manifold. The main requirements on IA
predominantly discussed in the literature [12], [92] are briefly summarized here:

Approximating the channel capacity in terms of the DoF becomes accurate at
high SNR only. However, a practical implementation of mobile devices providing
high SNR communication is limited.

The necessity to obtain exact global CSI2 for each user is a computationally
extensive task [40] and increases exponentially with K users. Furthermore, a
severe overhead is involved for the acquisition of CSI.

IA schemes are very fragile if there are imperfections in the acquired CSI, as
shown in [94], [92] and [95] for instance. If the accuracy drops below a certain
threshold, it leads to detrimental leakage interference [40] and thus to an immense
performance loss at each receiver.

Most IA schemes demand full and highly exact synchronization (in time and
frequency) among multiple users, which is very challenging in practical imple-
mentations.

Computing obtain optimal pre-coding matrices is extensive [95]. Algorithms con-
verge rather slowly and residual imperfect alignment causes leakage interference.

1Parts of this work have been published in [27].
2However, this does not concern blind IA [93].
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The infinite time-extensions [3] in time-varying MIMO channels, and the pairing
of complementary channels as in ergodic IA [15], cause exponential decoding
delays.

Depending on the specific underlying applied IA scheme, there are yet many other frag-
ile requirements to be considered that are not mentioned in the list above. Nonetheless,
a few works already focus on the initial implementation of a realistic practical testbed
for MIMO IA. For a first feasibility check, the work [96] uses previously measured
channel coefficients of a real environment while the actual IA scheme works in an of-
fline simulation. It shows that the basic assumptions on the channel coefficients in the
theoretical works are indeed feasible. Among other works, [61], [95], [97], [98], and [99]
discuss the implementations of various IA testbeds. The results are promising, but
they do not yet achieve the full potential proposed by theory. This weakness is due to
the limitations and extensive demands enlisted above.
An important aspect to note here is that not all multi-user scenarios must necessarily

involve IA. Depending on the respective interference power at each user, a proper com-
bination of treating interference as noise, cancelling strong interference, and aligning
only particular interference signals is yet open to be formulated. We conjecture that
the optimal strategies will involve classifying specific interference scenarios in order to
determine to what extent the application of IA is beneficial. In the following part, we
focus on the requirements for a potential application of cyclic IA by propagation delay.

6.2 Cyclic IA by Propagation Delay

If the cyclic shifts as imposed by the channel matrix are unrolled over time, we may
interpret the received signals undergoing a discrete propagation delay. For a proper
application of cyclic IA, the decoders must take a transient settling time for the initial
phase of the communication into account. But this initial transient period is only
limited by the subchannel with the longest propagation delay. Afterwards, a stationary
state follows that shows the same behaviour as the CPCM with n dimensions. If
the transmitters are switched off at the end of the communication, a final transient
period must be taken into account, as well. But these transient periods are negligible
for permanent communication. With this interpretation, we the discrete propagation
delay-based examples provided in [3, Appendix I], [37, Sect. 1] are generalized on the
one hand, and on the other hand, the discussions of [51] and [16] are extended. There
are some beneficial properties, but also a few challenging requirements, that must be
taken into account when considering IA by propagation delay:

Advantages: It suffices to use very simple user-nodes with a single antenna,
for omnidirectional signal propagation (i. e., no beam-forming). Only the CSI of
the dedicated link must be known at the intended receivers. Although, the exact
knowledge of all propagation delays between each user is obligatory, it can be
measured simpler than the CSI (e. g., using a synchronized atomic clock, as in
the global positioning system (GPS)). Minor variations in the propagation delay,
i. e., jitter, can be compensated by using guard intervals if the frame durations
are sufficiently long. For long frame durations, we can assume that the conveyed
messages may also be protected by a conventional inner code to counteract noise.
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Disadvantages: The propagation delays must be fairly static. Especially syn-
chronization errors and multi-path propagation will impose leakage interference.
For multiple users, exceeding K ≥ 3, the total number of feasible channel delay
matrices reduces quickly due to the separability conditions. This detrimental ef-
fect uncovers an interesting parallel to the bandwidth-scaling property discussed
for IA by propagation delay with LoS paths in [51]. In other words, the band-
width must scale sufficiently with the number of users K to provide a sufficiently
large space to accommodate the dedicated signals. This property is actually con-
flicting with the fundamental demand of IA to include many users. However, note
that in many of the different IA schemes proposed in the literature [12], compa-
rable conflicting effects occur. It is clear that propagation delays are not discrete,
but real-valued of course. However, this does not impose a major problem, since
scaling-up the message demands in M , inherently scales with period-length n,
so that real-valued delays in D can be approximated with sufficient accuracy.

Two communication scenarios, that seem to fit for (cyclic) IA by propagation delay
at best, are: Deep-space communications and underwater communications. Both these
setups may provide very specific delay and multi-path properties that are advantageous
to implement cyclic IA by propagation delay.

6.2.1 Deep-Space Communications

Signals in a wireless deep-space scenario travel at the speed of light with cL ≈ 3⋅108m/s.
This scenario naturally scales with very long propagation delays and LoS signalling
paths without multi-path scattering. For a distance of multiples of 300m between
each transmitter and receiver, a sufficiently short frame-duration would be TΔ ≈ 1μs
as proposed in [16]. This implies quite a high frequency of fΔ = T −1Δ = 10MHz, and
even higher carrier frequencies for multiple symbols within each frame. Since multiple
communicating users are naturally distributed at different locations, each user-pair
will experience different propagation delays. In the work [100], schemes for IA by
propagation delay are discussed for a K-user interference channel. The given schemes
are modelled for a corresponding satellite system with real-valued propagation delays.

6.2.2 Underwater Communications

As propagation delay3 is also a significant property observed in underwater communi-
cations with acoustic signals, another interesting opportunity for cyclic IA by propa-
gation delay is available in [102]. From a simplified perspective, we may assume that
acoustic signals travel at the speed of sound in the medium of seawater with cS ≈ 1.5⋅103
m/s. For a distance of multiples of 300 m between each transmitter and receiver, a suf-
ficiently short frame duration would be TΔ ≈ 200 ms, respectively. In this light, slight
synchronization inaccuracies will be less degrading to the communication scheme than
the previous case.
However, a more accurate and realistic acoustic underwater channel model undergoes

some other severe detrimental effects as discussed in [103]. Especially potential multi-

3Propagation delay is sometimes called latency in oceanic communications engineering (e. g., [101]).
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path effects caused by reflections on the surface and at the ocean floor and attenuation
might weaken the LoS communication link. Furthermore, high SNR transmissions are
an impractical option, since the available energy for the mobile transmitters (e. g.,
ships, submarines, buoys, aquanauts, sensors) is usually limited.

6.2.3 Node Placement in Euclidean Space

Since the number of feasible channel matrices is restrictive, a contrary approach is to
design the propagation delays a wireless communication channel itself. Node placement
terms a procedure of how to place user-nodes in Euclidean space enabling the discrete
delays for (Cyclic) IA by propagation delay [16]. For the sake of simplicity, we assume
that propagation delay is proportional to the Euclidean distance between each user.
We neglect further wireless effects as, e. g., multi-path propagation, path loss and
fading and consider a static LoS environment. These particular assumptions are also
used in [16], [104], [105], [102] and [100] for the derivation of node placement schemes
in multi-user interference channels.
The Euclidean distances between each user are denoted by a symmetric dissimilarity

matrix Δ = (δji)1≤j,i≤4 with the entries δji ∈ N>0 and a zero diagonal [101]. We normalize
the relationship between the propagation delay dji and the Euclidean distance δji by
dji = xδji . The dissimilarity matrix Δ of a communication channel with transmitters
and receivers can be decomposed into four blocks:

Δ = ( B CT

C A
) , (6.1)

with fixed entries in the matrix C and variable entries a, b ∈ R+ in A and B, re-
spectively. The elements of the submatrix A correspond to distances between the
transmitters and the elements of B to distances between the receivers. The elements
of the submatrix C correspond to the fixed delay offset exponents of the channel
matrix D from the CPCM.
The problem of node placement is analogous to an Euclidean embedding of the

dissimilarity matrix Δ according to [104] and [105]. To derive the sought distances b
and a, the receivers Rxj and k, j ≠ k ∈ {3,4}, must be positioned such that all the
given distances in C are fulfilled.
The objective of Euclidean embedding is to find a solution of placement vectors

xi ∈ Rm for all users i = 1, ...,4 within the lowest number of Euclidean dimensions m
yet satisfying the fixed distances in Δ. In our case it is desirable to find a practically
most relevant solution in only m ≤ 3 dimensions for a spatial arrangement of users.

6.2.4 2 -User X- Channel

A sufficiently simple example to describe node placement is the 2-user X- channel,
since there are only four users and only minimal constraints to the channel matrix to
be considered. Recall that this particular channel has been discussed in Section 3.3 in
terms of the CPCM for general message lengths. For notational reasons, we define the
following indexing for the 4 users Tx1,Tx2,Rx1 and Rx2 in the X- channel:

Tx1 � 1, Tx2 � 2, Rx1 � 3, Rx2 � 4. (6.2)
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6.2 Cyclic IA by Propagation Delay

This change of indices will also be used for the delay exponents δji. Note that the
condition det(D) ≢ 0 mod(x3 − 1) from Theorem 5.7 leads to an equivalent condition
for matrix C:

δ31 + δ42 ≢ δ41 + δ32 (mod 3). (6.3)

Figure 6.1 depicts an exemplary solution of node placement for cyclic IA by delay

Figure 6.1: A one-dimensional solution for the node placement of a given matrix C
with δ31 = 2, δ32 = 1, δ41 = 4 and δ42 = 1 is shown. The numbered boxes
indicate the users. The parameters of the dissimilarity matrix Δ are b = 2
and a = 3. Cyclic IA is possible since condition (6.3) is fulfilled.

on the X- channel in only one dimension. Another exemplary node placement in two
dimensions is depicted in Figure 6.2.
We may set the variables δ12 = δ21 = b ∈ R+ and δ34 = δ43 = a ∈ R+ due to symmetry

and δii = 0, for i = 1, ...,4, and we obtain the sought submatrices:

B = b(12×2 − I2×2), (6.4)

A = a(12×2 − I2×2). (6.5)

There is a feasible solution in two dimensions, if both transmitters satisfy all of the
following (four) triangle inequalities with j, k ∈ {3,4} and i, l ∈ {1,2}:

0 < ∥δji − δjl∥2 ≤ b ≤ ∥δji∥2 + ∥δjl∥2, (6.6)

0 < ∥δji − δki∥2 ≤ a ≤ ∥δji∥2 + ∥δki∥2. (6.7)

These inequalities must be non-zero because the users may not overlap at the same
point in the Euclidean space. If the lower and upper bounds support a solution with
b, a ∈ R, then a 2-dimensional node placement exists.
The solution is easily derived from elementary geometry: W. l. o. g. we can position

Txi on a reference point (0,0). To position Txl, i ≠ l, some b satisfying condition (6.6)
can be fixed on a straight line that originates in the reference point (0,0). We may fix
Txl at (b,0) for instance. Then the valid positions for receivers Rxj and Rxk, j ≠ k,
can be determined, as well. Valid positions for Rxj are the intersecting points of the
two circles Oji and Ojl with j ≠ k ∈ {3,4}, i ≠ l ∈ {1,2}:

Oji ∶ x2 + y2 = δ2ji,Ojl ∶ (x − b)2 + y2 = δ2jl.
(6.8)
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Figure 6.2: A two-dimensional node placement solution is shown for a given matrix C
with δ31 = 1, δ32 = 2, δ41 = 2 and δ42 = 1. The condition (6.3) is fulfilled,
parameter b satisfies (6.6) and a satisfies (6.7).

The valid positions for Rxk yield from the intersection points of the circles:

Oki ∶ x2 + y2 = δ2ki,Okl ∶ (x − b)2 + y2 = δ2kl.
(6.9)

accordingly. Condition (6.7) is satisfied by construction, due to the fact that the circlesOji, Oki are concentric around node i and the circles Ojl, Okl concentric around node l.
The resulting placement vectors are computed as:

xi = ( 0

0
) , xl = ( b

0
) ,

xj = ⎛
⎝

δ2ji−δ2jl+b2
2b±√αj

⎞
⎠ , xk = ⎛

⎝
δ2ki−δ2kl+b2

2b±√αk

⎞
⎠ ,

(6.10)

with the indices j ≠ k ∈ {3,4} and i ≠ l ∈ {1,2}, and the discriminants:

αj = δ2ji − δ2ji − δ2jl + b2

2b
, (6.11)

αk = δ2ki − δ2ki − δ2kl + b2

2b
. (6.12)

If both discriminants αj, αk are greater than zero, then a two-dimensional solution ex-
ists. If α3 = α4 = 0, the solution is one-dimensional. A negative discriminant states that
there is no feasible solution for node placement. The remaining Euclidean distance a
between the receivers Rxj and Rxk is computed by:

a = ∥xj −xk∥2. (6.13)

with j ≠ k ∈ {3,4}. Moreover, such a positioning of users is invariant to rotation and
translation w. r. t. a reference point.
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An analogous dual solution is to fix receiver Rxj at point (0,0) and Rxk at point
xk = (a,0)T satisfying condition (6.7) and finding the intersection points of the corre-
sponding two circle pairs around Rxj and Rxk.
The extension to m = 3 dimensions would include an additional z-coordinate and

the computation of two intersection circles for the four intersecting spheres. The
3-dimensional solution is also a rotational body around the connecting line δli between
Txi and Txl of the 2-dimensional solution. Again, it is invariant to rotation and
translation w. r. t. a fixed reference point.

6.3 Summary

In this chapter, we have given a brief overview of the practical challenges of the pre-
dominant interference alignment schemes in general. Next, we have discussed the
opportunities and challenges of a potential practical application of cyclic interference
alignment by propagation delay. We have observe that including the effect of long
propagation delays in multi-user communication is indeed practically relevant, but
quite limited so far. In the current stage, a fully practical application of cyclic IA by
propagation delay has not been implemented yet. However, there are actually some
very specific scenarios in deep-space and underwater communication systems that con-
sider IA by propagation delay.
In the literature, the investigation of interference alignment by propagation delay is

tightly connected to the problem of node placement, i. e., the positioning of transmitters
and receivers in Euclidean space enabling interference alignment. In this light, have
we investigated the node placement problem for the 2 -user X- channel and we have
provided conditions on its feasibility.
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7 Conclusions

In this thesis, a novel channel model has been developed on the basis of a polynomial
ring representation - the cyclic polynomial channel model (CPCM). The proposed
model was mainly inspired by interference alignment by propagation delay, the alge-
braically convenient description of cyclic codes, and by the linear deterministic channel
model (LDCM) as introduced in the seminal work of Avestimehr et al. The CPCM
described multi-user communication systems with interference. Therein, each trans-
mitted signal experienced an individual cyclic shift and at the receivers, those shifted
signals interfered with each other.
Several different multi-user communication systems have been investigated from an

information-theoretic perspective applying the CPCM. These systems ranged from ele-
mentary unidirectional multi-user channels to multi-way and multi-hop networks with
relays. We have derived optimal communication strategies to achieve maximal data-
rates. These schemes involved a cyclic polynomial representation of interference align-
ment, signal alignment, interference neutralization, orthogonal multiple-access and lin-
ear coding schemes in particular. It has turned out that utilizing the CPCM is con-
venient for an approximation of optimal communication schemes when compared to
the conventional Gaussian MIMO channel model (GMCM) and the LDCM. We have
defined a set of separability conditions to allow for linear decodability at the receivers.
This step has assisted us in classifying the intricate interference patterns of multiple
users and it has facilitated the derivation of feasibility and optimality of our proposed
communication schemes. As a result, even for channels with arbitrary asymmetric
cyclic shifts, it has been shown that optimal solutions can be represented in a compact
form.
Besides capacity characterization in terms of the CPCM, some interesting phenom-

ena hidden within the discussed interference networks have been discovered. In parti-
cular, we have elaborated a complementary reciprocal symmetry of alignment that
served as a key property for the capacity-achieving scheme of the 2 -user X- network.
It described how pairs of aligned signal and interference patterns at different recei-
vers are related. Furthermore, we have described a duality between cyclic interference
alignment and cyclic interference neutralization in a 3 -user X- network with a minimal
number of cognitive messages. Motivated by the well-known transformation in circuit
theory, a Δ-Y duality relationship has been formulated for 3 -way channels and 3 -user
Y - channels.
To further substantiate our proposed model, we have generalized the insights gained

from the CPCM to design optimal schemes for the 3 -way channel described by the
LDCM and the GMCM. In both cases, upper bounds and achievable schemes have been
derived w.r.t. the given model. In our last step, we have briefly explored potential
applications of cyclic interference alignment in networks with long propagation delays,
e. g., as in deep-space and underwater communication systems. Moreover, we have
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7 Conclusions

discussed a node placement scheme in Euclidean space for the 2-user X- channel.
In summary, this thesis has provided an elaborate theoretical analysis and optimal

coding schemes for various multi-user interference networks modelled with arbitrary
cyclic shifted communication links.

7.1 Outlook

There are still plenty of interesting interference network problems open to be considered
using the CPCM.
In particular, we intend to generalize both the 3 -way channel and the 3 -user Y - channel,

as discussed in Chapter 5, to K-users with K ≥ 3. A solution would also answer the
open question whether a generalization of the Δ-Y relationship exists for K users.
Then, the corresponding results in the CPCM might facilitate the derivations for
schemes on the more conventional GMCM and the LDCM. During our studies, we
also encountered the concept of interference forwarding (IFWD), i. e., (aligned) inter-
ference signals are intentionally forwarded by a relay to provide side-information to
the destinations, so that cancellation can be performed, as discussed in [106]. We al-
ready observed in some examples that IFWD is also useful for the achievable scheme of
the 3 -way channel and the multi-user extensions. This observation might eventually
lead to some interesting duality relationships between cyclic interference alignment,
interference neutralization and interference forwarding.
Furthermore, as perfect cyclic interference alignment schemes severely limit the ratio

of feasible channel matrices for the K-user interference channel, we intend to study its
generalization to arbitrary message lengths and investigate to what extend the condi-
tions can be relaxed. In a subsequent step, we intend to permit imperfect interference
alignment that will lead to limited leakage-interference. This approach can be used to
characterize a trade-off for the achievable data-rate versus the channel-feasibility ratio.
There is also an opportunity to extend the underlying framework of the proposed

channel model itself. A first step would be to use channel matrices with sparse poly-
nomials instead of the matrices with monomials only. Such an approach would support
modelling the interaction of a finite number of delayed multi-path signal echos, since
they are of major concern for cyclic interference alignment by propagation delay. Some
preliminary studies have already shown that, despite these echos, decoding schemes
can be designed over the time-unrolled CPCM.
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Appendix

A Constraints of the 3 -User X-Network with Minimal
Backhaul

In the following, we carefully prove that the IAC scheme in (3.146) to (3.153) satisfies
all separability conditions (3.126) to (3.139) leading to the conditions of Theorem3.12.
The two particular exceptions given by (3.150) and (3.153) are neglected. The deriva-
tions are enlisted column-wise and congruences are taken modulo x5 − 1.

Figure A.1: Adjacency graph of the cyclic IA scheme in (3.146) to (3.153). Solid lines
indicate the assignments for a fixed pki given in the proof of Theorem3.12,
and dashed lines the remaining conditions that must be checked for feasi-
bility.

(3.126) ∶ xpki ≢ xpji

(3.146)⇒ xpki ≢ dijd
−1
ii x

pkj

(3.148)⇒ xpki ≢ dijd
−1
ii djid

−1
jj x

pki

⇒ 0 ≢ det(Di,j,i,j) ⇒ (iv)

(3.127) ∶ xpji ≢ xpii

(3.151)⇒ xpji ≢ dkkd
−1
ki x

pik

(3.148)⇒ xpji ≢ dkkd
−1
ki djjd

−1
jkx

pkj

(3.146)⇒ xpji ≢ dkkd
−1
ki djjd

−1
jkdiid

−1
ij x

pji

⇒ diidjjdkk ≢ dijdjkdki ⇒ (ix)

(3.128) ∶ xpki ≢ xpii

(3.146)⇒ xpki ≢ djkd
−1
ji x

pkk

(3.148)⇒ xpki ≢ djkd
−1
ji diid

−1
ik x

pki

⇒ 0 ≢ det(Di,j,i,k) ⇒ (v)

(3.129) ∶ dijxpij ≢ dikx
pik

(3.148)⇒ xpij ≢ dikd
−1
ij djjd

−1
jkx

pkj

(3.146)⇒ xpij ≢ dikd
−1
ij djjd

−1
jkdiid

−1
ij x

pji

(3.152)⇒ xpij ≢ dikd
−1
ij djjd

−1
jk

diid
−1
ij dkjd

−1
ki x

pij

(i)⇒diidjjdikdkj ≢ djidkjdikdij

⇒ 0 ≢ det(Di,j,i,j) ⇒ (iv)
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(3.130) ∶ diixpii ≢ dijx
pij

(3.150)⇒ xpii ≢ dijd
−1
ii djkd

−1
jj x

pjk

(3.153)⇒ xpii ≢ dijd
−1
ii djkd

−1
jj dkid

−1
kkx

pki

(3.147)⇒ xpii ≢ dijd
−1
ii djkd

−1
jj

dkid
−1
kkdikd

−1
ii x

pkk

(3.149)⇒ xpii ≢ dijd
−2
ii djkd

−1
jj dki

d−1kkdikdjid
−1
jkx

pii

⇒ diidjjdkkdii≢ dijdjidikdki ⇒ (x)

(3.131) ∶ diixpii ≢ dikx
pik

(3.151)⇒ xpii ≢ dikd
−1
ii dkid

−1
kkx

pii

⇒ 0 ≢ det(Di,j,i,k) ⇒ (v)

(3.132) ∶ diixpii ≢ dijx
pkj mod (xn − 1),

(3.148)⇒ xpii ≢ dijd
−1
ii djkd

−1
jj x

pik

(3.151)⇒ xpii ≢ dijd
−1
ii djkd

−1
jj dkid

−1
kkx

pii

⇒ diidjjdkk ≢ dijdjkdki ⇒ (ix)

(3.133) ∶ diixpii ≢ dijx
pjj

(3.151)⇒ xpii ≢ dijd
−1
ii dkid

−1
kjx

pii

⇒ 0 ≢ det(Di,j,i,k) ⇒ (v)

(3.134) ∶ diixpii ≢ dikx
pjk

(3.149)⇒ xpjk ≢ diid
−1
ik djkd

−1
ji x

pkk

(3.147)⇒ xpjk ≢ diid
−1
ik djkd

−1
ji diid

−1
ik x

pki

(3.153)⇒ xpjk ≢ diid
−1
ik djkd

−1
ji

diid
−1
ik dkkd

−1
ki x

pjk

(ii)⇒diidjjdkk ≢ dikdjidkj ⇒ (ix)

(3.135) ∶ diixpii ≢ dikx
pkk

(3.149)⇒ xpii ≢ dikd
−1
ii djid

−1
jkx

pii

⇒ 0 ≢ det(Di,j,i,k) ⇒ (v)

(3.136) ∶ dijxpij ≢ diix
pji

(3.152)⇒ xpij ≢ diid
−1
ij dkjd

−1
ki x

pij

⇒ 0 ≢ det(Di,j,i,k) ⇒ (v)

(3.137) ∶ dijxpij ≢ diix
pki

(3.153)⇒ xpij ≢ diid
−1
ij dkkd

−1
ki x

pjk

(3.150)⇒ xpii ≢ diid
−1
ij dkkd

−1
ki djjd

−1
jkx

pij

⇒ diidjjdkk ≢ dijdjkdki ⇒ (ix)

(3.138) ∶ dijxpij ≢ dikx
pjk

(3.150)⇒ xpij ≢ dikd
−1
ij djjd

−1
jkx

pij

⇒ 0 ≢ det(Di,j,j,k) ⇒ (vi)

(3.139) ∶ dijxpij ≢ dikx
pkk

(3.150)⇒ xpij ≢ dijd
−1
ik djkd

−1
jj x

pjk

(3.153)⇒ xpij ≢ dijd
−1
ik djkd

−1
jj dkid

−1
kkx

pki

(3.147)⇒ xpij ≢ dijd
−1
ik djkd

−1
jj

dkid
−1
kkdikd

−1
ii x

pkk

⇒ diidjjdkk ≢ dijdjkdki ⇒ (ix)

Analogously, we consider the cyclically relabelled versions i → j → k → i of the
separability conditions (3.126) to (3.139) , with superscript symbol denoting the
relabelled versions. Note that (3.137) contradicts (3.150) and is treated separately.

(3.126) ∶ xpkj ≢ xpij

(3.146)⇒ xpij ≢ diid
−1
ij x

pji

(3.146)⇒ xpij ≢ diid
−1
ij dkjd

−1
ki x

pij

⇒ 0 ≢ det(Di,j,i,k) ⇒ (v)

(3.127) ∶ xpjj ≢ xpkj

(3.147)⇒ xpkj ≢ diid
−1
ij x

pki

(3.148)⇒ xpkj ≢ diid
−1
ij djjd

−1
ji x

pkj

⇒ 0 ≢ det(Di,j,i,j) ⇒ (iv)

(3.128) ∶ xpjj ≢ xpij

(3.150)⇒ xpjj ≢ djkd
−1
jj x

pki

(3.153)⇒ xpjj ≢ djkd
−1
jj dkid

−1
kkx

pki

(3.147)⇒ xpjj ≢ diid
−1
ij dkid

−1
kkdijd

−1
ii x

pjj

⇒ diidjjdkk ≢ dijdjkdki ⇒ (ix)

(3.129) ∶ djkxpjk ≢ djix
pji

(3.146)⇒ xpjk ≢ djid
−1
jkdikd

−1
ii x

pjk

⇒ 0 ≢ det(Di,j,i,k) ⇒ (v)

(3.130) ∶ djjxpjj ≢ djkx
pjk

(3.153)⇒ xpjj ≢ djkd
−1
jj dkid

−1
kkx

pki

(3.147)⇒ xpjj ≢ djkd
−1
jj dkid

−1
kkdijd

−1
ii x

pjj

⇒ diidjjdkk ≢ dijdjkdki ⇒ (ix)

(3.131) ∶ djjxpjj ≢ djix
pji

(3.147)⇒ xpji ≢ djjd
−1
ji diid

−1
ij x

pki

(3.148)⇒ xpji ≢ djjd
−1
ji diid

−1
ij djjd

−1
ji x

pki

(3.146)⇒ xpji ≢ djjd
−1
ji diid

−1
ij

djjd
−1
ji diid

−1
ij x

pji

(ii)⇒diidjjdkkdkk ≢ dikdkidjkdkj ⇒ (x)
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(3.132) ∶ djjxpjj ≢ djkx
pik

(3.147)⇒ xpjk ≢ djjd
−1
jkdiid

−1
ij x

pki

(3.153)⇒ xpjk ≢ djjd
−1
jkdiid

−1
ij dkkd

−1
ki x

pjk

diidjjdkk ≢ dijdjkdki ⇒ (ix)

(3.133) ∶ djjxpjj ≢ djkx
pkk

(3.147)⇒ xpjj ≢ djkd
−1
jj dijd

−1
ik x

pjj

⇒ 0 ≢ det(Di,j,j,k) ⇒ (vi)

(3.134) ∶ djjxpjj ≢ djix
pki

(3.147)⇒ xpjj ≢ djid
−1
jj dijd

−1
ii x

pjj

⇒ 0 ≢ det(Di,j,i,j) ⇒ (iv)

(3.135) ∶ djjxpjj ≢ djix
pii

(3.151)⇒ xpjj ≢ djid
−1
jj dkjd

−1
ki x

pjj

⇒ 0 ≢ det(Di,j,j,k) ⇒ (vi)

(3.136) ∶ djkxpjk ≢ djjx
pkj

(3.146)⇒ xpjk ≢ djjd
−1
jkdikd

−1
ij x

pjk

⇒ 0 ≢ det(Di,j,j,k) ⇒ (vi)

(3.137) ∶ djkxpjk≢ djjx
pij

(3.138) ∶ djkxpjk ≢ djix
pki

(3.153)⇒ xpjk ≢ djid
−1
jkdkkd

−1
ki x

pjk

⇒ 0 ≢ det(Dk,j,k,i) ⇒ (vii)

(3.139) ∶ djkxpjk ≢ djix
pii

(3.151)⇒ xpjk ≢ djid
−1
jkdkjd

−1
ki x

pjj

(3.147)⇒ xpjk ≢ djid
−1
jkdkjd

−1
ki diid

−1
ij x

pki

(3.153)⇒ xpjk ≢ djid
−1
jkdkj

d−1ki diid
−1
ij dkkd

−1
ki x

pjk

(i)⇒djidikdkjdki ≢ diidkkdjidkj

⇒ dikdki ≢ diidkk

⇒ 0 ≢ det(Dk,i,k,i) ⇒ (iii)

Analogously, we consider the cyclically relabelled versions i → k → j → i of the
separability conditions (3.126)⋆ to (3.139)⋆, with superscript symbol ⋆ denoting the
relabelled versions. Note that (3.137)⋆ contradicts (3.153) and is treated separately.

(3.126)⋆ ∶ xpik ≢ xpjk

(3.153)⇒ xpik ≢ dkid
−1
kkx

pki

(3.148)⇒ xpik ≢ dkid
−1
kkdjkd

−1
ji x

pik

⇒ 0 ≢ det(Dk,j,k,i) ⇒ (vii)

(3.127)⋆ ∶ xpkk ≢ xpik

(3.148)⇒ xpkk ≢ djid
−1
jkx

pki

(3.147)⇒ xpkk ≢ djid
−1
jkdikd

−1
ii x

pkk

⇒ 0 ≢ det(Dk,j,i,k) ⇒ (v)

(3.128)⋆ ∶ xpkk ≢ xpjk

(3.153)⇒ xpkk ≢ dkid
−1
kkx

pki

(3.147)⇒ xpkk ≢ dkid
−1
kkdikd

−1
ii x

pkk

⇒ 0 ≢ det(Di,k,i,k) ⇒ (iii)

(3.129)⋆ ∶ dkixpki ≢ dkjx
pkj

(3.148)⇒ xpkk ≢ dkjd
−1
ki djid

−1
jj x

pki

⇒ 0 ≢ det(Di,j,j,k) ⇒ (vi)

(3.130)⋆ ∶ dkkxpkk ≢ dkix
pki

(3.147)⇒ xpkk ≢ dkid
−1
kkdikd

−1
ii x

pkk

⇒ 0 ≢ det(Di,k,i,k) ⇒ (iii)

(3.131)⋆ ∶ dkkxpkk ≢ dkjx
pkj

(3.148)⇒ xpkk ≢ dkjd
−1
kkdjid

−1
jj x

pki

(3.147)⇒ xpkk ≢ dkjd
−1
kkdjid

−1
jj dikd

−1
ii x

pkk

⇒ diidjjdkk ≢ djidkjdik ⇒ (ix)

(3.132)⋆ ∶ dkkxpkk ≢ dkix
pji

(3.146)⇒ xpkk ≢ dkid
−1
kkdijd

−1
ii x

pkj

(3.148)⇒ xpkk ≢ dkid
−1
kkdijd

−1
ii djid

−1
jj x

pki

(3.147)⇒ xpkk ≢ dkid
−1
kkdijd

−1
ii dji

d−1jj dikd
−1
ii x

pkk

⇒ diidjjdkkdii ≢ dkidijdjidik ⇒ (x)

(3.133)⋆ ∶ dkkxpkk ≢ dkix
pii

(3.149)⇒ xpkk ≢ dkid
−1
kkdjkd

−1
ji x

pkk

⇒ 0 ≢ det(Dk,j,k,i) ⇒ (vii)

(3.134)⋆ ∶ dkkxpkk ≢ dkjx
pij

(3.150)⇒ xpkk ≢ dkjd
−1
kkdjkd

−1
jj x

pjk

(3.153)⇒ xpkk ≢ dkjd
−1
kkdjkd

−1
jj dkid

−1
kkx

pjk

(3.147)⇒ xpkk ≢ dkjd
−1
kkdjkd

−1
jj dki

d−1kkdikd
−1
ii x

pjk

⇒ diidjjdkkdkk ≢ dkjdjkdkidik ⇒ (x)
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(3.135)⋆ ∶ dkkxpkk ≢ dkjx
pjj

(3.147)⇒ xpkk ≢ dkjd
−1
kkdikd

−1
ij x

pkk

⇒ 0 ≢ det(Dk,j,k,i) ⇒ (vii)

(3.136)⋆ ∶ dkixpki ≢ dkkx
pik

(3.153)⇒ xpki ≢ dkkd
−1
ki djid

−1
jkx

pki

⇒ 0 ≢ det(Dk,j,k,i) ⇒ (vii)

(3.137)⋆ ∶ dkixpki≢ dkkx
pjk

(3.138)⋆ ∶ dkixpki ≢ dkjx
pij

(3.150)⇒ xpki ≢ dkjd
−1
ki djkd

−1
jj x

pjk

(3.153)⇒ xpki ≢ dkjd
−1
ki djkd

−1
jj dkid

−1
kkx

pjk

⇒ 0 ≢ det(Dk,j,k,j) ⇒ (viii)

(3.139)⋆ ∶ dkixpki ≢ dkjx
pjj

(3.147)⇒ xpki ≢ dkjd
−1
ki diid

−1
ij x

pki

⇒ 0 ≢ det(Di,j,i,k) ⇒ (v)

The constraints (i) and (ii) are proven as follows.

(3.147) ∶ dijxpjj ≡ dikx
pkk

(3.148)⇒ dijx
pjj ≡ dikdjid

−1
jkx

pii

(3.151)⇒ dijx
pjj ≡ dikdjid

−1
jkdkjd

−1
ki x

pjj

⇒ dijdjkdki ≡ dikdkjdji ⇒ (i)

(3.146) ∶ dikxpjk ≡ diix
pji

(3.150)⇒ dikdjjd
−1
jkx

pij ≡ diix
pji

(3.149)⇒ dikdjjd
−1
jkx

pij ≡ diidkjd
−1
ki x

pij

⇒ djjdikdki ≡ diidjkdkj ⇒ (ii)

(3.147) ∶ diixpki ≡ dijx
pjj

(3.151)⇒ diix
pki ≡ dijdkkd

−1
kjx

pik

(3.148)⇒ diix
pki ≡ dijdkkd

−1
kjdjid

−1
jkx

pki

⇒ diidjkdkj ≡ dkkdijdji ⇒ (ii)

(3.148) ∶ djjxpkj ≡ djix
pki

(3.153)⇒ djjx
pkj ≡ djidkkd

−1
ki x

pjk

(3.146)⇒ djjx
pkj ≡ djidkkd

−1
kjdijd

−1
ik x

pkj

⇒ diidjkdkj ≡ dkkdijdji ⇒ (ii)

Since all separability conditions hold and yield the conditions as given in Theo-
rem 3.12, the proof is complete.

B Example for Cyclic Interference Neutralization on
the 2 × 2 × 2 Relay-Interference Channel

Let us consider a simple example for cyclic IN on the 2×2×2 relay interference channel
with n = 4 dimensions. We choose the following two valid channel matrices for the UL
and DL subchannels:

D = ( x3 x3

x1 x0
) , E = ( x2 x0

x2 x3
) .

By checking the conditions in Corollary 4.3, we see that they are fulfilled:

δ12 + δ21 + η11 + η22 ≡ δ11 + δ22 + η12 + η21 ≡ 1 (mod4),
δ12 + δ21 + η12 + η21 ≡ 2 ≢ δ11 + δ22 + η11 + η22 ≡ 0 (mod4),

det(D) ≡ x3 − x4 ≢ 0 mod(x4 − 1),
det(E) ≡ x1 − x2 ≢ 0 mod(x4 − 1).

Next, we consider the interference-neutralization conditions in (4.12) and (4.13) for
the parameters γ1 = 0 and γ2 = 1 at R1 and R2:

δ12 + γ1 + η11 ≡ δ22 + γ2 + η12 ≡ 1 (mod4),
δ11 + γ1 + η21 ≡ δ21 + γ2 + η22 ≡ 1 (mod4).
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Furthermore, the no-signal-neutralization conditions (4.14) and (4.15) hold as well:

δ11 + γ1 + η11 ≡ 1 ≢ δ21 + γ2 + η12 ≡ 2 (mod4),
δ12 + γ1 + η21 ≡ 1 ≢ δ22 + γ2 + η22 ≡ 0 (mod4).

By choosing parameter τ = 3, we obtain the following transmission signals for Tx1
and Tx2:

u1(x) =W
[0]
1 x0 +W

[1]
1 x1 +W

[2]
1 x2 +W

[3]
1 x3,

u3(x) =W
[0]
2 x0 +W

[1]
2 x1 +W

[2]
2 x2.

The received signals at the relays R1 and R2 are:

r1(x)≡(W [1]
1 +W [1]

2 )x0 + (W [2]
1 +W

[2]
2 )x1+W [3]

1 x2 + (W [0]
1 +W [0]

2 )x3 mod(x4 − 1),
r2(x)≡(W [3]

1 +W [0]
2 )x0 + (W [0]

1 +W [1]
2 )x1 + (W [1]

1 +W [2]
2 )x2 +W

[2]
1 x3 mod(x4 − 1).

With parameter k2 = τ + δ22 ≡ 3 (mod4), we set r
[3]
2 = 0. The resulting forwarded

signals, with the given parameters γ1 = 0 and γ2 = 1, are:

v1(x)≡(W [1]
1 +W [1]

2 )x0 + (W [2]
1 +W [2]

2 )x1 +W
[3]
1 x2 + (W [0]

1 +W [0]
2 )x3 mod(x4 − 1),

v2(x)≡(−W [3]
1 −W [0]

2 )x1 + (−W [0]
1 −W [1]

2 )x2 + (−W [1]
1 −W [2]

2 )x3 mod(x4 − 1),
so that the following signals are received at the destinations Rx1 and Rx2:

t1(x) ≡W [3]
1 x0 + (W [0]

1 +W
[0]
2 −W

[3]
1 −W

[0]
2 )x1+

(W [1]
1 +W

[1]
2 −W

[0]
1 −W

[1]
2 )x2 + (W [2]

1 +W
[2]
2 −W

[1]
1 −W

[2]
2 )x3

≡W [3]
1 x0 + (W [0]

1 −W
[3]
1 )x1 + (W [1]

1 −W
[0]
1 )x2 + (W [2]

1 −W
[1]
1 )x3 mod(x4 − 1),

t2(x) ≡ (W [3]
1 −W

[3]
1 −W

[0]
2 )x0 + (W [0]

1 +W
[0]
2 −W

[0]
1 −W

[1]
2 )x1+

(W [1]
1 +W

[1]
2 −W

[1]
1 −W

[2]
2 )x2 + (W [2]

1 +W
[2]
2 )x3

≡ −W [0]
2 x0 + (W [0]

2 −W
[1]
2 )x1 + (W [1]

2 −W
[2]
2 )x2 + (W [2]

1 +W
[2]
2 )x3 mod(x4 − 1).

At both destinations, all interfering signals are neutralized. It is obvious that the sub-
messagesW

[0]
1 , W

[1]
1 , W

[2]
1 , W

[3]
1 are linear decodable at Rx1, and that the submessages

W
[0]
2 , W

[1]
2 , W

[2]
2 are linear decodable at Rx2. Hence, 2n−1

n = 7
4 DoF are achieved for

n = 3 in accordance to Theorem 4.2.

C Genie-Aided Upper Bounds of the D3C(n1, n2, n3)
with n3 ≥ n2 ≥ n1

The remaining upper bounds on the capacity region of the D3C(n1, n2, n3) are derived
similar to Section 5.2.2. We only discuss the main differences in this appendix.
(i): To derive the bound R12 +R13 +R23 ≤ n3, we provide W32 as side-information

to the receiver of T1, and proceed similar to Section 5.2.2. That is, we prove that the
enhanced T1 can construct yN

2 from which it can decode W23.
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(ii): To derive the bound R21 +R23 +R13 ≤ n3 + n2 − n1, we provide W31 and x̂N
3 to

T2 as side-information, where x̂N
3 denotes the lowermost n2 −n1 bits of xN

3 . Providing
these bits is necessary since T2 can only obtain the topmost n1 symbols of x3(1) from
y2(1) and x1(1) after decoding W21 (recall that given W31 and W21, T2 can construct
x1(1)). By combining the topmost n1 bits of x3(1) and the lowermost n2 − n1 bits
provided by the side-information, T2 can construct y1(1) and hence also x1(2), since
it knows W31 from side-information and W21 after decoding. Similarly, all components
of yN

1 can be constructed, and W13 can be decode. Thus, by using Fano’s inequality,
we can write:

N(R21 +R23 +R13)
≤ I(W21,W23,W13;y

N
2 , x̂

N
3 ,W12,W32,W31) +NεN

≤ H(yN
2 , x̂

N
3 ) −H(yN

2 , x̂
N
3 ∣w) +NεN

≤ H(yN
2 , x̂

N
3 ) +NεN

≤ N(max(n3 + n2 − n1, n1 + n2 − n1) + εN)
= N(n3 + n2 − n1 + εN),

where εN → 0 as N →∞. This provides R21 +R23 +R13 ≤ n3 +n2 −n1 after dividing by
N and letting N →∞.
(iii): To derive R21 +R23 +R31 ≤ n3, we provide W13 to T2 and proceed similar to

(i), by showing that T2 can construct yN
3 and decode W31.

(iv): To derive R31 +R32 +R21 ≤ n3, we give x̂
N
1 and W12 to T3 as side-information,

where x̂N
1 denotes the lowermost n3 −n2 bits of xN

1 . By proceeding similar to (ii), we
can show that T3 can construct yN

2 given this side-information, and then decode W21,
leading to the desired bound.
(v): To derive the bound R31 + R32 + R12 ≤ n3 + n2 − n1, we give W21 and x̂N

2 to
T3, where x̂N

2 denote the lowermost n3 − n1 bits of xN
2 . Similar to (ii), T3 is able

to construct yN
1 given this side-information, and then to decode W12, leading to the

desired bound.
As a result, we obtain the upper bounds on capacity region as given by (5.47)

to (5.54).
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List of Acronyms

2IFC 2 -user interference channel

AWGN additive white Gaussian noise

BC broadcast channel

BD backward decoding

BHN backhaul network

CPCM cyclic polynomial channel model

CSI channel state information

D2D device-to-device

DL downlink

DoF degrees-of-freedom

FF feedforward

GDoF generalized degrees-of-freedom

GMCM Gaussian MIMO channel model

GPS global positioning system

IA interference alignment

IAC interference alignment and cancellation

IFWD interference forwarding

IN interference neutralization

LDCM linear deterministic channel model

LEaD linear encoding and decoding

LoS line-of-sight

MA multiple-access

MAC multiple-access channel

MIMO multiple-input multiple-output

OFDM orthogonal frequency division multiplexing

SA signal alignment

SISO single-input single-output

SNR signal-to-noise-ratio

UL uplink
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