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1 Introduction

Beginning in the early 20th century, mankind started to explore the possibilities of local-
ization using man-made signals and technology. All longer range localization systems,
that provide an absolute localization result1 are based on acoustic or electromagnetic
waves. The relevant spectra can be further split into audible and ultrasonic as well as
radio waves and light. From systems such as the acoustic gun detection using simple
microphones and manual calculation [1] to the Global Positioning System (GPS) using
satellites in space [2], many of the breakthrough technologies have been driven by mili-
tary purposes. Nevertheless, today, a point of broad civilian access to a large selection of
localization systems, algorithms and technologies has been reached. The latest change
in the mass market occurred due to the ubiquitous proliferation of smartphones all over
the world. This, for the first time, brought personal navigation including localization
at everyone’s fingertips. Other emerging applications, that are still less proliferated as
they mostly require individual fitting and customization for each use-case, are guid-
ance systems for museums and conferences, warehouse management systems due to the
ever increasing automatization and sports and wildlife tracking. Other factors driv-
ing innovation in the sector of personal electronic devices are regulatory requirements,
e.g., E911 [3], a set of rules that enables localization for emergency response which has
recently been updated.

With the advent of self-driving cars on the horizon, highly accurate localization in urban
environments and deep urban canyons becomes very important. Due to multipath prop-
agation current global navigation satellite systems (GNSSs) achieve insufficient accuracy
in this context. First iterations of autonomous vehicles defeat the problem by using op-
tical technologies, i.e., image recognition, light detection and ranging (LIDAR), and
also active radio frequency (RF) systems, i.e., radio detection and ranging (RADAR).
Due to the small wavelength, optical systems achieve high resolutions but usually in-
volve a significant amount of signal processing and require costly hardware. In practice
though, limitations of optical systems including a limited range, the inability to provide
any result in non-line-of-sight (NLOS) conditions, problems in bad weather conditions
and others, require autonomous vehicles to carry a suite of various sensors and localiza-
tion technologies. Localization is then performed by sensor fusion algorithms. Besides
GNSS, one of the candidates to improve location information in autonomous driving

1The concept of odometry and dead reckoning may use sensors based on other physical principals but
does not provide absolute location results.
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1 | Introduction

is network based localization. This is also of interest to advance the fifth generation
of cellular networks (5G) and beyond, which considers massive multiple input multiple
output (MIMO) base stations, or for applications like cognitive radio (CR). In both
cases location awareness can be crucial for the performance. Other applications require
very low-power, low-cost devices and large range, an example for this is wildlife tracking.
In this application, for many scenarios, only radio wave based localization is feasible.
Another related problem is the localization of illegal emissions by the national spectrum
agencies. This is a harder problem because it is a form of non-cooperative localization
where the knowledge about the signal waveform in the sensors is limited. This thesis
considers both scenarios, the case of known waveforms which enables signal parameter
estimation at the sensor level and that of unknown waveforms where estimation is per-
formed in a fusion center (FC) after collecting the baseband signal samples from several
distributed sensors.

The latter two examples, wildlife tracking and spectrum surveillance are low volume
applications that often require taylor-made system designs. Further, in research and
development environments, it might be desirable to quickly build prototypes in order
to try out the feasibility of a single new idea. Until the beginning of the 21st century,
the accessibility of smaller research institutions to such projects was severely limited
or completely impossible. This was mainly due to the high costs and large develop-
ment time and effort involved in the experimental evaluation. A principle, that has
fundamentally changed experimental research on radio wave based systems in the last
decade, is the concept of software defined radio (SDR) [4], [5], the idea being that
the complete physical layer signal processing stack shall be implemented in software,
in order to achieve maximum flexibility. It has turned out to be highly efficient and
cost-effective for research and early prototyping, where a lot of small improvement and
ideas have to be tested, as it allows for very short development iterations compared to
integrated circuit (IC) hardware design. Highly accessible frameworks and tools, such
as GNU Radio [6], as well as the availability of suitable hardware platforms for the RF
transmission, subsequently transformed SDR into a mainstream research tool for the
physical layer.

Localization based on RF essentially uses the same low-level signal processing princi-
ples that are used in communication systems. Therefore, although it was initially not
developed with a focus on this purpose, SDR is also highly suitable for research in this
area. However, as opposed to classical communication systems2, certain distributed
localization schemes require extremely accurate synchronization among distributed re-
ceivers. This aspect requires special attention to detail, as absolute nanosecond level
synchronization accuracy can not be achieved without taking the peculiarities of the
internal clocks of the RF frontend into account, which is examined in some detail in the
experimental part of this thesis.

One goal of the experimental part of this thesis is to develop a modular and extensible
2Several next generation communication schemes known as coordinated multi-point (CoMP) do have

tighter synchronization requirements.
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Outline | 1.1

framework for accurate real-time network based localization. To this end, it identifies
and addresses major challenges by extensive technical analysis and through the pro-
posal of several new algorithms and approaches. Consequently, this thesis develops
the theoretical concepts and algorithms in parallel to an experimental distributed SDR
testbed. The resulting SDR implementation provides a very flexible basis for further
experiments as the testbed aims to be a generic framework for the evaluation of the
discussed algorithms as well as future advanced concepts in network based localization.

1.1 Outline

The thesis document is structured as follows.

Chapter 2 summarizes the basics of radio wave based localization. The most common
methods are listed and explained on a high level. Subsequently several interesting
application examples are presented.

An in-depth review of the time difference of arrival (TDOA) approach to localization,
that is followed throughout the thesis, is given in Chapter 3. The following Chapter 4
considers the localization problem under the assumption of spatial sparsity and applies
a solution inspired by the area of compressed sensing. Next, the problem of sensor self-
localization is treated in Chapter 5. Finally an implementation of a distributed SDR
system is presented, that is used to experimentally evaluate some of the algorithms
developed in the aforementioned chapters. The thesis is concluded in Chapter 7.

Localization systems rely on reference points in space. It is important to point out that
there exists a number of different terms for this points that are frequently used. Depend-
ing on the research community, author or context, all the terms anchor, anchor node,
anchor point, access point, base station, receiver, transmitter, sensor, sensor node are of-
ten used to identify objects with the same localization-related task in different systems.
In the different chapters of this thesis several of the terms are used interchangeably.
Another confusion involves the terms localization and positioning. This thesis follows
the common definition that positioning purely determines coordinates in form of num-
bers, while localization determines the location of an object relative to its environment,
for example using a map. Therefore, mainly the term localization is used.

Parts of the work presented in this thesis have already been published in [7, 8, 9, 10, 11].
Further, [12] has been submitted for publication.
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2 Technical Background of
RF-Based Localization

This chapter will give a compact review of radio frequency (RF)-based localization tech-
niques, followed by a number of typical application examples which are related to the
approach of the thesis. The typical underlying digital signal processing stack of most
modern localization systems can be generalized as shown in Figure 2.1. First, the uti-
lized RF signal has to be acquired from the antenna in the analog domain. Usually this
is carried out by a homodyne or (super)heterodyne receiver architecture comparable to
a communication system, followed by an analog-to-digital converter (ADC). Next, one
or several physical features are extracted from the sampled signal using an estimation
algorithm. Subsequently, a second algorithm is employed to derive the location based

Figure 2.1: Typical receiver signal processing stack for RF-based localization, the stages
in the dotted box are performed jointly in some cases.
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2 | Technical Background of RF-Based Localization

on the estimated physical features. In some cases the last two steps are performed
jointly and the location is directly estimated based on the sampled signals. Optionally,
the system might feature a tracking stage that exploits the spatial correlation in the
time series of estimated locations, as well as a knowledge about the movement behavior
of the target. This is typically done with a Kalman or particle filter. Finally, the results
are handed over to the application layer where they can be displayed to a human user
or further processed for navigation purposes.

2.1 Physical Principles

To begin with, in the following subsections a closer look is taken at the second step of
Figure 2.1 and how it relates to the third step. A variety of different physical features
relate to spatial information about the signal emitter. This is the interface between
the feature estimation and the localization algorithm. Different features can be used
either alone or jointly, where joint approaches are also denoted as hybrid. Considering
only the feature estimation step without the localization, some major practical disad-
vantages can be noted. Accurate estimation of received signal strength (RSS) requires
calibration. Further, knowledge about the transmit power or the expected RSS at a
particular location is needed. Approaches with direction of arrival (DOA) estimation
require more than one antenna per receiver and also require calibration of the resulting
antenna array. Time measurement-based approaches require very accurate synchroniza-
tion. These distinct physical layer issues, together with cost, size and other constraints,
often decide about which approach is used in a new system.

2.1.1 Uplink and Downlink Localization

For the characterization of localization systems it is important to distinguish between
two major scenarios. We denote these two basic cases as the uplink and the downlink
scenario. In the downlink scenario, the network infrastructure provides the necessary
signals while the mobile node performs the localization algorithm, whereas in the uplink
scenario the mobile node transmits the signal and the network performs the localization
algorithm. GNSS is an example for a downlink system, in contrast, tag-based wildlife or
asset tracking are representatives of uplink scenarios. In cellular networks the uplink as
well as the downlink can be used for localization. Infrastructure-free localization, e.g.,
with active methods such as RADAR, LIDAR or passive optical systems for automotive
applications, obviously can not clearly be categorized in the two classes above. However,
as the localization is performed on the mobile node they rather resemble a downlink
configuration and are often combined with further infrastructure-based downlink meth-
ods. The choice of an uplink or downlink approach is an important design criterion for
a localization system due to several reasons. It determines where the location informa-
tion is first available and how much additional communication overhead occurs, it may

6



Physical Principles | 2.1

limit the accessibility of the system in terms of number of simultaneous users and it
may also have an impact on the accuracy. This is due to the differences in processing
power and the quality of the hardware for different network nodes. For example, the
amplifiers and clocks of base stations are usually more expensive and better than the
parts used in user equipments. In some safety critical real-time applications, downlink
localization is inevitable because the additional delay introduced by communicating the
results over the network and the limited update rate, due to band with limitations, can
not be tolerated. Finally, power constraints due to battery powered devices are also a
very important design criteria, that can heavily influence design decisions in localiza-
tion systems. For example, if localization tags should achieve a very long lifetime of
one year or more on a single set of batteries, it is essential that they spend most of the
time in a deep sleep mode and use a localization scheme and transmission protocol with
the lowest number of transmissions possible. Thus, each localization solution has to be
carefully designed and adopted for its specific application. In the following the possible
physical principles used by RF localization systems are explained.

2.1.2 Ranging

The simplest feature that can be used for localization is RSS also known as received
signal strength indicator (RSSI). It can be estimated using a single channel receiver
and accurate synchronization is not required. Together with a model for the signal
propagation this can be used for ranging, i.e., the distance between the transmitter
and the receiver can be determined, in this case based on the attenuation of the signal.
Localization based on the range is known as tri- or multilateration. The localization step
itself is usually solved by using a least squares approach that takes the measured ranges
to several anchor points as an input. Performing ranging, based on the estimated signal
strength, is known to have limited accuracy as studied in [13]. One known issue with
RSS, that deteriorates performance, is that the exact transmit power is often unknown
and also depends on the antenna characteristic and thus the direction.

Another way to perform ranging is to estimate the time of flight (TOF) between the
transmitter and receiver. The term TOF is often confused with time of arrival (TOA),
however they are only equivalent when synchronization between transmitter and receiver
is ensured. TOF can be converted to range based on the propagation speed c of the wave,
the speed of light in the case of radio waves. The most popular example for time-based
ranging is GNSS, i.e., European Galileo, US American GPS [2], Russian globalnaya
navigatsionnaya sputnikovaya sistema (GLONASS) and Chinese Beidou, which carries
highly accurate clocks on board the satellites. A SDR-based implementation for GNSS
reception has been implemented in [14, 15]. Without the atomic clocks used in GNSS
systems, highly accurate TOF measurements would not be possible. In ground-based
sensor networks, to avoid the necessity for the accurate but very expensive and large
clocks, the two-way ranging method can be used. In this case a signal is transmitted

7



2 | Technical Background of RF-Based Localization

and promptly returned by the receiver such that the distance can be determined as half
of the round-trip time, carefully taking into account the processing times.

2.1.3 Time Difference of Arrival

If synchronization between the transmitters and receivers in the system as well as two-
way ranging is not possible, the method of TDOA can be used. This can be especially
useful for uplink and remote sensing applications when a radio wave emitter has to be
localized. One of the earliest applications was the British GEE system used for bomber
guidance over German territory. For optimum results the TDOA localization method
requires very good synchronization between the anchor points of the system, e.g., the
receivers in an uplink localization scenario. The TDOA is the difference in arrival time
between pairs of anchor points. In a free-space wave propagation environment each
TDOA translates into a hyperboloid while the location of the target object is found at
the intersection. In case of the GPS and predecessor system Transit the surface of the
earth was used as an additional constraint to obtain a position fix. Further ground-
based systems for naval and aerial applications that use or have been using TDOA
are DECCA, OMEGA, GEE and LORA. One of the critical challenges of TDOA-based
systems is the synchronization of the anchor nodes. Three major approaches are usually
used in order to solve this problem. The common clock approach delivers a common
clock signal to each of the anchor nodes. It can be achieved by cabling all units to
a central clock unit. This achieves very high synchronization accuracy at the price of
complex network infrastructure and difficult installation. Further, a calibration emitter
can be used, that transmits another wireless signal, additionally to the localization
signal, which is used to constantly track and correct the time offsets of all nodes in the
system. In some systems one of the sensors takes the role of the calibration emitter and
the network follows some type of common protocol for synchronization. This approach
has the disadvantage that purely passive operation is not possible. Alternatively, a
GNSS system can be leveraged in order to perform time synchronization of all the
anchors. This requires a GNSS receiver at each of the nodes that disciplines the local
clocks of the nodes. Such a unit is known as GPS disciplined oscillator (GPSDO). This
technology is mainly used in wide area multilateration (WAM), for example for airspace
surveillance [16] or lightning detection [17, 18, 19, 20, 21].

2.1.4 Direction of Arrival

Another principle is based on the estimation of the directions of the impinging waves.
This is also known as triangulation because the location estimation depends on the an-
gles of the wave vectors with the antenna baselines. The technique was used as early as
World War II by the Germans under the code name X-Gerät in order to guide bombers
towards their targets over England. DOA estimation requires multiple signal process-
ing channels and antenna elements at the receiver. Synchronization between sensors is

8



Physical Principles | 2.1

not critical for this scheme. However, due to the working principle, the main challenge
in DOA-based systems is antenna and receiver design. In order to apply algorithms
like multiple signal classification (MUSIC) [22] and estimation of signal parameters via
rotational invariance techniques (ESPRIT) [23] a DOA-enabled sensor requires an ab-
solutely phase coherent synchronization between its different internal receive channels.
Note that this requirement is different from a MIMO communication receiver and there-
fore makes it difficult to design a DOA sensor based on commercial off-the-shelf (COTS)
hardware components. In communication systems phase offsets are estimated and cor-
rected using pilot information during channel estimation and equalization. This is often
not possible in a passive localization system. Hence, it leads to the need of calibration
methods for the antenna as well as each signal processing chain in the receiver.

Besides calibration, another issue of DOA systems is the large number of antenna el-
ements which sometimes permits a deployment as a result of constraint space. An
advantage is the low effort in terms of network infrastructure. This is because DOA
estimation is usually performed inside each sensor and only the bearing information is
exchanged. Altogether, the reasons described above have so far mostly prevented RF-
based DOA from being deployed in the consumer mass market. Networked DOA-based
systems are mainly used for highly specialized applications. Further, in experimental
research applications TDOA-based systems often seem to be preferred to DOA-based
systems because the complexity and calibration issues of the DOA receivers outweigh
the network design and synchronization issues present when using TDOA. Examples
are tracking systems for biology [24, 25]. DOA systems exhibit advantages in mobile
single sensor applications, e.g., search and rescue missions in disaster scenarios or law
enforcement. An approach to enable DOA estimation with a single antenna is a virtual
antenna array. To build the virtual array an inertial measurement unit (IMU) and some-
times a GPS is combined with a moving antenna [26]. Then, by using the information
about the movement obtained by the IMU after Kalman filtering, the measurements at
different locations and times can be combined. The accuracy of this approach is limited
by the estimation of the antennas locations. Further, the transmitted signal should be
present at all measurement times.

2.1.5 Hybrid Methods

If high complexity is tolerable or a system consists of a heterogeneous set of sensors with
different abilities, then a hybrid algorithm can be used that exploits the diversity in the
best possible way. Hybrid algorithms that combine ranging and DOA measurements
are investigated in [27, 28]. Another interesting approach, that can be characterized
as hybrid, is the idea of so called lighthouses [29, 30]. The idea of the lighthouses is
to transmit from at least two anchor nodes with a narrow rotating beam.The same
principle is used in VHF omni directional radio range (VOR) for the radio navigation
of aircraft. VOR uses an RF beam whereas small scale systems designed for indoor use,
typically utilize a rotating laser beam to achieve the desired directionality and avoid
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multipath propagation. As the location of the anchor and the frequency of the rotation
is exactly known to the receiver, it can perform triangulation based on time difference
measurements between two consecutive detections. An additional synchronization signal
can be issued for every rotation of the beam in order to determine the baseline angle
and to avoid measurements of differences. Another related approach using RF signals is
described in [31]. Here a rotating unidirectional antenna emits a constant amplitude sine
wave. Another fixed antenna transmits a second sine together with a synchronization
signal such that using interferometric evaluation of the received signal allows for a
triangulation.

2.1.6 Carrier Phase-Based Methods

Similar to communication receivers, receivers for localization applications may operate
in a coherent or non-coherent way. The coherent receiver is able to obtain informa-
tion about the carrier phase. Many direction finding systems strictly rely on this and
estimate the phase difference of the impinging wave at the different antenna elements.
Ranging-based systems can also greatly improve accuracy if carrier phase measurements
are available. A prominent example for this is Real Time Kinematic (RTK) [32, 33]
where differential phase measurements of GNSS signals are used in order to achieve
centimeter-level accuracy. Carrier phase-based methods have two main issues: they are
strongly affected by signal multipath propagation and the phase measurement is highly
ambiguous. Moreover, accurate carrier phase estimation needs a constant tracking of
the signal in the receiver. In a ground-based system, especially the effects of multipath
propagation can not completely be eliminated, therefore the experimental part of the
thesis focuses on non-coherent receivers. A way of circumventing the multipath problem
for short range applications, e.g., indoor localization is the use of near-field electromag-
netic ranging (NFER) [34, 35, 36, 37]. The idea of NFER is to use the difference of
the electric and magnetic fields that prevail in the near-field region of an antenna for
ranging. As the effect in practice is limited to about one-third of the wavelength, very
low frequencies (usually below 2 MHz) have to be used. This has the advantage that the
effect of multipath propagation in the targeted indoor environment is weak. However,
attenuation of the signal is relatively large because very large antennas usually required
for long wavelengths can not be used indoors. Another solution against multipath is to
create a very large virtual bandwidth using channel hopping. The resulting set of phase
measurements at very different frequencies and hence very different wavelength can be
used to perform ranging based on the Chinese remainder theorem [38, 39, 40].

2.1.7 Fingerprinting

To overcome several of the issues with geometric approaches to localization, a data-
driven approach called fingerprinting has been proposed [41, 42]. Fingerprinting divides
localization in two phases. During the offline phase measurements of signal features,
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Figure 2.2: The fingerprinting approach to localization.

e.g., RSSI, on a grid of exactly known locations are taken and stored. The online phase
is the actual localization step where measurement are taken at unknown locations and
are then matched with the stored data to determine the location. By taking a large
set of measurements covering the complete region of interest, many of the static effects
of the signal propagation, e.g., antenna patterns, multipath, NLOS can be implicitly
accounted for. For storage and matching of the data, several approaches are possible.
A classical database can be used. After a rough lookup step based on the ID of the
involved anchor nodes, measured feature vectors can be mapped to the stored data
vectors using a distance measure. The output location is then an interpolation between
the most likely grid points. Another approach is to use machine learning and store
the information in a neural network [43]. In this example, during the offline phase, a
deep neural network learns a representation of the RF environment and therefore yields
higher localization accuracy. An issue of fingerprinting is its difficulty to be studied and
justified analytically and therefore making it difficult to find optimum solutions. Some
approaches such as [44] exist but are very limited.

Classical fingerprinting for localization is usually associated with RSSI measurements.
Typical commercial applications also combine RSSI information from cellular networks
and WiFi. However, generalizing the concept, any type of signal feature can be used.
In [45] channel state information (CSI) information is used, i.e., the phases rotation
and attenuation of the orthogonal frequency-division multiplexing (OFDM) subcarriers
underlying the IEEE 802.11 WiFi standard. Another approach presented in the thesis,
cf. Section 4.3, uses TDOA-based features [8]. In an effort to ease the effort of the
offline phase, it further uses a model of radio wave propagation instead of the typical
measurement campaign. If several antenna elements are available at the receiver it is
also possible to use DOA features as studied in [46].

In order to completely remove the necessity of initializing the fingerprinting with mea-
surements or simulations, simultaneous localization and mapping (SLAM)-based ap-
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proaches have been developed to build up and update the database [47, 48, 49]. For
reasonable results, just few available absolute location information is sufficient, e.g.,
the location of connected cellular base stations or sporadic GPS positions. However,
a large amount of users and measurements is necessary to refine the data set. Hence,
on a global scale this approach is only feasible for organizations with a large user base.
So far this resulted, on the one hand, in proprietary solutions from corporations that
are large enough to maintain their own global data base and, on the other hand, sev-
eral providers that offer access to databases for fingerprinting with global coverage for
application development.

2.1.8 Range Free Methods

In contrast to all the methods described above, another class of methods called range
free localization does not rely on explicit measurements of the received signal’s features.
These methods have been developed for very simple sensor networks where the sen-
sors need to have a low complexity as well as power consumption and lower accuracy
of the localization is acceptable. This topic is strongly related to sensor network self-
localization, cf. Section 2.1.11. Instead of physical layer measurements, connectivity
information from higher layers is used. Network connectivity and routing is inherently
interlinked with the geometry of the network and therefore enables an inference of the
nodes’ locations. The simplest approach in this regard is the centroid method [50]. With
this method a sensor node determines its location as the centroid of the three closest
anchor nodes it is connected to. There exist several extensions such as weighted centroid
methods, where the weights are based on the quality of the links [51]. Another method,
distance vector-hop (DV-Hop), goes a step further and uses the hop count of messages,
that are broadcasted by the anchor nodes as an input. This increases the accuracy be-
cause a larger part of the network geometry is taken into account. Both methods have
weaknesses when the geometry is irregular or the nodes are moving. A third method,
approximate point in triangle (APIT) [52], improves on this by increasing the range
of the anchor node transmissions and calculating the center of gravity of multiple cen-
troids of triangles formed by all possible anchor triples. The name range-free is insofar
misleading, as the information about the radio links does implicitly contain information
about the range, albeit in some kind of highly quantized way. This quantization yields
an inherent bound to the accuracy.

2.1.9 Importance of Physical Layer, Protocols and Topology
in Network-Based Localization

In network-based localization, besides the design criterion of uplink and downlink lo-
calization, there exist the problem of physical layer waveform design and the problem
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of multi user access to the system. These problems are very similar to the design prob-
lems encountered in communication networks. For example, 3G cellular networks use
code-division multiple access (CDMA) to differentiate between the user equipments in
the cell, while GPS and Galileo use the same approach to differentiate between the dif-
ferent satellites. In communications systems, the physical layer waveform design puts
strict limits on the capacity of the system as has been described in Claude E. Shan-
non’s seminal works [53, 54]. Similarly in localization systems, the waveform inflicts a
limit on the accuracy, typically evaluated using the Cramér-Rao Bound [55]. Further
limitations are caused by the network geometry and are analyzed with the dilution of
precision concept [56].

A special case to be considered is the localization of signals from non-cooperative trans-
mitters, i.e., the structure of the waveform is either partially or completely unknown.
Under this constraint, a matched filter-based receiver is not feasible and alternative sub-
optimal techniques have to be used. In this thesis we consider the case of known and
unknown waveforms and perform TDOA-based localization. An unknown waveform
implies the exchange of baseband samples between the nodes in order to perform the
TDOA estimation. In practice for modern wide-band signals this requires a powerful
backhaul network. If the signal structure was known at the receiving sensors, matched
filter-based processing could reduce this communication overhead to a fraction. This
shows that, although the localization algorithm which solves for the coordinates in a
map based on the TDOAs is essentially the same in both cases, the consequences of
certain constraints can be critical for the practical feasibility.

2.1.10 Cooperative Localization

Contrary to the cooperative signaling described above, the term cooperative localization
often has a different meaning as described in [57, 58]. In cooperative localization two or
more user equipments or mobile nodes in a communication network cooperate in order
to improve their localization accuracy. The benefit of this is a large increase in the
number of anchor points that each user can see, because the other users act as a type of
additional virtual anchor point. Thus, it can be shown that the accuracy of localization
of each node can be improved substantially. It can also help to resolve situations where
insufficient anchor points are visible for each user, therefore entirely prohibiting a fix in
the non-cooperative case. This also means that if the mobile nodes cooperate, a smaller
amount of fixed anchor points is necessary.

2.1.11 Sensor Network Self-Localization

A problem that is related to cooperative localization is sensor network self-localization
[59, 60]. The problem is to find the location of the anchor points in the network. This
can be split into two subproblems:
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1. Finding a configuration, i.e, the relative positions of the sensors with respect to
each other.

2. Mapping this configuration to the absolute location on the map.

Obviously, some kind of absolute reference points is needed to perform the second
step. However, compared to determining an absolute localization of all anchors, only a
small subset of points is sufficient to provide the anchoring for the complete network.
Furthermore, in some cases, e.g., sensor swarm navigation [61], absolute locations are
not always required and therefore only the first step of the self-localization is needed.

2.2 Application Examples

The following section provides a examples of current infrastructure ground-based local-
ization technology. Due to the myriad of deployed systems in the research community
as well as the commercial market, completeness is not the scope of this listing. Rather,
the reader should gain a basic understanding of possible solutions for different types of
localization problems.

2.2.1 2G/3G/4G/5G Cellular Networks

Localization in cellular networks is desired due to several reasons. Among others these
are localization services for the customers, emergency response, law enforcement and
localization for the improvement of the service, such as improved handover among base
stations [62, 63] One of the most known authoritative measures in this area is the
Enhanced 9-1-1 (E911) system, which is mandatory, according to an Federal Communi-
cations Commission (FCC) order from 1996 and the 1999 Wireless Communications and
Public Safety Act, for all cellphone networks operated in the US [3]. The system is also
used for law enforcement purposes. It resulted in many base station and networks being
equipped with the necessary technology, such as direction finding, TDOA measurements
and uplink fingerprinting. Another method is to use the GNSS chipsets deployed in most
modern user equipments (UEs) and to retrieve this information from the network side.
Methods for network-based localization are described in the standards for 2G–Global
System for Mobile Communications (GSM), 3G–Universal Mobile Telecommunications
System (UMTS) and 4G–Long Term Evolution (LTE) networks [64, 65, 66, 67, 68, 69].
More specifically in LTE observed time difference of arrival (OTDOA), i.e., downlink
TDOA observed by the UE has been introduced in release 9 and uplink time difference
of arrival (UTDOA) in release 11 [70]. The accuracy of the 4G–LTE localization has
been studied in [71, 72, 73]. Although the accuracy in line-of-sight conditions can be
quite high due to the larger signal bandwidth compared to 2G and 3G systems, in NLOS
it can deteriorate harshly. Errors of 50-100 m and more are reported under such worst
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case conditions. In future 5G systems the signal bandwidth is expected to be further in-
creased and therefore the localization accuracy will be improved. Together with cell site
planning that is optimized for roadways, this is expected to be an important assisting
technology for autonomous driving [74]. Although, most currently deployed networks
possess some degree of localization capabilities, these services are typically not available
to the user. Localization of the UE from the user perspective, as necessary for personal
navigation software is mostly done using a combination of GNSS and a fingerprinting
approach that takes the RSSI of all available RF signals into account.

2.2.2 Personal and Industrial Indoor Localization

Due to the missing availability of interfaces on the user side and the insufficient accuracy,
cellular network-based localization is often not adequate for many indoor applications.
This and the poor coverage with GNSS signals leads to a strong demand for additional
methods which are often based on short range communication systems. The authors of
[75] and [76] provide surveys about the commonly used approaches. Indoor localization
can be used for guidance systems in shops, museums and conferences and for personal
mobility in airports, train- and subway stations. It is also used in the industrial context
for warehouse management and autonomous systems such as robots. Personal naviga-
tion is often based on IEEE 802.11 WiFi and Bluetooth due to their broad availability
on the end user hardware. Localization is typically carried out with RSSI-based fin-
gerprinting. Together with further sensors of the used hardware platform, i.e., IMU,
camera, the accuracy and the experience for the user can be further improved [77].
More recently ultra-wideband (UWB) technology has been introduced and studied ex-
tensively. The very short time, high bandwidth pulses of UWB provide a simple means
of multipath resilience. Typical UWB implementations cover several 100 MHz of band-
width and enable positioning errors in the order of cm [78]. A disadvantage is the
limited range due to very low regulatory limits on the transmitted power. As of today,
the proliferation of UWB technology has been limited and it is mostly used for specific
industrial applications. Further, there is a large range of proprietary real-time locating
system (RTLS) technologies [37, 79, 80] requiring custom made anchors as well as tags.

2.2.3 Localization in Aviation

In commercial civil aviation a large range of RF-based technologies is used in order to
obtain location information about the aircrafts [16]. The different technologies can be
grouped in two categories, systems that help the aircraft to self-localize and systems
that are used for surveillance of the airspace from the ground. For self-localization,
besides the relatively new GNSS, various ground infrastructure-based systems are used.
The distance measuring equipment (DME) enables the aircraft to perform ranging, it is
composed of very simple transponder ground stations that respond to the interrogation
of the aircraft. Another system called VOR, depicted in Figure 2.3 provides directional
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Figure 2.3: The VOR transmitter at the former airfield Berlin Tempelhof. The runway
is now open to the public.

information by emitting a rotating RF beam together with an omnidirectional synchro-
nization signal. A joint DME and VOR station is able to provide information about
the absolute location of the aircraft by a combination of range and direction. This is
an older implementation of the rotating lighthouse principle as described in [29, 30]
which is now also used for indoor localization. Finally, in case of bad weather condi-
tions instrument landing system (ILS) is used to support aircraft landing. ILS uses
antenna arrays to transmit directed RF beams towards the sky. The beams are trans-
mitted pairwise on two different frequencies and are used by the aircraft for navigation
by staying in the equilibrium line of the amplitudes of the two signals. The localizer
beams enable the aircraft to align its flightpath with the runway, while the glideslope
beams indicate a slope of 3 degrees towards the touchdown point at the beginning of
the runway. To provide additional information, the aircraft may use further onboard
sensors that do not rely on any network architecture, these are the inertial measurement
unit, air pressure sensor, Pitot tube for airspeed measurement and the radio altimeter,
which is a RADAR that measures the distance to the ground.

To determine the location of the aircraft from the ground two major systems are in
use. The primary surveillance radar (PSR) is a classical RADAR that emits a strong
signal and receives the reflection from the aircraft. A more modern system is secondary
surveillance radar (SSR), it requires a transponder hardware aboard the aircraft that re-
sponds to the transmission of the ground station similarly to DME. However, additional
information about the identification and current location of the vehicle is included in
the response. The active transponder technology allows for a significantly lower trans-
mit power of the ground station. In order to perform the localization the information
inside the response message, that is obtained by the aircraft through GNSS, can be
trusted or the signals can additionally be used by the ground stations in order to per-
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form their own localization of the vehicle, e.g., using a WAM network. The airborne
transponder can also be used for a second mode called automatic dependent surveillance
- broadcast (ADS-B), where a message is regularly transmitted at a frequency of 1 Hz
or higher. This enables a passive localization from the ground using WAM [81, 82] and
also for aircraft among each other for the purpose of collision avoidance.

2.2.4 Maritime Localization

Besides classical optical lighthouses, modern maritime navigation also uses radio nav-
igation. Infrastructure-based solutions are Decca, Omega and Loran-C, which are low
frequency hyperbolic, i.e, TDOA, systems. These systems work based on a very widely
spread out, synchronized network of anchor stations, that regularly emit RF pulses.
Proliferation of these type of systems dates back to the Second World War era and the
only system still in service among the three is Loran-C. Accuracy of classical Loran-C
is rather low based on the fact that the signal bandwidth is low. This is one of the rea-
sons why GNSS-based navigation experienced a steep rise in popularity. Other reasons
are the ubiquitous world wide availability and lower cost per user. Nevertheless, there
exist some undertakings, namely EUROFIX, eLoran and eDLoran, that aim to improve
Loran-C and use it in combination with GNSS [83, 84]. The accuracy for the updated
system has been shown to be in the order of 5-10 m for regions of good coverage [85, 86].
These ground-based backup and augmentation systems are also much less vulnerable to
jamming compared to GNSS. Close to the shoreline, RADAR can be used very well to
obtain a fix by comparing the RADAR image to stored map data. As the RADAR also
provides a tool to avoid collisions during bad weather conditions, most larger vessels
now are equipped with a combination of RADAR and GNSS navigation. To determine
the depth of the water ships are also equipped with echo sounding; RF-based RADAR
is not well suited for this application due to the poor penetration properties of the radio
waves in water.

Another application of radio localization in the maritime context are radio buoys. These
radio beacons are used for example in order to recover driftnets. The fishing vessel has
to be equipped with a direction finder system and the net will be connected to the buoy
which constantly emits a signal.

An interesting research field that requires localization in the ocean are swimming and
floating sensor networks. Two examples are the international Argo project [87] and the
swarm of underwater robots [25] developed at the university of California San Diego.
Argo is a cooperation of 29 countries and has almost 4000 ocean floats with sensors
all over the world. The floats are able to dive down to a depth of 2000m to generate
measurement data. Data is collected using a satellite link when the floats return to the
surface. Float locations are also determined when they are at the surface using GNSS.
The underwater robot swarm [25] is a system that covers smaller regions of hundreds
of square meters to a few square kilometers. It is used to very accurately measure the
flows occurring in a volume of ocean water. Two components are necessary for this,
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a number of floating buoys as anchor points and the underwater robots. The anchors
are synchronized using GPSDOs and emit an acoustic underwater signal whose times of
arrival are recorded by the robots on a large memory. Localization is performed offline
using the complete dataset [88].

2.2.5 Spectrum Regulation and Surveillance

The task of spectrum regulation is a duty of the national spectrum agencies. In order
to provide a sufficient level of standardization under such a constraint, the decisions of
the national organizations are based on International Telecommunication Union (ITU)
recommendations and standards. According to the Handbook on National Spectrum
Management [89] the issues that the agencies shall be supervising are

• Monitoring to assist frequency assignment,

• Monitoring to assess spectrum occupancy,

• Monitoring for compliance with national rules and regulations,

• Detection and identification of unauthorized transmissions,

• Monitoring to identify the source of, and, resolve interference.

Especially for the latter tasks, localization of the emissions is mission critical. For CR
applications it is also interesting to have maps of the spectrum occupancy which requires
a sensor network with the ability to provide location information. A good overview and
understanding of the topic of localization for spectrum surveillance can be gained from
the spectrum monitoring handbook [90]. Of further importance concerning the topic is
the ITU spectrum management series, where several recommendations have been pub-
lished that are concerned with direction finding systems. General tasks of a monitoring
service are summarized in [91]. Methods for direction finding and emitter localization
using monitoring stations are described in [89, 90, 92]. More detailed recommendations
for time division multiple access and code division multiple access signals are provided
in [93]. In [94] testing procedures for the accuracy of direction finding stations are
described, while [95] is concerned with the precision of TOA-based sensors.

2.2.6 Search and Rescue

In disaster scenarios localization technology can be a life-saving tool. The E911 clearly
defines requirements for localization of user equipment in case of emergencies. In the
European Union a similar system under the name Enhanced 1-1-2 (E112) is partially
implemented. As described in Section 2.2.1, this has lead to enhancing the base sta-
tions and networks with the required capabilities. In situations where no sophisticated
network infrastructure is available, yet search and rescue is required, other approaches
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might be used. An example is large destructions and collapsed buildings due to earth-
quakes. Buried people might still carry their phones and this presents an opportunity
for mobile search and rescue teams to perform the localization. In [96] it has been
shown how the mobile device can be triggered to transmit from an improvised mobile
GSM base station. The emergency responders can then setup up a temporary network
and perform multilateration as demonstrated in [97]. A simpler method is to use simple
single antenna sensors [98] and manually perform signal strength-based localization by
moving around with the sensor. Similar approaches are used to recover buried skiers
and snowboarders from avalanches. There are two options available in the market for
athletes to carry. A RECCO reflector is a passive device that is usually embedded in
a jacket. Using a special RADAR device the reflector can be detected and localized
below the surface. More sophisticated avalanche transceivers include a transmitter and
a receiver using a standardized frequency of 457 kHz. In case of an accident of a mem-
ber of a group, the device is switched to receive mode and can then be used to localize
the buried person. Currently available receivers possess direction finding and ranging
capabilities. Similarly, for marine use active beacons are used for search and rescue.
An automatic identification system - search and rescue transponder (AIS-SART) is a
simple transmitter that can be detected by a suitable receiver up to 10 nautical miles.
In contrast an emergency position-indicating radio beacon (EPIRB) allows to transmit
a local signal together with an emergency message over a satellite network, thereby
dramatically increasing the range.

2.2.7 Wildlife Radio Tracking

Wildlife radio tracking is a process of tagging animals with some type of RF-based tags
in order to observe their movements and behavioral patterns among the population.
A good overview of such techniques can be found in the books of Kenward [99] and
White [100]. Typical systems either use GPS-based tags or local base station-based
systems that track custom made tags using an RSSI, DOA or TDOA-based approach.
The design decision for a certain technology is clearly based on a trade-off between
range, update rate, lifespan and cost. GPS-based tags, as shown in Figure 2.4, are either
heavy due to the large energy consumption or have low update rate as well as lifespan.
Another design criterion is the question of data extraction. Systems can either perform
in real-time and constantly report back the animal’s location to the scientists or record
data for later interrogation. If the location is calculated in the tag, data backhauling
further limits the battery lifetime. Infrastructure-based systems, e.g., with WAM can
support small tags with high update rate and real-time capability because the tags can
be very simple transmitters and the majority of signal processing is performed at the
sensors and FC. Real-time capable systems enable further applications such as finding
the animals in their sleeping spots for close observation. Using the output data of the

1Pictures have been taken during a research stay in Israel, the author thankfully acknowledges the
support by the Minerva short-term research grant of Max Planck Society.
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(a) (b)

Figure 2.4: (a) A GPS-based wildlife tracking tag for eagles and other large birds, (b)
a tag for the ATLAS [24] tracking systems with a weight of about 1-2 g.1

wildlife tracking system scientist can perform a number of examinations about a species
in the observed habitat. Among others they can answer questions about the home range,
size of the habitat, locations of sleeping hideouts, survival rate, movement patterns,
mating habits, interaction and sleeping patterns. As the quality of these results directly
depends on the accuracy of the localization, it is important to constantly improve such
systems with state-of-the-art hardware and algorithms. Examples of recent state-of-
the art infrastructure-based scientific wildlife tracking systems are [101, 102, 24]. As
demonstrated by the ATLAS system [24] SDR technology enables fast prototyping as
well as deployment of advanced tracking system.

The ATLAS system

The ATLAS system is a wildlife localization and tracking system, developed jointly by
the biology department of Hebrew University and the computer science and electrical
engineering department of Tel-Aviv University. This system is basically a WAM system
using TDOA measurements for the localization. Various birds as well as bats with
a minimum bodyweight of about 20 g are tagged with battery powered transmitting
tags. The tagging process is depicted in Figure 2.5. Afterwards, the animals can be
localized in quasi real-time by an array of 9 base stations distributed in an area of
about 10 km by 20 km in Hula Valley in the north of Israel. Backhauling of the sensor
measurement data is performed over the Internet using cellular network connections.
A TDOA localization algorithm is then run in a FC server at the university. On the
physical layer the system uses 433 MHz frequency-shift keying (FSK) signals transmitted
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(a) (b)

(c) (d)

Figure 2.5: The process for tagging birds in Hula Valley, (a) small birds are not heavy
enough to carry the tags, (b) a tag being glued to the back of a slightly
larger bird (a Bulbul), (c) antenna of the tag, the tag is hidden beneath the
feathers, cellular base station tower co-locating the ATLAS system (d).

by the tags at intervals of 1 or 2 seconds, depending on the battery lifetime requirements.
The transmit bandwidth is about 2 MHz and the power about 1 mW. Multiple access is
achieved by assigning each tag its unique 8ms long, 8192 length code sequence. Using
this approach, several hundred animals can be tracked in parallel. Similar to GNSS
signals, the coding gain that can be achieved with the knowledge of these long codes
allows the reception of the signals under very low signal-to-noise ratios (SNRs). The
typical achievable accuracy of the localization is in the order of 5-10 m if the signal
is received by most of the base stations. An analysis of the accuracy of the system
extended to asynchronous clock operation is given in Section 3.8.
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3 Localization with TDOA

In the remainder of the thesis the focus lies on various techniques and algorithms that
deal with TDOA-based localization. Therefore, after defining a system model, the
present chapter begins with the basics of measuring and estimating TDOAs and ex-
plaining how the location estimation can be performed for single snapshots. It then goes
on to deal with fundamental accuracy limits of such systems that are on the one hand
determined by the network geometry and on the other hand by the measurement noise.
The former is often analytically treated using the dilution of precision (DOP) concept
while the latter is modeled using bounds such as the Cramér-Rao lower bound (CRLB).
The DOP and CRLB are closely related and essentially perform the same analysis. An
interesting special case is the case of differential measurements, where additional bea-
cons are present in the system that serve as calibration emitters. This improves the
synchronization at the cost of additional noise introduced by the additional measure-
ments. Finally, tracking methods that take into account several observations over time
can help to overcome the limits of single snapshots. A Kalman filter (KF) approach
that takes into account the geometry of the network is introduced for that purpose at
the end of the chapter.

Parts of the following results have been presented in [12].

3.1 TDOA System Model and Geometry

During the course of the thesis several slightly different signal models are considered.
The main differences are the sensors are the transmit capability of the sensors, the
number of transmitting targets, and different models for signal propagation. If none
of the sensors performs any transmission in the observed frequency band we define the
system as passive. This chapter begins with the simplest model and extensions are added
when needed. Consider a system of M distributed receivers that are trying to localize
P moving transmitters. We define an index set for the sensors as S = {1, . . . ,M} and
an index set for the transmitters as T = {1, . . . , P}. The system is considered to be
passive and has no communication from the transmitting target to the receivers for the
purpose of the localization. For the sake of simplicity begin with P = 1, assuming a
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single transmitter and model the transmitted signal as

yi(t) = his(t− ti) + wi(t), i ∈ S, (3.1)

where wi(t) is a Gaussian noise process and ti models the delay which is proportional
to the propagation distance di,k between the transmitter k and receiver i. Similarly
hi ∝ 1

di,k
models the attenuation of a free space propagation channel. A TDOA capable

sensor system is able to observe time differences τi,j,k = ti − tj between receiver i and
the reference j resulting from a signal of transmitter k. In a two-dimensional space this
translates to equations of the form

τi,j,k = 1
c

(
‖pk − ri‖2 − ‖pk − rj‖2

)
, i, j ∈ S, k ∈ T

= 1
c

(√
(pk1 − ri1)2 + (pk2 − ri2)2 −

√
(pk1 − rj1)2 + (pk2 − rj2)2

)
,

(3.2)

with the speed of light c and the coordinates of the transmitter pk = [pk1, pk2]T, k ∈ T
and the coordinates of the receivers rk = [rk1, rk2]T, k ∈ S. Based on the measurements,
a solution for the location pk can be found as explained in Section 3.2. Geometrically
the problem goes back to an intersection of hyperbolic functions. An example is shown
in Figure 3.1.

Figure 3.1: Exemplary TDOA localization system with four receivers and two transmit-
ters, often one receiver is selected as a reference for the TDOA estimation.
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3.2 TDOA Localization Algorithms

TDOA measurements are used for localization in the situation where no absolute TOF
measurements are possible, i.e., transmitter and receiver are not synchronized but syn-
chronization of the anchor points is possible. Assuming the TDOAs between the sensors
are exactly known or have been estimated, several methods exist that can determine
the position of the transmitter. Overviews about the most important known methods
may be found in [103, 104]. In [105] a performance comparison of different methods
is provided. The minimum number of sensors needed to perform TDOA localization
in two dimensions is three. This yields a so called full set of TDOAs of size three.
In general there are M(M − 1)/2 TDOAs in the full set for M sensors. It turns out
that for the noiseless case the full set is redundant and a reduced set or spherical set
that uses only one sensor as the reference is sufficient. However, in the more realistic
case of noisy measurements the single reference approach can yield slightly suboptimum
results [106] and improvements can be achieved by an optimum full set to reduced set
conversion [107].

Assume a single target transmitter P = 1, the following algorithm [108, 109] provides
a solution for the target coordinates in the three sensor case (M = 3). It uses the two
non-redundant TDOAs τi,j,k where the reference sensor j = 1 and i ∈ {2, 3}. With the
auxiliary terms

gi,1 = ri1 − r11, (3.3)
gi,2 = ri2 − r12, (3.4)
δi,1,k = cτi,1,k, (3.5)
δi,1,k = di,k − d1,k, (3.6)
d1,k = ‖pk − r1‖2 , (3.7)
Ki = r2

i1 + r2
i2, (3.8)

the target coordinates pk can be determined as

pk =
[
g3,2 −g2,2
−g3,1 g2,1

]
1

(g3,2g2,1 − g2,2g3,1) ×
[
δ2,1,kd1,k + 1

2δ
2
2,1,k −K2 +K1

δ3,1,kd1,k + 1
2δ

2
3,1,k −K3 +K1

]
, (3.9)

This can be rewritten as follows:

pk1 = d1,k

[
g2,2δ3,1,k − g3,2δ2,1,k

g3,2g2,1 − g2,2g3,1

]
︸ ︷︷ ︸

A

+
g2,2

(
1
2

(
δ2

3,1,k −K3 +K1
))
− g3,2

(
1
2

(
δ2

2,1,k −K2 +K1
))

g3,2g2,1 − g2,2g3,1︸ ︷︷ ︸
B

, (3.10)
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pk2 = d1,k

[
g3,1δ2,1,k − g2,1δ3,1,k

g3,2g2,1 − g2,2g3,1

]
︸ ︷︷ ︸

C

+
g3,1

(
1
2

(
δ2

2,1,k −K2 +K1
))
− g2,1

(
1
2

(
δ2

3,1,k −K3 +K1
))

g3,2g2,1 − g2,2g3,1︸ ︷︷ ︸
D

. (3.11)

Introducing eqs. (3.10) and (3.11) into (3.7) leads to

d2
1,k = d2

1,k ·
(
A2 + C2

)
︸ ︷︷ ︸

α+1

+d1,k · 2 (AB + CD − Ar11 − Cr12)︸ ︷︷ ︸
β

+ r2
11 + r2

12 − 2r11B − 2r12D +B2 +D2︸ ︷︷ ︸
γ

. (3.12)

Then, d1,k can be solved as

d1,k = −β ±
√
β2 − 4αγ

2α . (3.13)

This yields two roots, normally one of them positive and the other negative. By intro-
ducing the positive root into eqs. (3.10) and (3.11) the final solution is obtained. An
ambiguity can occur when both roots are positive.

−2 −1 0 1 2 3 4

x

−2

−1

0

1

2

3

4

y

Sensors

Bifurcation curve
for unique localization

Additional
uniqueness lines

Figure 3.2: The three sensor TDOA localization problem has a region where the solution
is unique (gray area and dashed lines), in the white region two different
solutions are obtained. Reproduced and plotted based on results from [110].

Clearly, with three sensors the solution is in general not unique, due to the fact that
the two linearly independent hyperbolas may have two intersections in some cases. The
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region of uniqueness can be analytically derived as shown in [110, 111] and depicted in
Figure 3.2.

A fourth sensor can resolve the uniqueness problem and provide redundancy for the
unique region. Further sensors provide additional redundancy to the solution and there-
fore lead to a least squares approach

p̂k = arg min
pk
‖τ̂k − τk‖2 , (3.14)

where τ̂k = [τ̂2,1,k, . . . , τ̂M,1,k]T are the estimated TDOAs as described in Section 3.3.
For this problem, in the literature, two major classes of algorithms can be identified.

• Iterative algorithms: These types of algorithms solve the problem by applying
gradient descent or Gauss Newton types of algorithms, linearizing the problem
with Taylor series approximation. The algorithms of Foy [112] and Torrieri [113]
fall under this class. Due to the non-linear nature of the TDOA problem, a large
number of iterations might be necessary for some target locations.

• Direct algorithms: Another class of methods derives closed form direct solu-
tions for the problem, thereby avoiding large numbers of iterations. The first
popular approach in this direction has been a transformation of the hyperbolic
problem to spheres by introducing an additional variable that describes a fixed
virtual time reference. This idea has been used by Friedlander [114], Schau [108],
Fang [115] and Smith [116, 117]. Those methods need at least one additional
sensor per dimension, e.g., four sensors in two dimensions. Further, the results
are suboptimum as the solution depends on the choice of the fixed virtual time
reference. An improvement is provided by the two step approach that takes this
dependency into account. It has first been proposed by Chan [109] and reaches
the CRLB (described in Section 3.6). This particular method performs very well
under optimum conditions but is biased for low SNR, erroneous sensor locations
and problematic geometries. Later it has been slightly improved by Huang in [118]
and also by the initial co-author in [119], in order to decrease the bias. A rather
different formulation, that also leads to the reduced bias performance, has been
proposed by Wei [120]. It formulates the passive source localization problem using
multidimensional scaling (MDS) by introducing two additional dimension to the
problem.

3.3 TDOA Estimation from Known and Unknown
Waveforms

In order to perform the algorithms listed in Section 3.2 the TDOAs have to be estimated
from the received signals first. Depending on the knowledge on and the waveform
structure of the emitted signal, there exist two possible ways
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• Direct TDOA estimation: For the direct estimation access to the baseband
samples of both sensors is needed. Technically this implies a large amount of
information communicated between the sensors and the FC where the calculation
is performed. This is a problem that is partially addressed by the approach
described in Chapter 4. For a direct estimation of the TDOAs usually a cross-
correlation approach is used. The direct method is useful especially if the observed
signal structure is unknown or if insufficient pilots are embedded in the signal.

• Estimation based on TOAs: In case of a known signal and pilot structure, each
sensor can estimate a TOA of the signal independently from the others. In this
way the amount of data that needs to be transmitted to the FC can be decreased
considerably. TDOAs are in this case straightforwardly calculated as a difference
of TOAs.

The TDOAs between the anchor points can then be estimated based on the received
signals. A well known estimator is the cross-correlation and its extended, i.e. filtered,
versions called generalized cross-correlation (GCC) [121, 122]. The basic unfiltered
estimator is given as

Ryiyj(τ) =E{y∗i (t)yj(t+ τ)} , (3.15)
τ̂ = arg max |Ryiyj(τ)|. (3.16)

An estimator for Ryiyj(τ) is given as

R̃yiyj(τ) = 1
T

∫ T

τ
y∗i (t)yj(t+ τ)dt , (3.17)

with the observation time T . Using the equivalent baseband model at each sensor i
one obtains yi(t), that contain ideally low pass filtered, Nyquist sampled version of the
received signals, where t = nTs and n ∈ Z. Here Ts is the sampling interval. The
cross-correlation function can then be estimated as

R̂yiyj [η] = 1
N

N−1∑
n=0

y∗i [n]yj[n+ η] . (3.18)

In practice the length N of the available signal vector

yi =
(
yi(t0 − γ), . . . , yi(tN−1 − γ)

)T
∈ CN×1 , (3.19)

with the delay γ is limited. The estimate of cross-correlation is therefore biased as the
number of samples available for the calculation of each lag is not constant. Instead one
might use an unbiased version of the estimator

R̂yiyj [η] = 1
N − η

N−1−η∑
n=0

y∗i [n]yj[n+ η] , (3.20)
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where it has to be taken care that η � N , such that enough samples are available
for the estimation. A fast version based on the fast Fourier transform (FFT) can be
implemented as [123, p. 188]

R̂yiyj [η] = 1
N

M−1∑
m=0

Z∗i [m]Zj[m]ej 2πnm
M , (3.21)

with

Zi[m] =
N−1∑
n=0

zi[n]ej 2πmn
N , (3.22)

Zj[m] =
N−1∑
n=0

zj[n]ej 2πmn
N , (3.23)

where y[n] needs to be zero-padded if the acyclic cross-correlation function is desired

zi = [yT
i 0T]T , (3.24)

zj = [0T yT
j ]T . (3.25)

3.4 Interpolation

Due to the discrete nature of the cross-correlation function estimate R̂yiyj [η] the ac-
curacy of τ̂ is limited by the sampling time step Ts. Several different methods for
interpolation exist in the literature. An overview of different methods used in digital
signal processing is given in [124, Chapter 5.6]. A rather simple but computationally
expensive method is to upsample the signal to a higher sampling rate Ts that provides
sufficient accuracy for time delay estimation. For very high accuracies this does not
only require a large amount of computation but can also result in an enormous memory
footprint. Therefore other analytic methods, that provide virtually infinite accuracy are
preferable. This can be achieved by using a single polynomial interpolation based on
the so called Lagrange form first discovered by Waring [125]. It requires solving a linear
system of equations in order to determine the coefficients of a polynomial that goes
through each sample point. Interpolation with a single polynomial however has well
known limitations, i.e., the Runge phenomenon that describes the often occurring strong
oscillation, especially at the endpoints. Therefore, the method of spline interpolation is
preferable for signal processing applications. Splines are piecewise defined polynomials
that can be constructed as the sum of B-spline basis functions with limited support.
The pieces of the B-spline can be constructed using the Cox-de Bor formula [126]

Bi,0(τ) :=

1 if ti ≤ τ < ti+1

0 otherwise ,
(3.26)

Bi,k(τ) = τ − ti
ti+k − ti

Bi,k−1(τ) + ti+k+1 − τ
ti+k+1 − ti+1

Bi+1,k−1(τ) , (3.27)
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Figure 3.3: Single B-spline basis function

where ti are the called the knots of the spline, which limit the different pieces. Figure 3.3
shows an example for a cubic B-spline basis function. In order to determine the weights
for each basis, different methods exist that try to fit a spline in an optimum way to a
given set of sample points, according to different criteria, e.g., smoothness [127, 128]. A
beneficial property of the polynomial-based interpolations is the possibility to find the
maximum of the interpolated function with arbitrary accuracy by the use of calculus.
To simplify the process of the peak detection, a possible simplification is to omit the
derivation of interpolation weights and use the sample values instead. For this it is
necessary to have the spline knots located at the sampling points. Using an explicit
formulation, a cubic spline piece for τ ∈ [0, 1) can be written as

ζ(τ)3 = ν1B1,3(τ) + ν0B0,3(τ) + ν−1B−1,3(τ) + ν−2B−2,3(τ), τ ∈ [0, 1), (3.28)

where ν0 is the weight for the knot at τ = 1, with

B−2,3(τ) = a(τ + 2) = 1
6(1− 3τ + 3τ 2 − τ 3) for 0 ≤ τ < 1, (3.29a)

B−1,3(τ) = b(τ + 1) = 1
6(4− 6τ 2 + 3τ 3) for 0 ≤ τ < 1, (3.29b)

B0,3(τ) = c(τ) = 1
6(1 + 3τ + 3τ 2 − 3τ 3) for 0 ≤ τ < 1, (3.29c)

B1,3(τ) = d(τ − 1) = 1
6τ

3 for 0 ≤ τ < 1. (3.29d)
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Figure 3.4: Interpolation of the cross-correlation function using B-spline interpolation,
which is used in the experimental part of the thesis including, approximation
and derivatives.

The associated derivatives are given as
d

dτ
B−2,3(τ) = 1

6(−3 + 6τ − 3τ 2) for 0 ≤ τ < 1, (3.30a)
d

dτ
B−1,3(τ) = 1

6(−12τ + 9τ 2) for 0 ≤ τ < 1, (3.30b)
d

dτ
B0,3(τ) = 1

6(3 + 6τ − 9τ 2) for 0 ≤ τ < 1, (3.30c)
d

dτ
B1,3(τ) = 1

6(3τ 2) for 0 ≤ τ < 1. (3.30d)

Further, the relevant parts with the location of the maximum are assumed to be in the
section directly left and right of the sample maximum of R(τ). Then the derivative
d
dτ
ζ(τ)3 of the spline from (3.28) with the weights νi given by the sample values of R(τ)

is given as

d

dτ
ζ(τ)3 = ν1

d

dτ
B1,3(τ) + ν0

d

dτ
B0,3(τ)

+ ν−1
d

dτ
B−1,3(τ) + ν−2

d

dτ
B−2,3(τ), τ ∈ [0, 1), (3.31)

where ν0 is assumed to be the sample maximum and the true peak is in the left interval
towards ν−1. An equivalent solution can be given for the peak in the right interval.
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Then a solution to the peak detection problem is the solution of

τmax = −0.5 6ν0 − 12ν−1 + 6ν−2

3ν1 − 9ν0 + 9ν−1 − 3ν−2

±

√√√√(0.5 6ν0 − 12ν−1 + 6ν−2

3ν1 − 9ν0 + 9ν−1 − 3ν−2

)2

− 3ν0 − 3ν−2

3ν1 − 9ν0 + 9ν−1 − 3ν−2
(3.32)

located in the interval of interest. This explicit simple analytical solution yields a good
compromise between accuracy and computational complexity. An example can be found
in Figure 3.4, where the approximated solution is almost identical to the complete spline
interpolation.

3.5 Time of Arrival Estimation using OFDM Signals

Exemplary for the case of known signals, some examples from the class of OFDM signals
are discussed in the following. When known signals with pilot structures are received
it is possible to estimate a TOA at each receiver in an uplink configuration. In the
downlink configuration a single receiver needs to estimate all TOAs from the different
anchors. TDOA-based localization can then be performed using the differences of the
measurements. For example, in LTE systems this final step is always performed by the
core network, which obtains the measurements either from the UE in the downlink, i.e.,
the so called OTDOA case or from the Evolved NodeB (eNB) in the uplink, i.e., the so
called UTDOA case.

3.5.1 Estimation Based on Cyclic Prefix and Preamble

OFDM signals as used in point to point communication like in IEEE 802.11 wireless
local area network (WLAN) are built from symbols that contain several subcarriers.
Subcarriers are transmitted parallel on different frequencies in an orthogonal way. In
order to protect each consecutive signal from the effects of multipath propagation and
avoid inter symbol interference (ISI), a so called cyclic prefix (CP) is added in front
of each symbol. The CP is a copy of the final part of the symbol itself as shown in
Figure 3.5. The resulting signal can be written for a single OFDM symbol as

Figure 3.5: Basic OFDM signal structure.
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x(t) = 1√
N

Nsym−1∑
k=0

Xke
j2πfktq(t− nT ) , −Tcp ≤ t ≤ Tsym, (3.33)

where Nsym is the number of subcarriers Xk is the message symbol transmitted over
the kth subcarrier, Tsym the symbol duration and Tcp the cyclic prefix duration. The
position of each subcarrier is

fk = k∆f , (3.34)
with the subcarrier spacing

∆f = 1
TsNsym

, (3.35)

while q(t) is a pulse shaping function, for example:
q(t) = rect(t) . (3.36)

The discrete realization of the OFDM signal without oversampling for this simple pulse
shaping function and sampling times

t = nTs , (3.37)
becomes

x[n] = 1√
Nsym

Nsym−1∑
k=0

Xke
j2π kn

Nsym ,−Ncp ≤ n ≤ Nsym. (3.38)

By generating the OFDM symbols in frequency domain each subcarrier can be indi-
vidually modulated with signaling or user data. A number of OFDM symbols forms
a frame. Usually each frame carriers synchronization data on some of the subcarriers,
e.g., on all subcarriers of the first symbol. A well known method has been proposed by
Schmidl and Cox [129]. In this approach the first symbol of the preamble is loaded with
two identical parts in time domain. Using such a pilot or preamble symbol, the begin-
ning of the frame can be detected. The preamble symbol is often used together with
the CPs [130] to continuously perform time synchronization using a running correlator,
that correlates two different parts of the received signal

P [n] =
N/2∑
d=0

x∗[n+ d]x[n+N/2 + d]. (3.39)

The normalized output of such a correlator, according to the two different metrics, is
shown in Figure 3.6. For localization this provides a first approach for the estimation
of the TOA. However, a communication receiver has very low requirements on the
accuracy of the synchronization compared to a receiver aiming for localization. In
communication an error of several samples is acceptable due to the cyclic properties of
the OFDM symbol. Assuming a bandwidth between 1 and 20 MHz a synchronization
mismatch of a single sample transforms to an error of up to 300 m. Therefore additional
interpolation is necessary in order to achieve reasonable results. TOA estimation based
on the CP and preamble is inherently limited by the fixed length of these structures [131].
Therefore it is useful to reserve additional data subcarriers and transmit additional pilot
information in order to improve the localization accuracy. This is the approach followed
in the LTE standard.
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Figure 3.6: Correlator outputs for OFDM time synchronization. Based on the preamble
design of Schmidl and Cox [129] (top), and the cyclic prefix [130] (bottom).
The corresponding OFDM signal frame consists of 12 symbols.

3.5.2 OTDOA in LTE Downlink

The LTE downlink from the eNB to the UE uses orthogonal frequency-division multiple
access (OFDMA) on the physical layer. This is essentially OFDM where the subcarriers
are shared among all users in time and frequency. For localization, the network can make
a request to the UE to take TDOA measurements between different detectable eNBs.
During the measurement time a specially designed signal sequence called positioning
reference signals (PRS) is embedded in the downlink signals. The measured TDOAs
are reported back the network where the UE location is calculated. An example for the
PRS in the OFDM time frequency grid can be seen in Figure 3.7. The exact sequence
and all possible configurations are given in [69, §6.10.4]. PRS signals are transmitted
on distinctive subcarriers for each neighboring eNB in order to avoid interference. Ad-
ditionally, to further lower the interference, specifically in the case of localization, the
transmissions in neighboring cells can be muted completely.

3.5.3 UTDOA in LTE uplink

In the LTE uplink the single-carrier frequency-division multiple access (SC-FDMA) is
used for radio access from the UEs to the eNBs. For localization a set of eNBs that
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Figure 3.7: Example of the positioning reference signals (PRS) used for localization in
an 1.4 MHz LTE downlink. The exact subcarrier pattern depends is different
for each eNB.

are able to detect the uplink signal is ordered by the core network to obtain TDOA
measurements. Simultaneously the UE is requested to embed the sounding reference
signal (SRS) sequence into its transmit signal. Finally, similar to the downlink case
the measurements are delivered to the responsible service of the core network and a
localization is obtained. The SRS can be transmitted on the last OFDM symbol of
each subframe as shown in Figure 3.8. In order to support multiple users, the SRS uses
a Zadoff-Chu or a quadrature phase-shift keying (QPSK) sequence that is optimized
for low cross-correlation. The exact sequence and all possible configurations are given
in [69, §5.5.3]. The number of simultaneous users can be further increased by frequency
alternating scheme and a frequency hopping scheme. As in the downlink case, muting
of adjacent cells for interference management is possible.

3.6 Dilution of Precision and Cramér-Rao Bound

The dilution of precision (DOP) concept models how the sensor network geometry
translates into localization errors with respect to the location of the target. This concept
is most prominently known from GPS [56] and most of the available GPS receivers are
able to calculate it. For TDOA-based localization it can be similarly applied. As shown
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Figure 3.8: Example of the SRS used for localization in a 5 MHz LTE uplink. The SRS
(gray) can be transmitted on the last symbol of each subframe.

in [132] define the Jacobian Hj of the TDOAs with reference receiver j

Hj =


...

( ∂
∂pk

τi,j,k)T

...

 , i ∈ S \ {j} , (3.40)

where the partial derivative

∂

∂pk
τi,j,k = 1

c0

(
pk − pi
‖pk − pi‖2

−
pk − pj∥∥∥pk − pj∥∥∥2

)
, (3.41)

describes the change in each TDOA measurement for a change in each dimension of the
location pk. The DOP is then defined as

DOPj =
√
tr((HjTHj)−1) . (3.42)

This value exclusively describes the effect of the precision loss due to the geometry.
However, for a more comprehensive understanding of the system limitations the loss of
the propagation channel and the resulting SNR as well as the limitations due to the
limited signal bandwidth have to be taken into account. This leads to performance
bounds such as the CRLB [55], which for TDOA systems is examined in [109, 133]. For
low SNR the CRLB becomes loose. This is due to the behavior of the cross-correlation
estimator. At high SNR the estimates will always be close to the main lobe. Whereas,
for low SNR the main lobe will become so low that the estimate will become completely
random, dominated by noise and secondary lobes, eventually the error will just be
limited by the size of the search space. To describe this behavior the Ziv-Zakai and
the Weiss-Weinstein [134, 135, 136] bounds can be used, which are much tighter and
consistent with the real system behavior at low SNRs. Though, at high SNR the bounds
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are identical. Most of the time the CRLB analysis provides sufficient insight, as often,
due to the large performance degradation, it makes little sense to operate the system
under conditions where the Ziv-Zakai bound becomes relevant.

The CRLB for time delay estimation has been studied in [137, 138, 139, 140]. As the
bound depends on the power spectral density of the transmitted signal it always has to
be evaluated individually for each individual localization system. In general the CRLB
for the estimation of a signal parameter θ is given as

var(θ̂) ≥ 1

−E
{
∂2 ln p(x; θ)

∂θ2

} . (3.43)

One basic approach to derive the bound for time delay estimation is given in [55]. This
assumes the known transmitted waveform s(t) received disturbed by additive Gaussian
noise wi(t) at a single receiver with delay ti

yi(t) = x(t− ti) + wi(t) . (3.44)

For a signal parameter θ of the sampled signal x[n] disturbed by additive Gaussian noise
with variance σ2

w it can then be shown from (3.43) that the CRLB on the estimate of θ
is given as

var(θ̂) ≥ σ2
w

N−1∑
n=0

(
∂x(n; θ)
∂θ

)2 . (3.45)

Then the bound of the variance of the TOA estimate t̂i results in [55, p. 53-56]

var(t̂i) ≥
1

E

N0/2
F̄ 2

, (3.46)

with the signal energy E and noise power spectral density N0/2. Further, F̄ 2, called
the mean square bandwidth of the signal, is

F̄ 2 =

∫ ∞
−∞

(2πf)2|X(f)|2df∫ ∞
−∞
|X(f)|2df

, (3.47)

where X(f) is the Fourier transform of the transmitted signal x(t). Looking at the
term (2πf)2 in 3.47 it becomes obvious that high frequency components of the signal
play a more important role in localization than lower frequency components. This
relationship becomes very relevant in some newer modulation schemes such as the binary
offset carrier (BOC) modulation used in Galileo, which is also known as split-spectrum
modulation as it possesses a spectrum divided into to parts with very low spectral
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density around the carrier frequency. Assuming for a moment a flat signal spectrum
with a constant power spectral density and the bandwidth 2W , the CRLB becomes [138]

var(t̂i) ≥
3

8π2 ·
1

SNR ·
1

TW 3 . (3.48)

The variance improves with the observation time T , which is proportional to the amount
of samples taken, the SNR, which is defined as E/T

N0W
and the bandwidth 2W of the signal.

If the signal waveform is unknown to the receiver and a cross-correlation based method
of TDOA estimation shall be used, the CRLB is slightly different. Assuming TDOA
estimation between two signals

y1(t) = s(t− t1) + w1(t) , (3.49)
y2(t) = s(t− t2) + w2(t) , (3.50)

one approach or deriving it is to express one of the two involved signals as a shifted and
noisy version of the other one

y′2(t) = y1(t− t′2) + w′2(t) , (3.51)

where the variance of the noise w′2(t) becomes σ2
1 +σ2

2. The time shift t′2 is equivalent to
the TDOA. Then estimate t′2, treating y1(t) as deterministic and fully known and use
(3.45) to derive the bound in the same way as before. After the same manipulations
this leads to

var(t̂′2) ≥ 3
4π2 ·

1
SNR ·

1
TW 3 , (3.52)

Due to the two involved noise processes, the variance for the TDOA estimate is higher
than that of the TOA estimate. However, calculating TDOAs from the estimated TOAs
ultimately yields the same variance at the input of the localization algorithm.

Knowing the bound on the time delay estimation one may now wonder about the result-
ing bound on the localization. Analog to the DOP, the CRLB for TDOA localization
is given as [109]

Cp = (HjTCτ
−1Hj)−1 (3.53)

where I(τ ) = HjTC−1
τ H

j is called the Fisher information matrix. Equivalently one
can say that the variance of the position estimate p̂ satisfies

var([p̂]i) ≥ [I−1(τ )]ii . (3.54)

This accounts for the noisy TDOA measurements which are modeled with the covariance
matrix Cτ . However, perfect clock synchronization between the sensors is assumed.
The case of imperfect synchronization and drifting clocks is tackled in Section 3.8. The
covariance itself depends on the signal bandwidth and the receive SNR of each sensor.

Cτ =


σ1 + σ2 . . . σ1

... . . . ...
σ1 . . . σ1 + σN

 . (3.55)
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In practice this means that an SNR estimate for each sensor is necessary in order to
achieve optimum system performance. In systems that perform TOA estimation based
on known sequences this is relatively straightforward. However, in cross-correlation
based TDOA systems accurate SNR estimation is difficult. Therefore, if no SNRs are
available, a common assumption is σi = στ , i.e, equal sensor signal to noise ratio (SNR),
and hence

Cτ = σ2
τ


1 . . . 0.5
... . . . ...

0.5 . . . 1

 . (3.56)

A suitable value for στ has then to be determined empirically.
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Figure 3.9: DOP of the ATLAS system with all sensors (a) and without sensor 3 (b).
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Figure 3.10: Optimum reference receiver selection based on minimization of the DOP
in ATLAS with all sensors (a) and without sensor 3 (b).

Reference receiver selection

A way of improving the localization performance is to select the reference receiver for
the localization algorithm based on the current location of the target. For high SNR this
can be formulated as an optimization problem where the goal is to select the reference
j from the set of M receivers such that

j = arg min
r∈{1,..,M}

DOPr. (3.57)

An example for the reference receiver selection in a 3 sensor network is depicted in
Figure 6.11(b).
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Sensor Network and Coverage Planning

The DOP analysis can be used for coverage planning during installation and upgrading
of the network. As an example the analysis of the deployed configuration of the ATLAS
system [24] is presented in this section. Optimum sensor placement has been discussed
in [141, 142, 143]. When fully functional, the ATLAS system consists of about 10 sensors
distributed in an area of approximately 10 km by 20 km. In such a large-scale scenario
sensor placement is subject to some hard constraints imposed by the availability of
suitable sites. Similar as in cellular systems, to improve the reception, sensors need to
be placed on towers of high buildings. For the case of ATLAS most sensors are colocated
with cellular antennas. Figure 3.9 (a) shows the DOP for the full sensor configuration.
Obviously this assumes that all sensors have received the signal with a sufficient SNR.
In Figure 3.9 (b) receiver 3 is not available and the DOP is clearly deteriorated in some
areas. Further, Figure 3.10 shows the selected reference receiver for both cases based
on Equation 3.57. It implies that some knowledge about the last location of the target
is available, which can be obtained through tracking.

3.7 Kalman Filter Based Tracking

For further improvement of the localization Kalman filter (KF) based tracking [144] is
applied to the output of the localization algorithm. The KF updates the state πκ for
time instance κ based on a motion model contained in matrix Φ and the measurement
matrix M

πκ =



p
(κ)
k1
p

(κ)
k2
v

(κ)
k1
v

(κ)
k2
U

(κ)
k1

U
(κ)
k2


Φ =



1 0 ∆t 0 0 0
0 1 0 ∆t 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 ρ 0
0 0 0 0 0 ρ



M =
(

1 0 0 0 0 0
0 1 0 0 0 0

)
Q =

[
04×4 04×2
02×4 σ2

a∆t2I2

]
.

acceleration is modeled as a random variable. Hence Q is a covariance matrix where
σ2
a is the covariance of the acceleration, ρ is a correlation coefficient of the acceleration

and ∆t the (usually fixed) time between observations. The KF algorithm consists of a
recursive two-step procedure. First, the prediction step generates a-priori estimates

πκ|κ−1 = Φπκ−1|κ−1 (3.58)
P κ|κ−1 = ΦP κ−1|κ−1ΦT +Q. (3.59)
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Then the update step calculates the a-posteriori estimates by merging the a-priori esti-
mates with the new observation of the target location p(κ)

k

πκ|κ = πκ|κ−1 +Kκ[pκ −Mπκ|κ−1] (3.60)
P κ|κ = [I −KκM ]P κ|κ−1 (3.61)
Kκ = P κ|κ−1M

T[MP κ|κ−1M
T +Rκ]−1. (3.62)

The covariance matrix Rκ of the location estimate depends on the geometry of the
sensor network. As explained before, the concept of geometric dilution of precision
(DOP) is needed to capture this effect. Hence Rκ can be determined in each update
step using (3.53).

As shown in Section 3.2, TDOA algorithms with only three receivers exhibit an ambi-
guity problem in certain regions close to and behind the receivers. One way of resolve
this ambiguity is to select the solution plk that lies closer to the KF prediction:

l = arg min
n∈1,2

∥∥∥pnk −Mπκ|κ−1

∥∥∥
2
. (3.63)

This improves the performance in the vicinity of the receivers. However, as can be seen
in Figure 6.11(a), locations exactly behind a receiver additionally suffer from a very
high DOP, therefore the prediction works only well for high SNR and very good system
synchronization.

3.8 Cramér-Rao Bound and Synchronization in
Systems with Calibration Emitter

For the analysis until this point the synchronization between the receiving sensors of
the localization network has been assumed perfect. In practice this is barely the case. If
a common clock system is used where all the sensors are connected with cables or fibre
optics, close to perfect synchronization can be achieved. To avoid the need of such a
complex infrastructure many systems use wireless synchronization methods. This can be
synchronization based on GPS signals or using a special scheme of messages exchanged
between the sensors. Sometimes, if the sensors can not transmit or are too far from each
other to communicate, additional calibration emitters at a known location, preferably in
the middle of the network or with high transmit power are used as a synchronization aid.
In any case synchronization can only be achieved down to a particular accuracy. The
properties of some practical synchronization approaches based on GPS are discussed in
Section 6.3. Current section studies the special case of a passive localization network
with known stationary sensor locations, known stationary beacon locations which are
not co-located with the sensors and a moving target that emits signals at different times
compared to the beacon.
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Time measurement based localization systems either rely on very accurate synchro-
nization between the anchor points, or, in asynchronous systems, require accurate es-
timation of the clock offsets to achieve optimum performance. Network infrastructure
assisted passive localization has been in the center of various research activities for
several decades. In comparison, results on the operation of such systems with asyn-
chronous, drifting clocks and wireless synchronization are rather young. The most
common approach to localization is divided in two stages, where first a physical signal
parameter is estimated, in our case the TOA, and second the target location is ob-
tained using a second algorithm that takes the measurements, TOAs or the resulting
time differences of arrival (TDOAs) as an input, see e.g., [112, 117, 109, 118]. Due to
hardware imperfections and physical constraints, impairments of the first stage are not
uncommon in practice. The requirement of nanosecond accuracy for decimeter level
localization is challenging even for the most accurate clocks. For optimum localiza-
tion performance, it is therefore necessary to apply correction methods to cope with
the effects of asynchronous clocks. Accordingly, in [145] the idea of differential time
difference of arrival (DTDOA) has been introduced in order to eliminate clock offsets.
Further, in [146] the use of a calibration emitter, also known as beacon, has been pro-
posed. However, the authors focus on inaccurate knowledge of sensor locations rather
than asynchronous clocks. Later, [147] proposed a protocol for passive localization with
asynchronous clocks where one of the anchors actively transmits a reference signal. The
problem has also been investigated in a downlink fashion [148], where the transmitting
anchors’ clocks are assumed to be perfect, but the receiving target possesses a drifting
clock. An extension of this scenario to cooperative localization is given in [149]. Most of
the publications in this area apply the CRLB to derive theoretical performance limits.
As described in [149], for problems with many interlinked parameters that all need to
be estimated, the modified Cramér-Rao lower bound (MCRLB) is often more practical
and provides more insight into the problem. It has been introduced in [150] and further
thoroughly examined in [151] and [152]. In the present section, the methodology of
the modified bound is followed, as it constitutes a feasible way of deriving theoretical
performance limits.

In contrast to the previous works, a different system model is considered, where the
investigated system consists of distributed passive sensors, i.e., they can only receive,
and additional beacons, that can only transmit. The beacons are not colocated with
the sensors, sensor and beacon locations are known and the sensor clocks are running
asynchronously and experience drift over time. Recently, in [153] a similar system has
been considered. However, this paper does not present any theoretical bounds and as-
sumes a very precisely timed beacon signal, where the exact time difference between
two beacon transmissions is known, which we do not have in our case. Another imple-
mentation of such a system for wildlife tracking has been described in [24]. Previously,
the sensors have been synchronized with GPS and therefore the clock drift has been
neglected in practice, while for the present section we consider the same system running
with asynchronous, drifting clocks. For numerical evaluation we then obtain recorded
TOAs from the fusion center of the system under this deteriorated conditions. Due to
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Figure 3.11: Visualization of the linear model for the receiver clocks and the resulting
error in TDOA measurements if the effect is not compensated.

stringent constraints in battery size of the target and beacons, the rate of transmis-
sions in the system is strictly limited. Further, target and beacon transmissions are
not synchronized and therefore the time difference between the received messages can
lead to large differences in the local clocks, during one set of measurements. Hence, we
derive the necessary clock correction algorithms and evaluate their performance using
simulations and a comparison with the MCRLB. For validation, we then apply the
correction algorithms to the recorded TOAs.

3.8.1 System and Clock Model

Similar as before a system of M distributed receiving sensors that are localizing a
moving transmitter is considered. The system is assumed to be passive and has no
communication between the sensors and the transmitting target. Additionally, two
transmitting beacons at known locations are available for synchronization. We assume
that each sensor i is independently able to estimate the TOA ti,k of the received signal
from either the target k = 0 or the two beacons k ∈ {1, 2}, based on a pilot sequence.
The location can then be determined using the TDOAs τi,j,k = ti,k−tj,k between receiver
i and the reference receiver j. Note that this is slightly different compared to the case
of cross-correlation-based TDOA estimation. In the following we apply [109] to find the
solution and exclusively focus on the problem of correctly determining the TOAs and
resulting TDOAs respectively. For that, the time offset caused by the drifting clocks at
receiver i is modeled as [154]

ti = εit+ φi , (3.64)
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Figure 3.12: Transmission sequence of a beacon augmented passive TDOA localization
system using TOA measurements. Different combinations of measurements
can be used to estimate the clock parameters and subsequently localize the
target.

where t is the real time, φi a constant initial offset at time instance t(0) = 0 and εi the
drift rate, which is assumed to be constant over the course of a measurement period
and Gaussian distributed with respect to different clocks. The mean of εi is 1 and its
standard deviation σεi depends on the specific clock type, it can reach as low as 10−12 for
GPS disciplined oscillators (GPSDOs) and up to 10−5 for a temperature compensated
crystal oscillator (TCXO). This especially means that in a system with several sensors,
their clocks will often drift in different directions with respect to real time. Hence,
assuming that target and beacon transmissions occur at a relatively low rate, e.g., 1 Hz,
considerable relative errors between sensor clocks might be introduced. An example
for drifting clocks and the growing error of TDOAs is depicted in Figure 3.11. The
drifting clocks can also lead to an association problem of the received transmissions at
the different sensors. We assume that a mechanism exist to resolve this problem, such
as unique message identifiers embedded in the signal. Another physical layer approach
is to perform a plausibility check by comparing known and estimated beacon locations.

In order to perform clock synchronization between two sensors, two beacons at different
locations are needed. However, a single beacon is sufficient to achieve a reasonable
approximate solution as described later. Figure 3.12 shows the transmission sequence
of the involved signal bursts at time instances t(q). Note that it is important that all
the beacon and target signals are detected by all involved sensors. If that is not the
case, as depicted in Figure 3.13, clock correction can not be performed and localization
is not possible. However, in practice with a large number of sensors, the probability of
receiving all signals at all sensors can be low. In that case older beacon transmissions
could be used as long as they are detected both by the reference sensor and at least one
other sensor. It is preferable not to use very old detections as in general the clock rates
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Figure 3.13: For beacon based clock correction it is important that the same transmitted
signal bursts are received at the reference sensor and at least one other
sensor. If the signals are partially missing, the target can not be localized.
As a replacement older beacon transmissions can be used but this leads to
performance degradation.

εi are time dependent and the model from (3.64) could be violated.

A transmitted signal from beacon or target k at time index q receives the sensor i at
the TOA

t
(q)
i,k = εi

(
t(q) + di,k

c

)
+ φi + n

(q)
i , (3.65)

where n(q)
i is a realization of zero-mean Gaussian noise with variance σ2

ni
and di,k is the

distance
di,k = ‖pk − ri‖2 , (3.66)

between the beacon or target k and the sensor i with the two dimensional coordinate
vector pk. The TDOA is then given as the difference

τi,j,k = t
(q)
i,k − t

(q)
j,k

= (εi − εj)t(q) + εi
di,k
c
− εj

dj,k
c

+ φi − φj + n
(q)
i − n

(q)
j .

(3.67)

Localization algorithms eventually require the distance differences

δi,j,k = di,k − dj,k , (3.68)

in order to geometrically determine the target coordinates. Hence, correction of the
parameters εi and φi is necessary. A possible way to remove parameters that are constant
between two TDOA measurements is the differential time difference of arrival (DTDOA)

∆τ (q,r)
i,j,k,l = τ

(q)
i,j,k − τ

(r)
i,j,l . (3.69)
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Different types of DTDOA measurements are possible. A DTDOA between receptions
of the same transmitter, e.g., the same beacon, at different time instance yields

∆τ (q,r)
i,j,k,k = (εi − εj)(t(q) − t(r)) + n

(q)
i − n

(q)
j − n

(r)
i + n

(r)
j . (3.70)

Clearly, the constant term φi − φj is cancelled out. Another type of DTDOA is between
different transmitters k and l, i.e., two different beacons or one beacon and the target,
at different time instances

∆τ (q,r)
i,j,k,l = (εi − εj)(t(q) − t(r))

+εi
(
di,k
c
− di,l

c

)
− εj

(
dj,k
c
− dj,l

c

)
+n(q)

i − n
(q)
j − n

(r)
i + n

(r)
j ,

(3.71)

again this eliminates the offset φi − φj. However, the simple formation of DTDOAs
is not able to remove εi and hence, for larger time spans between beacon and target
transmissions, ignoring these erroneous clock rates leads to a drastic degradation of the
system accuracy.

3.8.2 Clock Error Correction

Next, four different estimators are defined that are useful in different situations, which
depend on the amount of noise, the quality of the clocks and the time span between
transmissions.

TDOA estimation without correction

Assuming that the clocks are of very high accuracy and synchronization is close to
perfect, i.e, εi = 1 and φi = 0, simple TDOA estimation without further clock synchro-
nization may be used based on (3.67).

TDOA estimation with offset correction

If very accurate clocks (εi = 1) are available, that are not absolutely synchronized, i.e.,
φi 6= 0, a DTDOA with a single beacon may be used based on (3.71). Equivalently, the
difference φi − φj can also be estimated explicitly using a single TDOA (3.67) from a
beacon if the clock rates εi are known

∆φ̂1,j = τ1,j,k −
1
c
δ1,j,k , (3.72)

where without loss of generality, one may set the time of transmission t(0) = 0. The
distance differences needed by the localization algorithm are then

δ̂1,j,l = c · (τ1,j,l − τ1,j,k + δ1,j,k) . (3.73)
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TDOA estimation with approximate offset and rate correction

When lower quality, unsynchronized clocks are used, i.e, εi 6= 1, φi 6= 0 it becomes
necessary to correct for both parameters. This can be approximately achieved using
a single beacon, however, two transmissions from that beacon are now required. The
estimation of φi depends on εi, hence we begin with the estimation εi then subsequently
estimate φi and correct the initially measured TOAs.

Let i = 1 be the reference sensor. The time t(0) − t(1) between two beacon transmissions
of a single beacon k can be estimated using a single sensor’s clock. Compared to the
true time difference between transmission this time difference is scaled

t(0) − t(1) = 1
ε1

(t(0)
1,k − t

(1)
1,k − n

(0)
1 + n

(1)
1 ) . (3.74)

Considering this scaling, the DTDOA for the same beacon can be written as

∆τ (0,1)
1,j,k,k =

(
1− εj

ε1

)
(t(0)

1,k − t
(1)
1,k) + εj

ε1
(n(0)

1 − n
(1)
1 )− n(0)

j + n
(1)
j . (3.75)

From this, obviously not all clock rates can be estimated but it is possible to estimate
them relative to the reference sensor, as βj = εj

ε1
. The estimator of βj can be written as

β̂j =
−∆τ (0,1)

1,j,k,k + (t(0)
1,k − t

(1)
1,k)

(t(0)
1,k − t

(1)
1,k)

, j ∈ 2, . . . ,M . (3.76)

Further, ε̂1 = 1 is a reasonable choice based on the mean value of the distribution.
Therefore, the estimate of clock rates will become ε̂j = β̂j. Using those estimated values
for the rates, next the absolute clock offsets of all sensors is estimated

φ̂j = t
(0)
j,k − ε̂j

dj,k
c
, j ∈ 1, . . . ,M . (3.77)

With all of this the TOAs and the respective distance differences of the target can be
corrected as

δ̂1,j,l = c ·
(
t
(3)
1,l − φ̂1

ε̂1
−
t
(3)
j,l − φ̂j
ε̂j

)
, (3.78)

and then used by the localization algorithm to determine the location p0. Neglecting
estimation error, the clock correction essentially enforces equal clock rates in all sensors,
which are identical to the true value of ε1. A look at (3.67) reveals that this approach is
reasonable as the term (εi − εj)t(q) becomes zero and the scaling in the term εi

di,k
c
−εj dj,kc

is less critical due to the errors in the rates being relatively small.
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TDOA estimation with offset and rate correction

Finally, if the system dimensions become very large, e.g., satellite based systems, or the
speed of the wave is low, e.g., ultrasound based systems, the error in the approximation
of ε1 can no longer be neglected any more. Fortunately, using a second beacon at a
different location, an estimate for ε1 can be obtained. Considering the time difference
of two transmission from the two different beacons k and k′

t(0) − t(2) = 1
ε1

(t(0)
1,k − t

(2)
1,k′)−

(
d1,k

c
− d1,k′

c

)
− 1
ε1

(n(0)
1 − n

(2)
1 ) , (3.79)

this further results in

∆τ (0,2)
1,j,k,k′ = (1− βj)(t(0)

1,k − t
(2)
1,k′)

+ ε1βj

(
d1,k

c
− d1,k′

c

)
− ε1βj

(
dj,k
c
− dj,k′

c

)
+ βj(n(0)

1 − n
(2)
1 )− n(0)

j + n
(2)
j , (3.80)

and leads to an estimator for ε1

ε̂1 = c ·
∆τ (0,2)

1,j,k,k′ − (1− β̂j)(t(0)
1,k − t

(2)
1,k′)

β̂j(δ1,j,k − δ1,j,k′)
. (3.81)

where β̂j is estimated using (3.76). Analogously to the last case, using (3.77) and (3.78),
the necessary input values for the localization algorithm can be obtained.

3.8.3 Cramér-Rao Bound Analysis

Counting the noise terms for the four different methods above, as listed in Table 3.1,
it becomes obvious that the TDOA estimation with offset and rate correction is sub-
optimum for moderately large system sizes and clock rate errors. This is because the
impact of the additional measurement noise is, for certain parameter settings, much
larger than the gain of the knowledge of the ε1 estimate. To analytically describe this

Correction Method Noise terms for two sensors
No correction 2
Offset correction 4
Approximate offset and rate correction 6
Full offset and rate correction 8

Table 3.1: Number of additive noise terms for different TDOA clock correction methods
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behavior, next the MCRLBs [155, 152] are derived for the different cases and compared
with Monte Carlo simulation results.

For any unbiased estimator, a lower bound on the variance of the error is provided by
the CRLB [55]. It is based on the inverse of the Fisher information matrix (FIM) which
is in our case given as

[I(u)]m,n = −E
{
∂2 ln p(τk; u)
∂um∂un

}
, (3.82)

where τk = [τ1,2,k, . . . , τ1,M,k]T is the vector of TDOAs (3.67) of the target when sensor
i = 1 is the reference sensor, and the vector u of parameters to be estimated.

For the problem at hand u consists of the target coordinates as well as the clock param-
eters. The relationship between these parameters makes an analytical derivation of the
CRLB very challenging. An approach that provides a less tight bound but simplifies
the computation is the MCRLB for vector parameter estimation [151]. To derive the
MCRLB expression, the estimation parameters are split into u, the vector of estimation
parameters, and v, the vector of unwanted parameters, which are defined differently for
each case considered below. We assume u to be deterministic but unknown, and v to
be random with known probability distribution function. Then, the conditional FIM
I(v; u) is calculated using the expectation operator as

[I(u; v)]m,n = −Eτk|v
{
∂2 ln p(τk|v; u)

∂um∂un

}
, (3.83)

with the probability density function p(τk|u; v)

p(τk|v; u) = 1
(2π)M−1

2 det(C−1) 1
2

· exp
(
− 1

2(τk − µ)TC−1(τk − µ)
)
, (3.84)

The conditional FIM can be calculated as [55]

[I(u; v)]m,n =
[
∂µ

∂um

]T

C−1
[
∂µ

∂un

]
+1

2tr
(

C−1 ∂C
∂um

C−1 ∂C
∂un

)
. (3.85)

According to [151], taking the expectation over v, one can then obtain the modified
Fisher information matrix (MFIM) Imod(u) with

[Imod(u)]m,n = Ev{[I(u; v)]m,n} . (3.86)

This leads to the modified lower bound on the estimation variance

var(ûn) ≥
[
Imod(u)−1

]
n,n
. (3.87)

Next, this can be used to determine the bounds for the localization with the different
clock correction approaches.
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TDOA estimation without correction

In this case there is only a single transmission from the target k = 0 available. We
consider u = [x0, y0]T as estimation parameters and v = [ε1, . . . , εM , φ1, . . . , φM ]T as the
unwanted parameters. To calculate the lower bound on the estimation error, we directly
use the MCRLB from (3.87) with the mean µ = [µ2, . . . , µM ]T and the covariance matrix
C of τk

µi = (ε1 − εi)t(q) + ε1
d1,k

c
− εi

di,k
c

+ φ1 − φi , (3.88)

C = diag(σ2
n2 , . . . , σ

2
nM

) + σ2
n11M−11T

M−1 . (3.89)

For the cases that beacon transmissions are available, this simple MCRLB is unaccept-
ably loose and we resort to a two-step approach, where we first obtain bounds for the
clock parameters and then, in the second step, derive the bound for the target location.

TDOA estimation with offset correction

In this case a single beacon k = 1 is available and the clock offsets φi can be estimated.
Hence, the estimation parameter vector for the first step becomes u = [φ1, . . . , φM ]T
and the vector of unwanted parameters v = [ε1, . . . , εM ]T. Then, the MCRLB on the
estimation of the clock offsets φi is calculated using the mean and covariance matrix
from (3.88) and (3.89). In the second step, we have u = [x0, y0]T, and v = [ε1, . . . , εM ]T.
We model the clock offsets as φ̂i = φi + ωi, where φ̂i is an estimate with the error
ωi modeled as a Gaussian random variable, ωi ∼ N (0, σ2

φi
), where σ2

φi
is given by

the bound from the first step. The second step mean and the covariance matrix then
become

µi = (ε1 − εi)t(q) + ε1
d1,0

c
− εi

di,0
c

+ φ̂i − φ̂j , (3.90)

C = diag(s2
1,φ, . . . , s

2
M,φ) + s2

1,φ1M−11T
M−1 , (3.91)

where s2
i,φ = σ2

ni
+ σ2

φi
. This leads to the MCRLB of the target location.

TDOA estimation with approximate offset and rate correction

When two transmissions of the beacon k = 1 are available, it is possible to estimate the
clock offsets φi as well as the clock rates εi, except for one, e.g., ε1. Thus, similar to the
last case, in the first step, we define the vectors as u = [ε2, . . . , εM , φ1, . . . , φM ]T and
v = [ε1].
In the second step, we model both the clock offset and rate as Gaussian random variables
φ̂i = φi + ωi, i = 1, . . . ,M and ε̂i = εi + ξi, i = 2, . . . ,M , where ωi and ξi are the
errors in the clock offset and rate estimation, modeled as Gaussian random variables
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Figure 3.14: (a) The MCRLB compared with simulations for different availability of
beacon messages with φi = 0. 1) Baseline, no beacons used. 2) Single
beacon message, estimation of φi. 3) Two messages from the same beacon,
estimation of φi and εi while ε̂1 = 1. 4) Three messages from two bea-
cons, full estimation of φi and εi. (b) Impact of time dependent clock rate
modeled as a random walk, using method 3).52
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ωi ∼ N (0, σ2
φi

) and ξi ∼ N (0, σ2
εi

). Variances σ2
φi

and σ2
εi

are derived using the first
step MCRLB. To calculate the MCRLB on the estimation of the target position we
incorporate the clock offset and clock rate models into (3.67). The second step mean
and covariance matrix for this case are

µi = (ε1 − ε̂i)t(q) + ε1
d1,0

c
− ε̂i

di,0
c

+ φ̂i − φ̂j , (3.92)

C = diag(s2
1,ε, . . . , s

2
M,ε) + s2

1,φ1M−11T
M−1 , (3.93)

where s2
i,ε = σ2

εi
(t(q) + di,0

c
)2 +σ2

ni
+σ2

φi
and s1,φ is the same as in the last case. Similarly,

the second step parameter vectors are u = [x0, y0]T and v = [ε1].

TDOA estimation with offset and rate correction

Finally, with the aid of two beacons k ∈ {1, 2}, it is possible to estimate the clock
rates of all the sensors. Hence, in this case there are no unwanted parameters, neither
in the first nor in the second step. The first step estimation parameter vector is v =
[ε1, . . . , εM , φ1, . . . , φM ]T. We calculate the variance of the clock parameters estimation
error using the standard CRLB. Analogous to the last case in the second step, we model
all the clock rates and offsets with Gaussian random variables. Thus, the bound for the
target location is derived with the estimation parameter vector u = [x0, y0]T, mean

µi = (ε̂1 − ε̂i)t(q) + ε̂1
d1,0

c
− ε̂i

di,0
c

+ φ̂i − φ̂j , (3.94)

and covariance matrix

C = diag(s2
1,ε, . . . , s

2
M,ε) + s2

1,ε1M−11T
M−1 . (3.95)

3.8.4 Results

Simulative as well as experimental results have been obtained for verification. In the
simulation, 5 sensors have been placed using the same geometry as given in the exper-
imental system, depicted in Figure 3.15 (a). First, receiver clocks have been modeled
according to (3.64) and the time between transmissions is 2 s. The standard deviation
of the error in each TOA measurement is σni = 10−8. It is then possible to compare
the analytical expressions for the bounds with Monte Carlo simulation result. This is
shown in Figure 3.14 (a). From the plot it is found that if very good clocks are available
it is recommendable to not apply any correction. That is due to the additional noise
terms introduced into the solution due to additional measurements of the beacon sig-
nals. Note that this assumes that the offsets φi are close to zero. When the error in the
TOA becomes large due to uncompensated differing clock rates, it leads to large outliers
of the estimated location, caused by the nonlinear nature of the hyperbolic geometry.
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Figure 3.15: (a) Geometry of the considered localization sensor network [24], (b) drift
in the location of a stationary target with correction of φi compared to the
case with correction of φi and εi while ε̂1 = 1.

This can be observed in the upper right corner of Figure 3.14 (a). Further, due to bad
conditioning of the problem, as seen in (3.81), for the given system dimensions, full
correction of all εi provides much worse performance than the approximation ε̂1 = 1,
which itself should be used only for clocks with σε ≥ 4× 10−9. However, this threshold
obviously depends on the time between the beacon transmissions and also the measure-
ment noise. Therefore, in a second simulation, the time dependence of the clock rates
εi is modeled using a Brownian random walk approach where σ2

η is the variance of the
additional Gaussian noise, that is cumulatively added. We then vary the time between
the transmissions and observe the degradation of the localization in terms of root-mean-
square error (RMSE). The resulting plot is presented in Figure 3.14 (b). This can be
used to select the rate of the beacon transmission based on the specification of the used
sensor clocks.

Experimental measurements have been obtained from the ATLAS system [24] with a
subset of 5 sensors as shown in Figure 3.15 (a). Target tags, which are usually attached
to birds for tracking, transmit a binary frequency shift keying signal every 1 s with a
bandwidth of 2 MHz. Beacons transmit an identical signal every 2 s. Transmitted data
is a 8192 long random code sequence, that yields a large correlation gain at the receiver
and enables simultaneous channel access for a large number of tags. The sensors are
based on software defined radio with Ettus USRP N200 frontends that contain a TCXO
frequency reference specified with 2.5 ppm. However, according to the estimation for
the recorded data set, all 5 sensor clock rates are within less than 1 ppm. Figure 3.15 (b)
shows the drift in the location of a stationary target when just the offset correction from
Section 3.8.2 or the offset and rate correction from Section 3.8.2 is used. The average of
the stationary target is 5.39 dB. This results in a RMSE for the two cases of 334.71m
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Figure 3.16: Estimated clock rate error in ppm, (εi − 1) · 106.
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Figure 3.17: Drive test results from a tag mounted on top of a vehicle together with a
GPS antenna that generates the ground truth track.

and 8.40m respectively. In parallel, Figure 3.16 shows the estimated values of the clock
parameters φi and εi. It is clearly visible that for the reference sensor it is assumed that
ε is one and all other values are estimated accordingly.

In a second series of measurements, drive tests have been performed with the tag trans-
mit antenna mounted on top of a vehicle, together with a GPS reference antenna that
collects the ground truth. The GPS receiver is a SkyTraq Venus 828. Note that the
accuracy of a standard GPS receiver is limited to approximately 1-3m and is improved
by the internal KF of the GPS receiver. Ground truth and TDOA localizations can be
accurately compared based on the collected Coordinated Universal Time (UTC) times-
tamps. For comparison, again the RMSE criteria is used. One result of the drive test,
using measurements from 4 sensors, is shown in Figure 3.17. The average SNR of the
tag signal is -1.37 dB, resulting in a RMSE of 140.78m when the offsets of the clocks
are corrected and 24.17m when offset as well as rates are corrected. Compared to the
stationary case, the higher SNR after clock rate correction is due to the worse SNR.
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On the other hand, the lower RMSE before clock rate correction is due to the shorter
transmission interval of the beacon, which in this case has been configured to 1 s. In
summary, it can be said that clock rate estimation is essential to improve the system
accuracy. Further improvements could be achieved by tracking the change of the clock
rate over time, e.g., using linear prediction or a KF. Using a KF in the localization step
would also yield significant improvements.
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4 Grid-Based Sparse TDOA
Localization

This chapter discusses an alternative approach to location estimation based on a TDOA
type of system. Explicit TDOA estimates are not taken, instead the location is directly
estimated from the signal samples. The necessity of solving a system of nonlinear hyper-
bolic equations is avoided. Moreover, the high sampling rate and long sample duration
necessary for a precise localization in low SNR scenarios implies a large amount of data
exchange between the sensor nodes. Therefore, the absence of high data rate enabled
backbone links, connecting the nodes, restricts the system performance or may even ren-
der it dysfunctional in some cases. In order to approach this problem the novel method
applies a compressed time difference of arrival based localization. Here, due to the
spatial sparsity of the problem, the usage of the compressed sensing (CS) paradigm en-
ables a trade off between the transmitted number of samples and the robustness against
noise. Another severe problem for most RF based localization methods is multipath
propagation. Therefore, in a second step the grid based approach is further amended
with TDOA fingerprinting using ray tracing. Similar to the classical RSSI based finger-
printing, the TDOA fingerprinting is able to improve the localization results.

Parts of the following results have been presented in [7, 8].

4.1 TDOA Localization Using Spatial Sparsity

More recently another step of innovation in the context of localization was enabled
by the introduction of CS. The concept of CS [156], [157] is a new paradigm for
the sampling of signals that are sparse in a certain domain. It has been shown that
under certain conditions concerning the involved matrices, e.g., the so-called restricted
isometry property [158], it is possible to subsamples the sparse signal with respect to the
Nyquist-rate while still being able to fully reconstruct it with a very high probability.
CS has led to new approaches in signal processing as well as in localization where
it is assumed that the location of the object to be observed and the location of the
observers are sparsely distributed in the spatial domain as described in [159, 160, 161].
By finding an appropriate formulation that physically relies on the RSS of the signal,
the localization problem is then solved using algorithms that are based on `1-norm
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minimization. In contrast, the authors of [162, 163] make use of the TDOAs of the
signals assuming sparsity, while in [164] the Doppler shift is used additionally to obtain
a direct location estimate. However, these papers do not investigate the impact of the
number of recorded samples on the estimation performance.

This is important due to the fact that systems with TDOA-based localization using radio
waves are usually distributed, with widely separated receiver nodes. A widely spread
out system is necessary in order to fulfill the geometric requirements of the localization
problem and to guarantee a good coverage. However, large distances impose some
limitations on the transmission data rate achieved between the nodes. In practice,
optical fiber links are still not available in a range of possible scenarios, e.g., in rural
areas. Therefore, it is often necessary to use locally available landline, cellular network
or other types of small data rate wireless links, to interconnect the sensor network. On
the other hand, TDOA estimation methods require wide bandwidths in order to increase
accuracy. These conflicting requirements may severely restrict the performance of the
system or may even render it useless in case of quick target movements that demand
high update rates.

To tackle this problem, a CS inspired method for localization based on TDOA is pro-
posed, that particularly aims at a reduction of the number of samples that need to
be transmitted between the distributed nodes. More specifically, the reduction can
be achieved by the choice of the CS measurement matrix at the cost of estimation
performance. As the approach determines the transmitter location directly based on
the received signals, it avoids solving nonlinear hyperbolic equations that occur in the
problem, as described in [112, 165, 109]. In [166] a group of receive antenna elements
performs direction finding by applying CS. This work describes how the signal at a
single antenna element is sampled at Nyquist-rate, yielding a reference signal, while
the remaining elements are subsampled following a CS based approach. A distributed
(multi-static) active radar system described in [167] performs non-coherent combining
of the received signals in order to obtain joint sparsity. Following these ideas and ap-
plying it to TDOA-based location estimation, a novel approach including ideas from CS
is derived next.

4.2 Location Estimation

In this chapter let R be the number of receivers and Q the number of transmitters that
emit a signal sq(t), then the received signal at each receiver is given as

yr(t) =
Q∑
q=1

hq,rsq(t− τq,r) + wr(t),

where wr(t) is assumed to be a realization of a white Gaussian noise process and τq,r
stands for the delay which is related to the free-space propagation distance between
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Figure 4.1: TDOA-based localization system with reference receiver marked in red, tar-
get locations are estimated on the underlying grid.

transmitter q and receiver r and hq,r models the corresponding attenuation. Addition-
ally, we assume the transmitted signals to be mutually uncorrelated when the obser-
vation time goes to infinity. For the sake of simplicity, the derivation of an equivalent
baseband model is omitted and the vector yr(γ) is assumed to contain an ideally low
pass filtered, Nyquist sampled and delayed version of the received signal:

yr(γ) = (yr(t0 − γ), . . . , yr(tN−1 − γ))T . (4.1)

Inspired by [166], select one receiver, e.g., r = 1 as a reference and denote its output as
yref (γ). Furthermore, set

ȳref (γ) = yref (γ)
‖yref (γ)‖2

(4.2)

to denote the normalized version of yref (γ). Since from the remaining receivers r =
2, . . . , R only a fraction of the samples is given to the localization algorithm (see Section
4.2.2), they are termed CS receivers.

Define an estimator ỹr for the received signal yr at a CS receiver:

ỹr = Ψrbr . (4.3)

Here, the N ×K matrix Ψr contains time shifted versions of the normalized reference
signal vector with time shifts γr,1, ..., γr,K , i.e.,

Ψr = [ȳref (γr,0), . . . , ȳref (γr,K−1)], (4.4)

and br is a vector with sparse support corresponding to the TDOAs of the transmitters’
signals between receiver r and the reference receiver. If only one transmitter is active
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and no noise is present in the system, the estimator ỹr matches yr if the nonzero
entry of br contains the quotient of channel coefficients h1,r/h1,ref . In general, this
does not hold due to noise and the different combinations of time shifts between the
transmitter and receiver locations. Nevertheless, given the received signal yr, one can
try to reconstruct br. More specifically the nonzero entries in br which are related to
the TDOAs corresponding to the transmitter locations.

It should be emphasized that a single TDOA does not correspond to a unique trans-
mitter location. In order to resolve this ambiguity and be able to directly determine
the location, further restructuring of the problem is necessary in order to reveal a type
of joint sparsity between the different receiver pairs.

4.2.1 Joint Sparsity

To localize the transmitters, a discrete grid G is introduced for the two-dimensional
plane containing potential location bins:

G = {µ · (u, v) | u ∈ {1, . . . , L1}, v ∈ {1, . . . , L2}}, (4.5)

where µ is a resolution parameter. This leads to a total number of K = L1 · L2 bins.
Assuming that x1, . . . ,xK is an enumeration of all bins in G and the locations of the
reference receiver and the CS receivers are denoted as zr and zref , the time shifts in
(4.4) are defined using (5.13) as

γr,k = ∆(xk, zr, zref ), k = 1, . . . , K. (4.6)

This guarantees, that for all CS receivers the mapping from columns of Ψr to location
bins is the same. It is then observed that the presence of transmitters in certain location
bins yields a joint sparsity pattern for all vectors br. Such type of structured sparsity
has also been studied in [168].

4.2.2 Compressed Sensing

The joint sparsity makes it feasible to apply ideas from CS and therefore estimate all
vectors br recording only a subsampled signal ŷr. Consider reduced versions of the
received signal yr and the estimator ỹr by introducing

ŷr = Φryr, (4.7)

y̌r = Φrỹr = ΦrΨr︸ ︷︷ ︸
Ar

br = Arbr, (4.8)

with them×N matrix Φr which is obtained from theN×N identity matrix by randomly
selecting m rows. This means that each CS receiver only transmits m < N samples
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to the reference receiver instead of N samples taken at Nyquist-rate. Nevertheless,
CS theory suggests that the sparsity ensures that br can be recovered. In fact, for
the case of one active transmitter the recovery of br from ŷr reduces to a classical CS
problem. The latter can be solved by `0-minimization searching for a solution with a
low number of non zero elements which, however, is known to be NP-hard. It has been
shown that under additional assumptions on the matrix Ar the `0-minimization can
be relaxed by `1-minimization [169]. In our case, it is expected that `1-minimization
similarly promotes sparse solutions and consider the relaxation

minimize ‖br‖1 subject to ‖y̌r − ŷr‖2
2 ≤ εr, (4.9)

where εr has to be adjusted to the current noise level. This relaxation can be solved
using well-known linear and convex optimization methods. For fast numerical imple-
mentations, a greedy heuristic called orthogonal matching pursuit (OMP) [170] can be
used as described in the Section 4.2.3.

In case that the time shifts in (4.4) are multiples of the sampling rate, the resulting
matrices Ar are closely related to so-called partial random circulant matrices. There
exists a comprehensive theory for these matrices showing that they are feasible for
the CS approach [171] and, indeed, the necessary number of measurements for sparse
recovery basically grows linearly with the level of sparsity.

In our case, the matrices Ar are determined by (4.6) and are less favorable for CS. This
is due to the fact that different location bins might result in very close TDOAs and,
hence, the columns of Ar cannot be distinguished, anymore. Nevertheless, by exploiting
the joint sparsity in a modified OMP algorithm, this drawback can be overcome.

4.2.3 Localization Algorithm

The standard OMP algorithm iteratively builds up an estimate for the unknown support
set P . If P has been estimated at the (i − 1)-th iteration, one uses the residual r̂r,i
of the least squares approximation of ŷr by Arbr, where supp(br) ⊂ P , to choose an
update for P . This is achieved by selecting the index of an entry of the correlation
vector AH

r r̂r,i−1 with maximal norm.

For the jointly sparse case, the basic idea is to perform a non-coherent combining of the
entries of the correlation at each receiver to obtain a measure of how likely a transmitter
is present at a given location bin. This leads to a modified version of the OMP algorithm.
Such modifications, in the presence of structured sparsity ("block" or "joint" sparsity),
have already been studied by different authors [168], [172]. The resulting algorithm is
depicted in Algorithm 1.

After termination, the set P contains estimated location bins. A stopping criterion
could either be to stop if the iteration count has reached the number of transmitters
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Algorithm 1 Localization Algorithm
// Initialize:

1: r̂r,0 ← ŷr . (4.7)
2: P ← ∅

// for i-th iteration (beginning with i = 1):
3: while stopping criterion is not met do

// Calculate correlations βr and combine in β̄:
4: βr ← AH

r r̂r,i−1
5: β̄[k]← ∑R

r=2 |βr[k]|2
// Estimate a new location bin and add it to the set:

6: pi ← arg max
k∈{1,...,K}

β̄[k]

7: P ← P ∪ {pi}
// Calculate new residuals:

8: b̂r ← arg min
supp(br)⊂P

‖ŷr −Arbr‖2
2 . (4.9)

9: r̂r,i ← ŷr −Arb̂r
10: end while

(if previously known) or if the norm of the current residual is smaller than a given
threshold.

Figure 4.2 shows a matrix version of the combined cross correlation vector β̄ for the
case of R = 4 receivers and Q = 2 transmitters. Here, the matrix entry (u, v) is equal
to the entry β̄[k], with k chosen such that xk = µ · (u, v).

4.2.4 Results

To confirm the theoretical considerations and to evaluate the performance of the pro-
posed algorithm, numerical simulations of a two dimensional free-space radio wave
propagation environment have been conducted as described in the following. A ran-
dom BPSK modulated baseband signal with a sample rate of 100MHz is generated
for each transmitter location. In order to determine the received sum of signals, the
transmit signals are time-shifted and attenuated according to their free-space path loss
between each pair of transmitter and receiver. The sum of signals at each receiver is
then added with white Gaussian noise, while for simplicity it is assumed that the SNR
of each receiver’s output signal is identical.

The scenario is a 100m×100m square and the receivers are located around the border at
zref = (0, 0), z2 = (0, 100), z3 = (100, 0), z4 = (100, 100), z5 = (0, 50), z6 = (50, 0), z7 =
(50, 100), z8 = (100, 50). The transmitters are randomly placed in the region of interest,
for each Monte Carlo iteration.
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Figure 4.2: Example of matrix form of the combined cross correlations β̄, blue colors
denote low and red colors denote high values.

Additionally, the estimator grid dimension is set to cover the scenario with a resolution
of one bin per square meter. In order to estimate the transmitter location, the reference
receiver takes 1000 samples at Nyquist-rate and obtains compressed samples from the
CS receivers. In the first experiment 1 transmitter and 4 receivers are active. The
transmitter location is determined using a discrete uniform distribution placing it on
the estimator grid in order to simplify the evaluation of the success rate. The estimation
algorithm is performed for different numbers of compressed samples and determine the
success rate as shown in Figure 4.3 (a). A location is estimated successfully if all TDOAs
corresponding to the true and estimated bins are equal within a tolerance of one sample
duration. It is noticed that for these parameters the estimator produces acceptable
results up to a compression ratio of about 10.

A second experiment is performed with 4 receivers and 2 transmitters. As mentioned
in Section 4.2.2, for a single transmitter one may apply classical CS solutions to our
problem. For the case of multiple transmitters at different locations, slightly worse
results are expected due to model mismatch. The corresponding success rate is depicted
in Figure 4.3 (b), where a performance degradation can be observed. This is due to
interference between the two transmitted signals that are added with a different relative
delay at each receiver. Therefore, when using the signal of the reference receiver in the
CS reconstruction, it remains inherently inaccurate. More specifically, the errors in the
calculation of the residual can accumulated. However, unless the transmitted signal
waveforms are known at the reference receiver this situation is difficult to resolve.

The third experiment considers the number of participating receivers. Placement of
the single transmitter is now performed using a uniform distribution to allow arbitrary
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Figure 4.3: Success rate of localization for different number of compressed samples with
1 transmitter and 4 receivers (a) and with 2 transmitters and 4 receivers (b).

locations. Varying the number of receivers, including the reference receiver, between 3
and 8 the root-mean-square error (RMSE) between the true and estimated transmitter
location is determined as shown in Figure 4.4. It is clearly visible how the error decreases
for a higher number of CS receivers.

4.2.5 Localization of Many Sources

As expected and shown in the results above, additional receivers are able to decrease
the localization error. Also, it is not possible to simultaneously distinguish and local-
ize a large number of sources transmitting unknown signals in a non-orthogonal way.
Therefore, next by scaling up the simulation it is examined if a larger number of sensors
can help solving this problem and enable tracking of many sources at the expense of
additional network infrastructure. For this purpose a network of 16 sensors is simulated
that tries to localize 8 sources. The number of Nyquist samples is increased to 3000 in
order to improve the effective SNR. Figure 4.5 shows a snapshot of the scenario in-
cluding all the hyperbolas which are based on the reference sensor at coordinates (0, 0).
It is noted that the algorithm sometimes struggles with targets that are close together
as well as it sometimes mistakenly detects two targets instead of a single one. Those are
classical issues in the domain of multi target tracking. To overcome these, tracking over
multiple time instances is necessary. However, Monte Carlo simulations indicate that
if the number of sensors is high enough, the single snapshot approach already produces
a reasonable baseline performance in terms of probability of detection. The result is
shown in Figure 4.6. It shows the probability of detection all targets per snapshot, i.e.,
a probability of 1 signifies that all targets are always detected with 100% probability,
while a probability of 1

6 signifies that on average only one target is detected with 100%
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Figure 4.4: Root mean squared error of true and estimated location for a single trans-
mitter and 0 dB SNR.

probability per snapshot. A solution is assumed correct if the target is localized with
an error of one location bin in all directions. The result demonstrates that the model
mismatch caused by the successive cancellation of sources inside the CS type algorithm
can be mitigated to some extend using larger numbers of sensors.

4.3 Ray Tracing for Urban Scenarios

Localization in urban areas with no direct line-of-sight between the target and anchor
nodes turns out to be challenging for many well-known localization methods. In com-
bination with multipath propagation of employed radio waves, the performance of the
location estimates can be heavily deteriorated. In this section, an extension to the spar-
sity based method that is able to cope with such conditions is introduced. Employing
a discrete approach for the estimation of the emitter location, it is shown how prior
knowledge of the environment, obtained from a ray tracer or ray launcher, can improve
the system accuracy. A similar approach is followed in [173] and [174] in the context of
GNSS, where 3D models of urban areas are used to improve the positioning accuracy.
The localization algorithm in this section is based on the TDOAs between the observ-
ing sensors. However, in non-line-of-sight these time differences change as opposed to
common signal models that assume free-space propagation. This mismatch is resolved
taking into account information of the propagation paths provided by the ray launcher.
Simulation results demonstrate that the proposed method effectively mitigates the im-
pact of non-line-of-sight and multipath propagation on the location accuracy.

For the localization of wireless sensor nodes, mobile phones, or other types of radio wave
emitters, numerous different approaches and related algorithms have been proposed.
All approaches are based on explicit or implicit measurements of physical parameters
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Figure 4.5: Localization of 6 targets using 16 sensors and the sparsity based algorithm.
Targets are transmitting random BPSK signals without any pilots. The
figure also shows all the TDOA hyperbolas with respect to the reference
sensor at (0, 0).

of the propagating waves. To assist the localization and relate it to a known coordinate
system, the signals are usually transmitted or received by anchor nodes whose locations
are known. Possible physical parameters at the receiver are the signal strength, time,
frequency, phase or direction of the arriving wave, which are further processed by the
localization algorithm, e.g., taking differences, averaging or other types of combining.
However, all these parameters are affected if no direct line-of-sight (LOS) path exists
which forces the radio waves to arrive at the receiving antenna by means of reflections
and diffractions. Thus, the accuracy of all methods that assume free-space propagation
in their system model, will be deteriorated.

Various approaches have been proposed in order to overcome or avoid such problems.
A scheme that tries to track and discriminate between line-of-sight and non-line-of-
sight (NLOS) propagation at the different receivers is proposed in [175] assuming range
measurements. In case of NLOS, the range measurements of the particular receiver
are corrected based on their statistics to obtain values resembling LOS. A similar error
suppression approach is suggested by [176] which further investigates the statistics of
the error in the NLOS case. Other approaches like [177] conduct more profound studies
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Figure 4.6: Detection probability of 6 targets using 16 sensors.

of geometrical properties of the wave propagation and thereby aim to suppress NLOS
components in multipath propagation environments. The authors of [178] go a step fur-
ther by assuming no line-of-sight component but wave propagation inside a completely
closed room. An exact formulation of the differential equations of the wave field and
a discrete grid enable the localization of an emitter behind a corner or in a another
connected room. However, this last approach is only suitable for very specific scenarios
with explicitly defined boundary conditions.

In order to tackle more generic scenarios with a good location accuracy, higher than
that of statistics based methods but without detailed knowledge of the environment,
fingerprinting has been introduced in [41] for example. Most literature about finger-
printing utilizes a metric based on the received signal strength indicator (RSSI) of the
signals and assumes that a prior measurement campaign has taken place in order to
obtain the fingerprints, which are calculated by the measured RSSIs at certain known
positions. Those fingerprints are stored in a database and compared against the fin-
gerprints obtained at runtime in order to perform the localization. In an attempt to
reduce the effort and costs necessary for the collection of the fingerprints, the work in
[179] suggests to obtain them from simulations by the means of a ray tracing or ray
launching algorithm. In [180] this idea has been further extended to not only make
use of the RSSI information but also the full information of the directions of arrival
of different propagation paths at the receiver, which are available from the ray tracer.
This is a powerful approach, however, it requires a calibrated antenna array at the re-
ceiver in order to obtain the same directional information from the received signal. As
an alternative, ranging based methods have the advantage that they only need a single
receive antenna and a single associated signal processing chain. Therefore, an approach
based on the fingerprinting of the TDOA of a signal is proposed. The method utilizes
a discrete grid of possible locations, which eliminates the need to explicitly solve the
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Figure 4.7: Footprint of buildings in the inner city of Munich with propagation paths
between the transmitter and the receiving anchor nodes in magenta, TDOA
hyperbolas in black.

nonlinear equations determined by the TDOAs and makes it suitable for fingerprinting.
Thus, extending the algorithm in Section 4.2.3 the formerly developed ray launching al-
gorithm [181] for multipath propagation leads to a TDOA-based fingerprinting approach
introduced in current section.

4.3.1 Ray Launching Based Fingerprinting

For free-space propagation signal propagation follows a simple model. Denoting the
emitted signal with s(t) consider the signals yr(t) received at different nodes. The
received signal at the r-th receiver with channel coefficients hr is then given as

yr(t) = hrs(t− τr) + wr(t), (4.10)

where s(t) can by any type of signal and wr(t) is assumed to be white Gaussian noise,
τr stands for the delay which is related to the free-space propagation distance between
the transmitter and receiver r. In case of multipath propagation, the channel impulse
response becomes a function of time and is convolved with the transmitted signal

yr(t) = hr(t) ∗ s(t− τr) + wr(t). (4.11)

For this case τr is the delay of the first arriving path.

In the beginning of the chapter the case of multiple transmitters for free-space prop-
agation has been considered. For multipath propagation, multiple transmitters in the
same band are extremely challenging as the assignment problem between the delays and
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Figure 4.8: Comparison of the distortion encountered by Algorithm 1 from Section 4.2.3
in step 5 for (a) free-space and (b) multipath propagation. Our proposed
method is able to estimate the location correctly in both scenarios while
Chan’s method fails under NLOS.
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the sources is further deteriorated. Therefore, the model in this section is restricted to
a single transmitter to be able to obtain good location estimates under such adverse
conditions.

Again a grid of K location cells Ψr =
[
ȳref(γr,1), . . . , ȳref(γr,K)

]
∈ CN×K on the region

of interest is defined in order to determine the location. The time shifts are defined
based on the TDOAs at the center of each location cell.

NLOS and multipath propagation of the radio waves introduce an inherent error into the
localization as they alter the length of the propagation paths and add additional paths
with different delays to the channel. In order to obtain the propagation information
and resolve the problem by fingerprinting, either extensive measurement campaigns
are necessary, or it can be simulated using ray tracing software and a model of the
environment. For the results of the present section, the PIROPA ray launcher [181]
was utilized. The algorithm is based on an input of 2.5D building data, i.e., buildings
and other objects in the environment are modeled based on their footprints, as seen in
Figure 4.7, and their heights. PIROPA provides a precise output of each segment of a
propagation path, therefore providing information about the angles of departure and
arrival, as well as the path lengths, which immediately lead to the power delay profile.

To include the ray launching data into the localization algorithm it is necessary to
model the TDOA related time shifts in (4.4) for each entry of the matrices Ψr. Possible
emitter location cells are straightforwardly represented by a grid of receivers in the
ray launching algorithm. The algorithm is evaluated and a set of rays is obtained
for each possible location. Based on the length of the rays the propagation delays,
i.e., the times of arrival, can be evaluated. To resolve the multipath ambiguity in the
delay, the dominant propagation path needs to be selected. Here the shortest, i.e., the
first arriving ray has been selected to determine the time. However, it is also possible
to select a weighted combination of rays. Then, to calculate the TDOAs, a pair of ray
launching results of two receivers has to be combined by subtracting the times of arrival
at both receivers for each location cell. In that way the relevant time shifts γr,1, ..., γr,K
for the location cells can be obtained. The TDOA-based fingerprint data can be stored
and used during runtime of the localization algorithm. As with other fingerprinting
approaches this step has to be performed in an offline phase before the final deployment
of the system. It has to be re-evaluated only whenever the position of one or more
observing receivers or the scenario is changed, e.g., when a new base station is added
as part of a mobile network.

4.3.2 Results

Simulation results have been obtained for scenarios in the inner cities of Aachen and
Munich. The Munich data set comes from the land register data while the Aachen
data is extracted from the OpenStreetMap (OSM) project [182]. Government data sets
usually contain much better information about the building heights which can also be
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Figure 4.9: Error of localization in Meters evaluated on a 400m × 400m region of in-
terest, 5m resolution, in the inner city of Munich, Germany for (a) Chan’s
method and (b) proposed method.
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extracted from LIDAR scans. For the German state of North Rhine-Westphalia, where
the authors’ university is located, comprehensive LIDAR scan data is available and is
updated by the local administration every 5 years. The OSM data on the other hand
has proven to be a reasonable and royalty-free alternative with ever increasing accuracy.
Therefore, the PIROPA ray launching tool supports various input filters for different
data sets.

For the localization scenario three receivers are placed in a 400m × 400m target area.
A transmitter is placed on a location in the outdoor area as PIROPA does not support
outdoor to indoor propagation modeling. The transmitted signal is a BPSK signal with
a bandwidth of 100 MHz. Since no real world measurement data has been available,
the channel impulse responses provided by the ray launching has been used to convolve
it with the signal as given in (4.10). The size of the location cells for the proposed
algorithm is 1m × 1m. In order to speed up and simplify the simulation the channel
impulse responses is precalculated for each cell and the transmitter locations are only
allowed to lie at those coordinates. In Figure 4.8, step 5 from the proposed Algorithm
1 of Section 4.2.3 is shown, in order to visualize how the NLOS propagation environ-
ment distorts the TDOAs. For each possible location the error of the localization is
determined and compared to the well known algorithm for TDOA localization given in
[109]. The results of this, as shown in Figure 4.9, indicate the error of both algorithms.
It can be observed that the proposed approach results in a clearly improved accuracy.
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5 Sensor Network
Self-Localization using TDOA

This chapter deals with the estimation of the locations of the sensors as opposed to the
target. Determining the exact coordinates of the sensors in the respective coordinate
system is an important step in the setup of a localization sensor network. The exact
knowledge of the sensor locations is crucial for the accuracy of the target localization.
When setting up a sensor network, it is not always possible or desired to perform mea-
surements of the sensor locations by means of external measurement equipment. This
is often the case in ad-hoc sensor networks. Interestingly enough there exist methods
to let the network determine the location of all its sensor locations by itself. These
methods either use some type of measurements between the sensor nodes or exploit the
correlation in a time-series of target measurement, e.g., using Kalman filtering.

Parts of the following results have been presented in [11].

5.1 Active and Passive Methods

An important distinguishing property between different self-localization methods for
sensor networks is the type of measurements that is used. Active methods require
the sensors to receive, as well as transmit, while passive methods must rely on signals
transmitted by the target, because the sensors can only receive. Passive self-localization
approaches for time difference of arrival (TDOA) systems have been developed only
very recently [183, 184]. In general, the optimization problems associated with active
as well as passive self-localization are not convex. Research results on passive methods
indicate that the underlying minimization problem severely suffers from many local
minima, so greater effort is necessary to find the global optimum and thereby the
sensor locations. Therefore, active self-localization based on time difference of arrival
(TDOA) measurements between the sensors is considered in the current chapter. Due
to the non-convex nature of the problem it is obviously difficult to provide mathematical
rigorous proofs of convergence for both cases. However, numerical simulations show a
more manageable behavior of the passive problem with respect to local minima as the
passive problem tends to have no local minima close to the global optimum solution.
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5.2 Self-Localization with Classical
Multidimensional Scaling

Active self-localization relies on distance measurements between sensors [185, 186, 187].
The relative sensor locations can be determined from this distance measurements using
the theory of classical multidimensional scaling (MDS) [188]. MDS is a mathematical
method that places objects in a 2-, 3- or higher dimensional space according to known
dissimilarities between the objects. In classical MDS the dissimilarities are Euclidean
distances. For example, if M sensors with coordinates xj = [xj1, xj2]T, j ∈ {1 . . .M}
are considered, this yields a M ×M distance Matrix D. The entries [D]jk are given
as djk =

√
(xj1 − xk1)2 + (xj2 − xk2)2. A common method to obtain all the pairwise

distances and therebyD, is two-way ranging, where sensors take turns to send a message
that is immediately answered by a second one and the distance is determined as half of
the sum of the propagation times.

Shepard and later Kruskal developed an iterative algorithm for the problem now known
under the names of the authors [189, 190]. The algorithm iteratively decreases a cost
function called Stress, much like a gradient descent type algorithm. A more thorough
analysis including several extensions can be found in the more recent literature [191,
192, 193]. For the case of classical MDS where the dissimilarities are exact Euclidean
distances, the literature also provides a closed form solution that takes D as an input
and based on eigenvalue decomposition outputs a coordinate for each object.

5.3 Procrustes Transform and Absolute Localization

It has to be emphasized that the solution obtained from MDS provides only a relative
solution to the self-localization problem. That means, in general the solution is shifted,
rotated and reflected with respect to the absolute solution that lies in a global coordinate
system such as World Geodetic System 1984 (WGS84). In order to match the relative
solution of the self-localization to an absolute solution some type of anchor points are
required. Considering the two-dimensional problem, at least three anchor points are
required to resolve the unknown shift, rotation and reflection. A well known solution to
match the relative solution and the absolute anchor points onto each other is Procrustes
analysis [194]. Procrustes analysis yields a linear transform that provides the best
mapping of a set of points onto a reference set in a least squares sense, i.e., minimizing
the Procrustes distance

min
T,a,b

∑
j

(xj1 − x̂j1)2 + (xj2 − x̂j2)2 , (5.1)
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between xj = [xj1, xj2]T and x̂j = [x̂j1, x̂j2]T, where T ∈ R2x2, a and b are the parameters
of the mapping.

xj = Tx̂j +
[
a
b

]
, (5.2)

that maps the localized beacon locations to the true ones with least squared error using
a shift specified by [a, b]T and a rotation and reflection by the matrix T. For the lo-
calization problem different nodes can act as anchors, depending on if knowledge about
their absolute location is available or not. One possibility is to use some of the sensors
itself. However, another approach that is followed in this chapter is to introduce addi-
tional beacons into the system. Those beacons are transmit-only-nodes and therefore
simpler devices. They can potentially also be used for sensor node synchronization. A
third option for anchoring is to use a mobile reference transmitter placed at exactly
known locations during the system setup phase.

A practical real-world application that motivates anchoring by beacons, is the ATLAS
system [24]. This is a wildlife tracking system in Hula Valley in northern Israel, an area
that lies on an important bird-migration route. In the ATLAS project, birds are tagged
with a transmitter and their movements can be observed in real-time. The system
uses a number of base stations that perform time of arrival measurement of the bird
tags. These arrival times are sent to a central fusion center that calculates the locations
based on the resulting TDOAs. Locations of the sensor antennas, most of which are
mounted on cellular network towers, can be erroneous. For example this can be due to
the GPS antenna not placed next to the receive antenna or errors in the GPS position.
The ATLAS system has some transmitting beacons in well known absolute locations.
Section 5.5 explains how beacons at known locations can be used to anchor the solution
of the self-localization.

5.4 Differential Multidimensional Scaling

In TDOA systems, the ability to perform ranging between sensors might not be available
due to technical reasons. On the other hand, differential measurements between two
receiving sensors and a third transmitting sensor are a natural operation and require
insignificant changes in the system software. However, there is no known approach to
solve the MDS problem from differential measurements. Therefore, in this chapter an
iterative algorithm is introduce and studied that is able to derive the sensor locations
from the full set of TDOA measurements between all combinations of sensors. For
that, following along the lines of classical MDS, in order to find the sensor locations
an objective function has to be defined. In the context of MDS this function has been
called Stress [190] and the solution of the problem can be obtained by minimizing the
function.
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Consider the system ofM sensor nodes with coordinates xj located in a two-dimensional
euclidean space as defined above. The sensor locations are initially unknown. Addi-
tionally, a number of N beacons with known locations xb = [xb1, xb2]T, b ∈ {1 . . . N}
are available as anchors. The beacons are constantly transmitting and are not able to
receive whereas the sensors are able to receive as well as transmit signals. After de-
ployment the system enters into a self-localization phase. In this phase, consecutively
each sensor transmits a calibration signal while all the other sensors are listening and
obtaining TOA measurements. The sensors are assumed to be perfectly time synchro-
nized. Moreover, it is assumed that the signals emitted by the sensors are orthogonal
to the beacon signals such that they do not interfere with the measurements.

Assuming free-space propagation, the TDOA measurements for a transmitting sensor
at location xj and receiving sensors at locations xk and xl can be expressed as

τj,k,l = 1
c
‖xj − xk‖2 −

1
c
‖xj − xl‖2 + η, j, k, l ∈ {1 . . .M}, j 6= k 6= l , (5.3)

where c denotes the speed of the wave and η is a Gaussian distributed noise term. Note
that this is essentially identical to what is given in Chapter 3, however in this case all
of the participating nodes are sensors and none of the coordinates of the sensors are
known.

Instead of working with the TDOA measurements one can equivalently define distance
differences

∆j,k,l = c ∗ τj,k,l. (5.4)
The full set of ∆j,k,l containsM(M−1)(M−2) measurements, the problem is symmetric
in the sense that ∆j,k,l = −∆j,l,k, this can potentially be exploited to further speed up
the algorithm described in the following. To measure ∆j,k,l it is only necessary to have
M transmission, each sensor has to transmit once while all the others are listening.

After obtaining the full set of differential measurements the relative locations of the
sensors shall be estimated. In the context of MDS these relative locations are called
a configuration. Clearly, if the locations of the sensors are rigidly translated, rotated,
and reflected, the pairwise distances and their differences will not change. Therefore,
one can determine the relative sensor locations and subsequently perform a mapping to
absolute coordinates if required by the application.

As mentioned before, MDS, as first introduced in [188], provides a well known solution
to the problem at hand if the distance matrix D is known. Next an algorithm is
introduced that can solve for a configuration even if only the differential distances ∆j,k,l

are known. This algorithm is denoted as Differential multidimensional scaling (DMDS).
It is only possible for a set of more than three sensors. For three sensors a unique solution
does not exist. Showing this ambiguity of a three sensor solution is easily possible by
finding two sets of sensor locations for the same difference measurements. Therefore, a
minimum of four sensors is required. The algorithm is inspired by the Shepard-Kruskal
algorithm [189, 195, 190] that finds a configuration by defining an iterative rule, with
iteration step i for moving the points x̂(i) to new points x̂(i+1).
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Figure 5.1: Example of the algorithm running into a local minimum (a) and the evolu-
tion of the Stress function (b), showing that it has converged but not to a
the near-zero value that is expect for the ground truth configuration.

5.4.1 Stress Criteria for Differential MDS

In order to evaluate the fitness of the configuration, define the function

∆̂(i)
j,k,l = ‖x̂(i)

j − x̂(i)
k ‖2 − ‖x̂(i)

j − x̂(i)
l ‖2, j 6= k 6= l. (5.5)

Now define the cost function S, equivalent to the Stress function defined by Kruskal [190],

S(x̂(i)
1 , . . . , x̂(i)

M ) =

√√√√√∑j,k,l(∆j,k,l − ∆̂(i)
j,k,l)2∑

j,k,l ∆2
j,k,l

, (5.6)

The Stress is a functional that maps R2×M (M points in the plane) to R. Now it is
possible to define the iterative DMDS algorithm that obtains the sensor locations by
minimizing the Stress.

5.4.2 Iterative Displacement of Points

As a starting point consider a uniformly-distributed random configuration with location
vectors x̂(0)

j , j ∈ {1 . . .M}. Ensuring x̂(0)
j 6= x̂(0)

k for j 6= k, then seek to minimize S.
The classical algorithm introduced by Sheppard intuitively achieves this by comparing
all distances of tuples in the configuration to the measurements and then displacing the
points accordingly, i.e., moving them slightly closer or further away from all other points
of the configuration in each iteration. However, the present problem uses differential
measurements, consisting of triples of points, i.e. all combinations of one transmitting
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sensor and two receiving sensors. Therefore, it is not directly obvious how to displace
points in order to achieve convergence to the minimum-Stress configuration. Based on
empirical studies, we propose for each triple to displace one of the receiving sensors
and to choose the direction of displacement as the direction from this receiver to the
transmitter,

b(i)
jk =

x̂(i)
k − x̂(i)

j

‖x̂(i)
k − x̂(i)

j ‖
. (5.7)

The velocity of displacement is chosen based on the residual error between the current
configuration and the measurement as

v
(i)
jkl = ∆j,k,l − ∆̂(i)

j,k,l . (5.8)

From this, the displacement vector of each point in each iteration is determined as

d(i)
j =

∑
k,l

v
(i)
j,k,lb

(i)
j,k. (5.9)

Finally, the new location of each point is calculated

x̃(i+1)
j = x̂(i)

j − α
1

(M − 1)(M − 2)d(i)
j , (5.10)

where (M − 1)(M − 2) is a normalization term and α ∈ R is a step-size parameter that
is chosen experimentally. After each iteration, the configuration is shifted so that its
center of mass coincides with the origin,

o(i+1) = 1
M

∑
j

x̃(i+1)
j , (5.11)

x̂(i+1)
j = x̃(i+1)

j − o(i+1) . (5.12)

The procedure is repeated until convergence. Criteria for convergence are discussed
next.

5.4.3 Convergence and Stopping Criteria

A possible measure for convergence is the Stress function S. Defining a threshold ε,
convergence can be assumed if S < ε. Due to the general non-convex nature of the
problem, the proposed MDS procedure is not always guaranteed to converge to the
global optimum and might get stuck in a local minimum. Therefore, a second criteria
is introduced to measure the change of S

R(i) = S(x̂(i+1)
1 , . . . , x̂(i+1)

M )− S(x̂(i)
1 , . . . , x̂(i)

M ) (5.13)

If R < δ and S > ε the algorithm is assumed to have reached a local minima. A scenario
where a local minimum has been reached is depicted in Figure 5.1. These thresholds
need to be determined empirically, especially for the case of noisy measurements.
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5.4.4 Overcoming Local Minima

The non-convexity of the problem makes it difficult to find a solution within a limited
runtime. However, two ideas are offered to help cope with local minima. A simple
practical solution to overcome the minima problem, that should always lead to success
but is not bounded in terms of execution time, is to restart the algorithm with a new
random configuration. In simulations with up to 100 nodes it has been found that the
probability of running into local minima is so low that it has always been possible to find
the global minima with only one or a very limited number of initializations. Another
idea that works for some scenarios is to evaluate a Stress function for individual nodes
and interchange the location of nodes that exhibit the strongest stress values.

5.4.5 Numerical Gradient Descent

At this point, an iterative algorithm that minimizes the Stress and thereby finds the
locations of the sensors has been fully defined. For comparison purposes the problem
will now be formulated in a way that enables one to perform a numerical gradient
descent. This is possible with a slight reformulation. Rewriting the estimated TDOAs
as a function

∆̂j,k,l(X̂) = ‖x̂j − x̂k‖2 − ‖x̂j − x̂l‖2, j 6= k 6= l, (5.14)

an equivalent formulation of the Stress function as a scalar functional is given by

f(X̂) =
∑
j,k,l

(
∆j,k,l − ∆̂j,k,l(X̂)

)2
, (5.15)

which depends on the vector X̂ = [x̂11, x̂12, . . . , x̂M1, x̂M2]T, X̂ ∈ R2M that specifies
locations x̂j for all the sensors.

The minimizer of
min

x̂11,x̂12,...,x̂M1,x̂M2
f(X̂), (5.16)

also solves the original self-localization problem. A common approach to minimize f is
to iteratively perform a gradient descent step, moving in the opposite direction to the
gradient

∇f(X̂) =
[
∂f

∂x̂11
,
∂f

∂x̂12
, . . . ,

∂f

∂x̂1M
,
∂f

∂x̂2M

]T

. (5.17)

The gradient descent method starts with a random X̂(0) value as an initial position
guess and iteratively calculates new values by the recursive formula

X̂(i+1) = X̂(i) − α 1
(M − 1)(M − 2)∇f(X̂)|X̂=X̂(i) . (5.18)
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Figure 5.2: The steps of the self-localization and anchoring process visualized. The final
solution is obtain using Procrustes analysis on the localized beacons.

As the analytical evaluation of the gradient (5.17) used in (5.18) is impractical for large
a number of sensors, another way is to numerically evaluate it in a local region of size
2h around each variable x̂jκ as

∂f

∂x̂jκ
= f([x̂11, . . . , x̂jκ + h, . . . , x̂M2])

2h

− f([x̂11, . . . , x̂jκ − h, . . . , x̂M2])
2h , κ ∈ (1, 2). (5.19)

Similar to the previous algorithm, α has to be determined experimentally and measures
for overcoming local minima have to be taken.

5.5 Anchoring

After convergence of the DMDS, a configuration is obtained that exhibits the correct
shape of the sensor network, but in general is shifted, rotated and reflected. Therefore,
anchoring points at known locations need to be introduced. In practice these can be
very inexpensive, constantly transmitting beacons, with no receive capability. They
should be placed at a point that is accessible and can be localized with high accuracy
using methods from land surveying. For example, in the ATLAS system [24], they are
placed on the roof of a bird-watching shelter or in a tree top. For a two-dimensional
solution, at least 3 beacons are required in order to find the true locations when using
the following approach.
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Based on the final configuration obtained from DMDS, the beacons coordinates are es-
timated as x̂b using a TDOA localization algorithm as described in [109]. Other TDOA
localization algorithms from the literature might be used as well, which leads to similar
results. Note that x̂b is relative to the DMDS solution and not to the ground truth.
Therefore, in the next step Procrustes analysis is performed [194] to determine an ab-
solute mapping using the approach from Section 5.3 This yields a linear transformation
that maps the relative beacons locations x̂b to their ground truth xb. Finally, the same
transformation is applied to the sensor locations in order to find the true locations of the
sensors on the global map. Note that due to the dilution of precision problem [132], it is
important to have beacons located in the center of the system, otherwise the accuracy
of the solution might severely be affected. Each solution step of the process is shown in
Figure 5.2. This concludes the self-localization phase; after that the system may enter
into its operational state and localize target nodes.

5.6 Simultaneous Anchoring with Weighted
Gradient Descend

The previously described anchoring approach that is based on beacon localization fol-
lowed by Procrustes transformation suffers from the problem that the TDOA algorithms
are quite sensitive with respect to erroneous sensor locations. Therefore a comparably
small error in the relative solution of the self-localization can possibly result in large
errors of the anchoring. An alternative approach is to combine the relative and absolute
part of the self-localization by the means of a weighted gradient descend. To approach
that, analog to (5.4) and (5.5) define the functions for the measurements between the
sensors k, l and the beacons b as

Λb,k,l = c ∗ τb,k,l , (5.20)
Λ̂b,k,l(X̂) = ‖x̂b − x̂k‖2 − ‖x̂b − x̂l‖2, k 6= l. (5.21)

Then a combined objective or Stress function can be defined as

fa(X̂) =
∑
b,j,k,l

(
(1− β)(∆j,k,l − ∆̂j,k,l(X̂)) + β(Λb,k,l − Λ̂b,k,l(X̂))

)2
(5.22)

where β ∈ R is a weighting factor that determines the importance of the relative and
absolute portion. The same gradient descend approach given by (5.17) and (5.18) can
now be applied to minimize fa(X̂) and obtain the absolute sensor locations. The weight
β has to be chosen empirically and plays a crucial role for the probability of success
of the gradient descend to find the global minimum. Intuitively, if β is chosen small,
the solution of the relative self-localization problem is emphasized. In many cases this
leads to the algorithm being stuck in a local minimum. Therefore, β should be chosen
large, i.e., β = 0.9 to for the gradient descend to find a good absolute solution before
converging to the relative locations.
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5.7 Self-Localization in the Presence of Clock
Offsets

Besides the anchoring issue, another problem in practice is the clock offset φ that each
sensor’s internal clock might experience. The resulting TDOAs are given as

τj,k,l = 1
c
‖xj − xk‖2 −

1
c
‖xj − xl‖2 + φk + φl + η, j 6= k 6= l . (5.23)

Again, with the speed of the wave c this directly translates into distance differences.
Furthermore, it is assumed that the clock offsets φ are constant during the course of
the measurement. A solution to remove the offset is to apply the idea of DTDOA as
mentioned in Section 3.8.1. For that it is necessary to introduce an additional beacon
or references emitter with a known location into the system. One can then subtract the
measurement of the reference transmission from each of the other measurements. In
the following equations this beacon is denoted by “ref”. Moreover, ∆, ∆̂ and Λ, Λ̂ need
to be extended. For the intra-sensor measurements that yields

Θj,k,l = c ∗ τj,k,l − c ∗ τref,k,l , (5.24)

and for the sensor to beacon measurements

Ωb,k,l = c ∗ τb,k,l − c ∗ τref,k,l, b 6= ref . (5.25)

Analogously to (5.5) define

Θ̂j,k,l(X̂) = ‖x̂j − x̂k‖2 − ‖x̂j − x̂l‖2

− ‖x̂ref − x̂k‖2 − ‖x̂ref − x̂l‖2, j 6= k 6= l, j 6= ref ,
(5.26)

Ω̂j,k,l(X̂) = ‖x̂b − x̂k‖2 − ‖x̂b − x̂l‖2

− ‖x̂ref − x̂k‖2 − ‖x̂ref − x̂l‖2, k 6= l, b 6= ref .
(5.27)

based on the configuration of estimated sensor coordinates. Note that the beacon used
as a time reference does not simultaneously serve as an anchor for the self-localization.
The objective function to be minimized for this case is

fo(X̂) =
∑
b,j,k,l

(
(1− β)(Θj,k,l − Θ̂j,k,l(X̂)) + β(Ωb,k,l − Ω̂b,k,l(X̂))

)2
. (5.28)

As before β is chosen close to one to avoid a gradient descend approach running into
local minima. Empirical numerical studies confirm that the algorithm converges even
in this case with DTDOA measurements.
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Figure 5.3: Trajectories of the sensor nodes during the iterations of the algorithm (a),
together with the Stress functions (b).
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Figure 5.4: A simple scenario to study the behavior with noisy measurements (a).
Adding more sensors and thereby more measurements, results in improved
robustness of the self-localization against the measurement noise (b).
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5.8 Results

After having proposed iterative algorithms for self-localization in TDOA sensor net-
works, this section presents numerical simulation results in order to investigate and
visualize its performance. First a value for the thresholds that are needed to detect
convergence of the algorithm has been experimentally determined. Values of ε = 0.001
and δ = 0.001 have been found to provide good results. Furthermore, good values for
the step size, controlled by α have to be determined. Note that for high values of α,f
oscillation and divergence of the algorithm can occur. Whereas for very small values of
α, the number of necessary iterations becomes large. For all presented results the value
of α has been set to 1 in the DMDS and 0.1 in the gradient descend algorithm, which
yields a good compromise between stability and speed of convergence.

Two types of experiments have been performed. First the proposed DMDS algorithm
has been compared with the gradient descent. The same initial configuration has been
used for both algorithms. Figure 5.3 shows an example for 6 sensor nodes and measure-
ments not affected by noise. It can be observed that the trajectories of both algorithms
follow a similar path. None of the algorithms has been observed to be always quicker.
Repeating the experiment for many different random sensor locations, the convergence
times of the two algorithms have been found to be comparable. Similarly, both of the al-
gorithms might run into local minima. However, this doesn’t necessarily occur jointly in
both algorithms for a certain random instance of locations. In a second experiment the
performance under noise conditions has been studied. For that, a regular grid of sensors
as shown in Figure 5.4 has been used. The noise η ∼ N (0, σ2) on the measurements is
increased step wise and the performance in terms of root-mean-square error (RMSE) is
observed for different numbers of sensors. It is observed that the algorithm is stable as
long as the noise term is reasonably low. Moreover, for the considered sensor placement
an increased number of sensors increases the robustness of the system against noise.
This can be intuitively explained by the increased number of available measurements.
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6 Experimental Evaluation using
Software Defined Radio

For the experimental verification of this thesis, a real-time TDOA localization testbed
utilizing a software defined radio framework and GPS based synchronization is presented
in this chapter. A distributed software stack enables the localization of unknown sig-
nals by transporting the recorded baseband samples of several sensors over a backhaul
network for centralized signal processing in a fusion center. To overcome the relatively
large drifts of synchronization signals provided by standard GPS receivers, the system
is permanently re-calibrated using a stationary reference beacon or alternatively a sig-
nal of opportunity. In a further step, the latest generation of low-cost GPS disciplined
oscillators is introduced to simultaneously achieve single digit meter accuracy and high
update rates necessary for target tracking. The tracking is performed using a KF run-
ning on the output of the localization algorithm. Therefore, the dilution of precision
studied in Chapter 3 is applied to understand the system performance and improve the
tracking. Finally outdoor measurements demonstrating the capabilities of the system
are presented.

Parts of the following results have been presented in [9, 10].

6.1 Distributed Software Defined Radio Testbed

Implementation of wide area localization systems utilizing time measurements from elec-
tromagnetic waves has been notoriously challenging due to its extreme demands on the
synchronization. Nanosecond synchronization accuracy is necessary in order to obtain
meter to sub-meter localization performance. The technical challenges and high costs
involved in the implementation of such systems is one of the major reasons hindering
the research community from experimental work in the area. Using a common clock
connected to all distributed sensors results in highly stable synchronization for TDOA
measurements. However, such a solution involves a tremendous amount of cabling, very
long setup times and large costs for a permanent installation. In a research environment,
especially the long setup times can lead to the infeasibility of various experiments, e.g.
if there is a time limitation of a single day. Consequently, it is desirable to work towards
self-contained wireless sensor units. One approach to achieve this is to use distributed
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Figure 6.1: Exemplary setup of the testbed with WLAN backhauling. Receiver clocks
are synchronized using GPS.

synchronization, e.g., based on GPS signals and a wireless backhaul solution. Another
aspect in the design of a localization testbed is the choice of the underlying technology.
The computer science community regularly follows the approach to use standardized
technology such as the IEEE 802.11 WLAN family, sometimes with slight modifications
to the device driver. While this approach leads to fast, reliable and cost effective results
by abstracting away most of the physical layer signal processing from the researcher, it
also sets very tight limits to the physical layer design space. Therefore, the electrical
and communications engineering community often decides to utilize SDR, e.g., using
GNU Radio [6], as the basis of system design. This allows for highly increased freedom
in the design of RF waveforms for localization research. Figure 6.1 depicts the setup of
a distributed localization testbed based on SDR.

In the literature, several systems have been presented [196, 197, 198, 199, 200]. These
solutions either use a common clock or exhibit large errors caused by insufficient syn-
chronization, often in the order of 100m or more. Further, some system are missing
real-time capabilities and only support offline signal processing of recorded signals. One
goal of this thesis is to show how recent developments in SDR and GPS synchronization
technology enable the implementation of affordable real-time TDOA-based localization
systems. The developed system is able to achieve single-digit meter accuracy without
the use of a common clock. To achieve this goal, sensor synchronization in the order of
±5 ns is necessary. Related to this, two types of GPSDOs with different performance
have been studied. For the first type, additional beacon signals are necessary to achieve
an acceptable performance. This approach is similar to the one in [24] developed at the
same time. Using the second type GPSDO, currently a last generation state-of-the-art
device, it is possible to obtain the same performance without the help of beacon signals.
In [16], various related approaches for localization system synchronization are described;
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however, it is based on proprietary technology not easily available to civil research. To
further improve the results our system performs tracking of the emitter location using
a KF.

6.2 System Architecture

The presented localization system is implemented based on the SDR methodology. This
includes hardware for basic radio frequency and baseband signal processing and software
to perform the major part of the digital baseband signal processing.

6.2.1 Hardware

The baseline configuration of the system, as shown in Figure 6.1, uses three receiver
nodes and one transmitting target node that shall be localized. Each node consists of
a RF front-end and a computer running the SDR framework. The RF front-ends Ettus
USRP B210, shown in Figure 6.2 (a), are able to deliver complex samples at a rate of up
to 56 million samples per second. In order to enable time synchronization the receiver
nodes additionally need a GPSDO that provides a clock signal for the front-end and
a pulse per second (PPS) synchronization signal. Two devices have been evaluated,
namely the LCXO manufactured by Jackson Labs Technologies and the u-blox LEA-
M8F. Both can be plugged into the USRP B210 RF front-end. By default the USRP
B210 is designed to receive a LCXO GPSDO, in order to mount the LEA-M8F a PCB
specifically designed for that purpose [202] has been used. Note that the driver for the
USRP B210 has to be patched in order to support the LEA-M8F. To improve mobility,
laptop computers are used. With that is possible to power the RF front-end as well
as the GPSDO through the laptop battery. Furthermore, the system needs a backhaul
network in order to communicate the baseband samples of the receiver nodes. This is
achieved either by Ethernet or IEEE 802.11 WLAN. When using WLAN, the nodes are
completely self-contained and wireless, operation is only limited by the capacity of the
laptop battery. To build the transmitting target object, that is to be localized, another
USRP B210 is mounted on a long staff. Using SDR for transmission full flexibility in
the choice of the transmitted signal is maintained.

6.2.2 Software

The software part of the localization system consists of four components: transmitter,
receiver, FC and graphical user interface (GUI). A signal is created and transmitted
by the transmitter component and several receiver components acquire the samples in
a synchronized way. Those parts are implemented with the GNU Radio SDR frame-
work [6]. For the transmitted signal BPSK as well as OFDM modulated signals are
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(a)

(b)

Figure 6.2: (a) The RF front-end (Ettus USRP B210, white) with a last generation em-
bedded GPSDO mounted (u-blox LEA-M8F, green) for time synchroniza-
tion with other distributed nodes. (b) Staff used as target. GPS antenna
for the RTK ground truth measurement on top, USRP B210 RF-frontend
in the middle, GPS RTK receiver at the bottom.
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Figure 6.3: The distributed system architecture is based on GNU Radio [6] and Ze-
roMQ [201], the signal processing path is depicted in gray, the control path
in white.

used. Baseband samples are then sent from the receivers to the FC using the ZeroMQ
library [201]. Signal processing block supporting this messaging library have been inte-
grated into the GNU Radio project. ZeroMQ is also used to communicate all necessary
control commands from the GUI to the FC and from there to the distributed receiver
nodes. For that purpose a remote procedure call (RPC) scheme has been implemented.
Figure 6.3 gives an overview of the interconnections among the system components.
The signal path is depicted in gray, it uses a streaming signal processing approach, the
control path is depicted in white. The final result is sent back to the GUI and displayed
to the user as shown in Figure 6.4.

System operation consists of two phases; initially all sensors have to be exactly syn-
chronized to UTC as provided by the GPSDO. This is crucial, because for TDOA
localization samples have to be acquired exactly at the same time. In the second phase,
localization can be performed. For that, a start command is issued from the GUI. Sub-
sequently, the FC orders all sensors to start continues reception of the target signal.
As the system shall be able to localize unknown signals it is necessary to transport
baseband samples to the FC. Due to capacity limitations in the backhaul each sensor
takes snapshots, e.g., 1000 samples in each acquisition. The solution for the location is
then calculated for each snapshot in the FC. Afterwards, all results are transmitted to
one or more graphical user interfaces. Note that all software components can run inde-
pendently on different computers in the network. In principle the number of receivers
and GUIs is not limited.

With the LCXO GPSDO the update rate is limited by the necessary synchronization
calibration process described in the next section. In that case the framework is able
to obtain signal snapshots at a rate of 0.66 Hz. As explained later with the LEA-M8F
GPSDO calibration requirements are relaxed, the update rate is 2 Hz and could be
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Figure 6.4: Graphical user interface of the localization testbed. Map data is obtained
from OpenStreetMap [182]. Tracking performed using the algorithm of Chan
[109] together with the KF described in Section 3.7.

increased further by optimizing the software of the FC and GUI components and the
backhaul capacity.

6.2.3 Coordinate Systems

In order to display localization results in the framework, they need to be drawn on a
map. Assuming that the region of interest is fairly small, internally, two dimensional
Cartesian coordinates are used for calculation of the sensors and the target location.
Smaller maps, for example building floor plans are often available in Cartesian coordi-
nates and can therefor be used in a straightforward way as long as the scale and the
offset between the internal coordinate system and the map is known. However, if com-
mon maps of the earth surface should be used, a global coordinate systems needs to be
adopted. One prevalent system is World Geodetic System 1984 (WGS84), which is well
known due to its usage in GPS. When working with the GPSDO or ground truth as
described in Section 6.4.1, WGS84 is used. For displaying the map itself a projection of
the three dimensional to two dimensional Cartesian coordinates is necessary, in this case
from WGS84 to a transversal Mercator projection. To plot the results of the localization
and the sensors the internal coordinate system is then aligned with the transversal Mer-
cator projection of the map. In the framework the Matplotlib Basemap toolkit [203]
has been used for this purpose while map data is obtained from the OpenStreeMap
project [182].
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6.3 Synchronization

Synchronization plays a major role in time-based localization. In fact in passive TDOA
localization it is arguably the single most difficult problem in practice if no common
clock approach based on wires is used. If each sensor is primarily using its own local
clock, synchronization has to be carefully implemented to approach the physical possi-
ble limits. Besides the issues of the local oscillator, in wireless synchronization, signals
are affected by external influences such as RF interference and multipath propagation
effects. With some COTS sensor hardware, synchronization can be subotimal due to
limited access to the clock configuration parameters or timestamps. Exact timestamps
for the signal samples with nanosecond accuracy are necessary if global systems syn-
chronization is desired. Assuming a good synchronization scheme, e.g., as described
in Section 3.8, the performance of the localization system is limited by the quality of
the oscillators. Therefore, an understanding of clock characterization is necessary for a
good system design.

6.3.1 Receiver Clock Characterization and Allan Deviation

Most electronic RF hardware uses one of three types of clocks

• Temperature compensated crystal oscillator (TCXO): the most critical
issue for oscillators is their dependency on temperature, therefore this type of
oscillator internally contains a voltage controlled crystal oscillator (VCXO) and
compensates its temperature induced frequency change by adjusting the control
voltage accordingly.

• Oven controlled crystal oscillator (OCXO): this type of oscillator is an
improvement over the TCXO. With the oven it heats up the crystal oscillator
to a higher temperature than the environment and then keeps the temperature
constant using a control loop.

• GPS disciplined oscillator (GPSDO): this is a combination of a GPS receiver
and either a TCXO or OCXO. It achieves short term stability from the local
crystal oscillator and long term stability through the GPS time signal.

More stable oscillators such as Rubidium or atomic clocks are very uncommon in COTS
hardware due to the high cost and large form factors. These types of oscillators are
mostly limited to laboratory and measurement equipment. Due to basic physical lim-
itations in the manufacturing process and additional aging effects, all clocks, even of
the exact same type, exhibit errors in their nominal operating frequency that directly
translate into time errors. This error is randomly Gaussian distributed with respect to
different clocks. For typical clocks used in electronic circuits it is measured in parts
per million (ppm), or for better clocks in parts per billion (ppb). TCXOs are usually
available with an accuracy in the order of 0.5 to 20 ppm while an OCXO may achieve
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20 ppb. Additionally, the clock frequency experiences a drift or wander of the frequency
over time, e.g., due to temperature changes. The direct output of the oscillator also ex-
hibits so called phase noise, in time domain called jitter. These are short term, usually
Gaussian distributed, fluctuations of the oscillation around the nominal value.

As the receiver clocks play such an important role in the reception process underlying
the TDOA measurements, it is important to have a tool to characterize them. The
distribution of the time dependent error is non Gaussian, therefore simple variance
estimation is insufficient to characterize the clock stability. For that reason, the Al-
lan deviation and its extensions have been developed [204]. Given the time series of
frequency error measurements of a clock

yi = f(t)− f0

f0
, (6.1)

and its average

ȳj = 1
τ

M−1∑
i=0

yi , (6.2)

the Allan deviation is defined as

σAVAR(τ) =

√√√√√ 1
2(N − 2)τ 2

N−2∑
j=1

(ȳj+1 + ȳj)2 . (6.3)

The frequency error can be modeled as a combination of a white noise process
wi ∼ N (0, σ2

w) and a random walk bi, also known as brown noise

yi = wi + bi . (6.4)

The brown noise can be iteratively derived from a second white noise process vi as

bi = bi−1 + vi , (6.5)

where vi ∼ N (0, σ2
b ) and b−1 = 0. Figure 6.5 shows the time frequency error series and

the Allan deviation plot of a simulated typical 10 MHz OCXO. It can be seen that
for averaging intervals below 10 seconds the deviation decreases; the clock frequency is
relatively stable during such a short interval and dominated by the white noise process.
Beyond that, for longer averaging times the wandering effect begins to dominate and
the Allan deviation deteriorates. If such type of clocks are used in precise localization
applications, clock error correction should be performed at a rate of less than the 10
seconds. If several updates are available during this interval, they might be averaged
to improve the results. A way to improve the long term stability of the oscillator is
to combine it with the GPS signal, which provides a relatively stable time for long
averaging intervals. Hence, as explained in the following section, a combination of an
OCXO with short term stability and the GPS signal with long term stability can provide
a very accurate solution for distributed sensor synchronization.
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Figure 6.5: Typical Allan deviation as expected from an OCXO and a GPS (b) with
the corresponding frequency error measurements of the OCXO (simulated)
over a course of one day (a).
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In practice, the measurements that are necessary to calculate the Allan deviation are
taken with respect to a reference clock that is usually of a higher quality than the
clock under investigation. The outputs of both clocks are directly taken to obtain (6.1).
Another way to characterize the clocks in a localization system is to record TOAs or
TDOAs from a stationary transmitter. A comparison of different clocks based on this
measurement setup is shown in Figure 6.6. One of the receivers uses a GPSDO and
the second one uses the clock as specified above the plots. The nominal TDOA should
be close to zero as the distance between the transmitter and the receiver is the same.
Nevertheless, for all clock types a drift can be observed. Note that the GPS receiver
used in this experiment does not support a timing mode. The differential plot shows
the difference between consecutive TDOAs, this is useful to observe the error in the
clock rate between the different clocks.

6.3.2 Synchronization Using GPS

In practice, when trying to achieve high accuracy in a TDOA-based localization system,
two major challenges clearly stick out, synchronization and multipath propagation.
Multipath propagation is out of the focus of the experimental part of this thesis but
has been partially examined in Section 4.3.

Technically, difficulties in sensor node synchronization mainly arise due to their wide
spatial separation. In this regard, aiming for a wireless synchronization method to
avoid the logistic effort associated with a cabled common clock system, GPS based
synchronization has been chosen in this thesis as one option. This is achieved by
equipping each sensor with a GPSDO. The GPSDO disciplines the local oscillator
using a PPS time pulse derived from the GPS signal. This can be achieved by a phase
locked loop (PLL) and voltage control of the oscillator. In the PLL, the clock cycles
of the local oscillator are divided or counted, then compared against the GPS time
pulse and ultimately a control voltage is modified in order to increase or decrease the
clock rate and bring the error of the comparator to zero. Additionally, it is necessary
to filter and weight the local oscillator signal and the GPS time pulse based on their
particular distribution. This differs for different types of oscillators and GPS receivers.
A good approach for combining the GPS time pulses and the local oscillator signal is
described in [205]. As the GPS timing signals are based on UTC, all the clocks in
the sensor network can be globally synchronized in an absolute sense. Each GPSDO
outputs a clock signal, e.g., 10 MHz and the PPS signal. The clock signal is used to
drive the digital and analog circuits of the RF front-end, while the PPS signal is used to
control the synchronized operation. In practice, a GPSDO is build from at least some
discrete components as it is not possible to integrate a highly accurate oscillator into
the digital signal processor (DSP) ICs. Figure 6.7 depicts the two latest generations
of GPSDOs. Due to the proliferation of small cell base stations, there exists a rising
demand for such devices. In order to enable mass production, the third generation
therefore uses a cost effective, as much as possible integrated design. Fortunately, this
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Figure 6.6: Comparison of different receiver clocks. Reference in one of the receivers is
a GPSDO. Green values are averaged over 10 seconds.
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(a) (b)

Figure 6.7: Different generations of GPSDOs [206]. (a) Second generation design as
used by the LCXO. (b) Third generation design with integrated GPS DSP,
micro-controller (µC) and PLL. This is used in the ublox LEA-M8F.

enables a joint configuration of the micro-controller and the GPS DSP which in the case
of the ublox LEA-M8F enables the activation of the so-called time mode and a large
number of further parameters such as the selection of supported satellites, supported
constellations and an elevation mask.

To achieve synchronization in a SDR system typically two steps are necessary. First,
the RF front-ends have to be synchronized to UTC on a hardware level. Note that due
to latencies in the link between RF front-end and the host computer and the impact
of the operating system, it is not feasible to perform the synchronization purely in
software on the host side. Hardware level synchronization is indispensable to achieve
synchronization in the order of nanoseconds. Second, once synchronization of the RF
front-ends has been achieved, a command can be issued to all sensors to start the
recording of baseband samples at an absolute point in time. Typical SDR frameworks
such as GNU Radio [6] provide application programming interfaces (APIs) for both
steps. Timestamps associated with the recorded samples enable the FC to check for
consistent synchronization over the course of the system operation time. Assuming a
proper implementation of the synchronization APIs, the performance for the TDOA
localization is limited by the GPSDO performance as well as the signal-to-noise ratio of
the transmitted signals. It is therefore important to study the synchronization problem
on different levels.

First, one can directly measure at the PPS outputs of the GPSDOs. GPSDO perfor-
mance has been studied in [207] and [208]. Under good conditions a standard deviation
of 50 ns for the GPS time estimate can be expected for standard receivers like the one
contained in the LCXO GPSDO. However, for TDOA it is necessary to take differ-
ential measurements between two synchronized receivers, which considerably increases
the error. Accordingly, an oscilloscope connected to two different GPSDO PPS signals
is used to plot the histogram of the difference. A measurement screenshot is shown in
Figure 6.8(a). In this case the GPS antennas have been placed on the window shelf of
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Figure 6.8: Drift of GPS based synchronization used for the distributed receiver nodes,
measured with (a) an oscilloscope and (b) with the TDOAs of a station-
ary target, sample rate 50MS/s, interpolation factor 10, signal bandwidth
5MHz.

the laboratory which clearly deteriorates the performance compared to a clear sky-view.

Second, the TDOAs are usually estimated by finding maxima of the cross-correlations
of the different sensor outputs. In Figure 6.8(b) the effect of the GPSDO drift on the
TDOA estimation is depicted. If a correction is applied as explained in the next section
and the drift is corrected, a good measure for the noise induced error distribution of the
TDOAs is a histogram as shown in Figure 6.10 which has been obtained under clear
sky-view conditions.

Third, subsequently, an algorithm such as [109] is used to calculate the location. The
blue track in Figure 6.9 shows how the drift in the synchronization translates into a
drifting localization result of a non-moving object. The experiment involves 3 sensors
and the resulting error is in the order of 50 meters.

6.3.3 Hybrid Synchronization with GPS and a Reference
Emitter

In order to overcome the GPS synchronization issues two approaches are introduced.
The first approach is to use an additional signal from a stationary source to permanently
re-calibrate the system. This is a hybrid approach as it uses the time synchronization
ability of the GPS signals, as well as the calibration or reference emitter signal. This
calibration signal can be a beacon signal such as in [24] or alternatively a signal of
opportunity from a local broadcasting station, e.g., Digital Audio Broadcasting (DAB),
Digital Video Broadcasting - Terrestrial (DVB-T), which is commonly seen by all sen-
sors. If the signal of the emitter to be localized is a known and a multiple access method
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Figure 6.9: (a) Drift in the estimated location of a stationary object induced by drift-
ing synchronization from LCXO GPSDOs (orange). Using automatic hy-
brid calibration with an additional beacon signal, the green result can be
achieved. (b) When coordinates in the GPSDO are fixed and only time is
estimated, synchronization results can be improved significantly. Results
are slightly better than the hybrid approach.
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Figure 6.10: Histogram of the TDOA between two sensors with LEA-M8F GPSDO.
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exists, the calibration signal can be transmitted in-band. This approach is followed by
[24] for example. However, in the present case the no accurate knowledge about the
target signal is assumed. This particularly means that controlled access to the channel
is not possible. Therefore, it is necessary to use an out-of-band calibration signal and
re-tune the sensors between the calibration and the target signal. Otherwise, the cali-
bration signal might introduce unwanted interference on top of the target signal. Due
to hardware limitations, this re-tuning leads to a limited acquisition and update rate
of the system. The calibration procedure for TDOA can be described in the following
way. The measured TDOAs τ̂ij are erroneous

τ̂ij = τij + e, (6.6)

where the error e contains a deterministic offset due to the synchronization error and a
Gaussian noise component due to the measurement in the receiver. The deterministic
part is estimated by comparing the TDOAs of the beacon calibration signal with its
expected TDOA

e = τ̂ bij − τ̃ bij (6.7)

If the location of the calibration signal is erroneous, this results in a constant offset Kij

τ̃ bij = τ bij +Kij (6.8)

That means even if the location of the calibration emitter is unknown, the system can be
calibrated by determining the constants Kij using additional ground truth information.
The GUI of our system includes a feature for that purpose. To perform this calibration
it is necessary to take measurements with the target emitter placed at a known location.
In Figure 6.9, it can be seen (green plotted points) that the calibration algorithm is able
to keep the synchronization error within about ±2 samples of the expected values and
the corresponding localization error within a few meters.

A second approach, that works without calibration signals is to use a specific time mode
available in certain GPS receivers. GPS receivers calculate a 3 dimensional position
and the time using the signals of at least 4 satellites [2]. The largest error in this
process arises from the propagation of the satellite signals through the ionosphere. This
sets a natural limit to the performance of single frequency GPS receivers and thus to
the accuracy of the emitted time pulse and causes the drift in the measurements as
described above. An effective solution to this problem is to exclude the GPS receiver
position from the equations. Obviously, this is only possible in timing applications such
as the described localization system, where the GPS receivers are stationary and the
position is very well known. When the time mode is used it can be observed that the
standard deviation of the time pulse can be decreased up to one order of magnitude.
The results in section 6.4 have been obtained with the LEA-M8F and the time mode
enabled.
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Figure 6.11: DOP analysis of the sensor setup used in the experiment with reference
receiver selection (a). Optimum reference receiver selection (b), depending
on the target location and based on the criteria in (3.57).

6.4 Measurement Results

In the following Section, some selected measurement result are presented. The mea-
surements have been obtained in an outdoor experiment series in a small park next
to the university building of the author’s institute. Due to the large logistic effort, all
experiments have been constraint to 3 and 4 sensor configurations.

6.4.1 Obtaining Ground Truth

The problem of obtaining highly accurate ground truth is solved using GPS Real Time
Kinematic (RTK) technology [32]. RTK is a type of differential GPS that is based on
carrier phase measurements. In good conditions, i.e., clear sky-view without multipath,
it has an accuracy of ±(2-3) cm. A RTK system consists of two units, the base station
and the rover. Both have to be connected to each other by a datalink to enable the
calculation of the differential solution in the rover. The high achievable accuracy is
based on the fact that the estimation of the carrier phase is possible with a very high
accuracy. However, the carrier phase measurements are ambiguous, i.e., for a range
estimate it is necessary to exactly know how many integer wavelength lie between the
satellite and the receiver antenna. For RTK specific algorithms [209, 210] have been
developed to efficiently resolve this integer ambiguity. Nevertheless, this is a difficult,
combinatorial problem and in practice a single frequency GPS requires several minutes
in order to resolve the ambiguities and obtain a fix. A library and set of tools called
RTKLIB [33] provided initial affordable access for research to RTK and is regularly
used. Though, for the presented results, primarily the very recently released u-blox
C94-M8P has been used. This is an affordable fully embedded solution including a base
station, rover and ultra high frequency (UHF) datalink. To obtain the absolute location
of our RTK base station with centimeter accuracy, SAPOS [211] is used, the German
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Figure 6.12: Localizing a walking pedestrian. The ground truth from the GPS-RTK is
plotted in cyan. Raw localizations in (a) and the output of the KF in (b).
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network RTK solution operated by the government. For this initial survey, SAPOS acts
as a virtual RTK base station and one of our RTK capable receivers takes the role of
the rover. This yields an exact absolute reference point. Afterwards, the RTK base
station is placed on the surveyed point and the RTK rover together with the target
emitter on the staff, such that the ground truth can always be accurately determined.
In order to ensure proper working of the RTK rover, it is very important to have the
GPS antenna mounted on a ground plate on top of the staff with unobstructed sky-
view. The carrier phase measurements necessary for the RTK are highly susceptible
to multipath reflections, a human body close to the antenna of base station or rover is
sufficient to prevent the functioning of the system. The resulting setup is depicted in
Figure 6.2 (b).

6.4.2 Pedestrian Tracking

With the ground truth recording problem solved, the system has been used to track the
movement of a pedestrian. The measurement area has been about 50 × 50 m2 in size.
A number of 3 sensors has been used, connected to the FC with a WLAN backhaul.
The exact locations of the sensor antennas have been obtain with the RTK reference
and the GPSDOs have been set to time mode. Signals transmitted by the target where
binary phase shift keying signals with a bandwidth of 50MHz. The receiver bandwidth
has been set to 50MHz with a subsequent lowpass filter. The received signals have
been interpolated by a factor of 10. Finally the value for στ , for the KF measurement
noise has been measured as 3.16× 10−9 s with a stationary target in the middle of the
area. For pedestrian tracking, a good value for the KF process noise standard deviation
σa has been determined experimentally to be 0.41 m/s2 and the correlation coefficient
ρ = 0.15. The measured tracks are shown in Figure 6.12. The root-mean-square error
compared to the RTK solution is 2.27 m for the raw localizations and 1.64 m for the
Kalman filtered result.

6.4.3 Sensor Self-localization

In this section the SDR implementation of the DMDS algorithm presented in Chapter 5
is discussed. The theoretical analysis of the algorithm assumes perfect synchronization
between the sensors. In practice, this is often not given. Therefore an extension to asyn-
chronous clocks and the use of a calibration receiver in the self-localization scenario,
similar as in Section 5.7 is of interest but not within the scope of the experiments.
Hence, during the self-localization experiment all sensors have been synchronized using
the LEA-M8F GPSDO based on the surveyed locations from the RTK reference. This
enables an exact comparison of the self-localization result with the ground truth. As
opposed to target localization in two dimensions, the TDOA-based self-localization re-
quires a minimum of four sensors. Additionally, three anchors with absolute coordinates
need to be provided. Fortunately, the anchors do not have to transmit simultaneously
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Figure 6.13: Measurements of the TDOAs between all triples of sensors. To obtain this,
each sensor consecutively transmits a signal in a non-overlapping fashion.

and can therefore be emulated by a single mobile node. This also makes sense in com-
mercial deployment of such a system because it is unnecessary to maintain three beacons
after the self-localization procedure has been completed In the described experiment,
the role of the anchors has been taken by the target staff from the previous experiment.
It carries the signal source as well as the RTK reference antenna needed for the de-
termination of the anchor’s global coordinates. Obviously the anchoring with a single
transmitter has to be performed in a sequential fashion. A typical setup of the system
consists of the following steps:

1. Place at least four sensors at arbitrary points in the region of interest.

2. Perform the measurements among the sensors, for this, each sensor has to transmit
a signal in a round robin fashion.

3. Perform the measurements between anchors and sensors, this requires the anchor
to be placed at three exactly surveyed coordinates.

4. Calculate the self-localization solution.

5. Switch to standard localization mode where the obtained sensor locations are used
to localize targets.

For the self-localization TDOA measurements among all combinations of sensors are
necessary. The transmission protocol used for this is a simple time division duplex
approach. Controlled by the FC, one of the sensors, depending on its identification
number, receives the command to begin a continuous transmission. Shortly after, all
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Figure 6.14: The result of the sensor self-localization compared to the ground truth.
The known anchor locations are used to obtain the absolute solution in
WGS84.

remaining sensors are then ordered to take a fixed number of measurements, i.e., snap-
shots of 1000 samples each. Subsequently, the process is repeated with each of the
sensors. Note that in this scheme there is no two-way ranging necessary, this simpli-
fies the protocol considerably and reduces the number of transmissions. In principle,
each sensor only has to transmit once for the measurement and once to transport the
measurements to the fusion center. Although, during the experiment, each individual
snapshot has been send to the FC immediately, using the IEEE 802.11 WLAN backhaul
link. For other sensor networks, where the backhaul channel uses the same band as the
measurements a slightly more sophisticated media access control (MAC) layer protocol
is necessary. The experiment has been performed at a carrier frequency of 2.4GHz
with a signal bandwidth of 20MHz. All samples are collected in the FC, where TDOA
measurements are calculated according to (5.3). A visualization of these measurement
is shown in Figure 6.13. In this example each sensor has taken 20 snapshots.

After obtaining all necessary measurements and ground truth coordinates for the an-
chors, the FC performs the relative sensor self-localization algorithm according to Sec-
tion 5.4.2. For the present application with stationary sensors the algorithm is not
time critical, therefore the number of maximum iterations can be chosen rather high
in the order of 103 – 104. This also allows to recover from running into several local
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minima. The evaluation of the algorithm yields the relative self-localization between
the sensors. Anchoring to absolute coordinates is then performed using the approach
from Section 5.5. The final result is depicted in Figure 6.14. It can be observed that
the calculated sensor coordinates are slightly erroneous, with an RMSE of about 1.7m.
This error can be partially explained by the comparably low signal bandwidth and the
influence of the multipath propagation that results in a slightly biased TDOA measure-
ments in some instances. The other aspect, is the importance of the correct anchoring.
An erroneous relative self-localization leads to errors in the localized anchors, hence the
mapping to the anchor ground truth is inherently imperfect. Nevertheless, for applica-
tions such as wildlife tracking where an accuracy in the range of a few meters is sufficient
the method is a good candidate for the simplification of the setup of the network. If
necessary the accuracy could be considerably improved by increasing the bandwidth
of the transmitted signals. Overall, the feasibility of the TDOA-based self-localization
approach has been demonstrated.

107





7 Conclusions

The ever increasing number of electronic devices and ongoing trend of automation driven
by the digitalization of industry leads to an increased demand for localization solutions.
The present thesis contributes to the theoretical foundations and advanced experimental
research in the area of infrastructure assisted localization. Although satellite based nav-
igation has become ubiquitous, for indoor navigation and certain outdoor applications
such as wildlife tracking, ground based infrastructure supported methods are still rele-
vant and often inevitable. Nevertheless, for indoor navigation and special applications
such as wildlife tracking, ground based, infrastructure supported methods are still im-
portant and often inevitable. New extensions in recent releases of the LTE standard also
show that network based localization remains important. Upcoming autonomous vehi-
cles will have to make use of a whole collection of different localization sensors in order
to provide ubiquitous awareness about themselves and nearby road users. Moreover, in
the area of RF based technologies, software defined radio software defined radio (SDR)
provides a very convenient tool for research that enables rapid prototyping not only for
communication but for localization systems as well. Motivated by this, the experimen-
tal chapter of this thesis demonstrates how theoretical concepts from time difference
of arrival (TDOA)-based localization can be deployed and experimentally verified in a
straightforward way in an academic research environment.

7.1 Summary

In the following the main contents and contributions of the thesis are summarized.

Background and Theoretical Limits

The thesis begins with providing background information about RF based localization,
presenting basic principles and a collection of examples. After that the focus is set on
TDOA-based localization. The necessary principals and algorithms are given starting
from the sampling of the physical signal and ending at the estimation of the location.
A novel contribution in of this part is the examination of the modified Cramér-Rao
lower bound (MCRLB) for TDOA localization with calibration emitters and imperfect
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clocks. Experimental results on the synchronization of systems with calibration emitters
are based on measurements from the ATLAS wildlife tracking system in northern Israel.

Sparsity-Based Algorithm and Multipath Propagation

In the next part some new ideas and results on localization, that exploits the underlying
spatial sparsity are presented. The developed algorithm is based on principles from the
area of compressed sensing (CS). Subsequently, the approach is extended for multipath
and non-line-of-sight (NLOS) environments. This is achieved by adding additional
knowledge about the environment gained from a ray tracing software package The
resulting data-driven algorithm is a member of the class of fingerprinting algorithms.

Self-localization

A common problem in sensor networks, for localization is the localization of the nodes
itself. This occurs especially in ad-hoc sensor networks. It is desirable to provide only a
minimum number of anchor points and obtain node localization through an automatic
self-localization procedure. Often this problem is solved using pairwise distances be-
tween sensors obtained with two-way ranging and multidimensional scaling (MDS). A
contribution of the thesis in that area is an algorithm working with TDOA measure-
ments instead. The resulting algorithm is therefore termed Differential multidimensional
scaling (DMDS). The complete method is split in two steps, where relative localization
of the nodes is performed based on DMDS and afterwards anchoring to the absolute
locations is achieved with a Procrustes transform.

Experimental Verification

The final part deals with results from the experimental work on an SDR localization
framework that have been obtained during the cause of the thesis. Several of the
previously described algorithms have been implemented and evaluated in the framework.
In practice, the largest challenge in distributed sensor networks for time measurement
based localization is synchronization. This is particularly important in the context of
time of arrival TOA and TDOA measurements. System synchronization can be achieved
using GPS, calibration emitters or a hybrid approach. Several implemented approaches
and related aspects are discussed. Eventually, result of the self-localization of a small
sensor network are presented.
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7.2 Outlook

As an outlook for further research a few important open problems can be identified.
First, the ray tracing based fingerprinting approach needs to be validated with exper-
imental data. For that a deployed network of sensors in an urban area is necessary,
alternatively measurement data from a cellular network could be used. Second, another
interesting topic is to study and exploit the capabilities of OFDM waveforms, possibly
also in combination with multi-antenna receivers. In the form of LTE this type of lo-
calization technology is expected to play a larger role in the near future. This point
also includes research on carrier phased methods and super-resolution methods. Third,
cooperative localization, i.e., performing cooperation between the mobile nodes, could
turn out very beneficial in the expected automation of vehicular traffic in the coming
decade. Therefore the presented framework should be extended with cooperative capa-
bilities. Finally, from a technical point of view, further integration work is necessary to
approach a fully embedded and mobile SDR sensor solution that is very easy to deploy
and facilitates further experiments in different environments.
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ADC Analog-to-digital converter
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AIS-SART Automatic identification system - search and rescue transponder
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DV-Hop Distance vector-hop
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eNB Evolved NodeB
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MFIM Modified Fisher information matrix

MIMO Multiple input multiple output

MUSIC Multiple signal classification

NFER Near-field electromagnetic ranging

NLOS Non-line-of-sight

OCXO Oven controlled crystal oscillator

OFDMA Orthogonal frequency-division multiple access

OFDM Orthogonal frequency-division multiplexing
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OSM OpenStreetMap

OTDOA Observed time difference of arrival

PLL Phase locked loop
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RTLS Real-time locating system
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SNR Signal-to-noise ratio

SRS Sounding reference signal

SSR Secondary surveillance radar

TCXO Temperature compensated crystal oscillator

TDOA Time difference of arrival

TOA Time of arrival

TOF Time of flight

UE User equipment

UHF Ultra high frequency

UMTS Universal Mobile Telecommunications System

UTC Coordinated Universal Time

UTDOA Uplink time difference of arrival

UWB Ultra-wideband

VCXO Voltage controlled crystal oscillator

VOR VHF omni directional radio range

WAM Wide area multilateration

WGS84 World Geodetic System 1984

WLAN Wireless local area network
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List of Symbols and Notation

General Notation

N Set of natural numbers
R Set of real numbers
C Set of complex numbers
a scalar
a ∈ CN×1 Column vector of dimension N
A ∈ CN×K Matrix of dimension N times K
aT Vector transpose
AT Matrix transpose
aH Matrix Hermitian
a∗ Component wise complex conjugate of vector
[·]m Vector element m
[·]m,n Matrix element, row m, column n
diag(a) Diagonal Matrix with the elements of vector a on the main

diagonal
1L Length L Vector of ones
X ∼ N (µ, σ2) A Gaussian distributed random variable with mean µ and

variance σ2

var(X) Variance of random variable X
p(X) Probability density function of random variable X
E{·} Expected value
‖ · ‖2 Euclidean norm
‖ · ‖1 `1-norm
∗ Convolution operation
∂f
∂xi

Partial derivative of f(x1, . . . , xN)
∇f(x1, . . . , xN) Vector of partial derivatives of f(x1, . . . , xN)
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List of Symbols and Notation

Chapter 3

P Number of transmitters
M Number of receiving sensors
s(t) Transmitted signal
wi(t) Additive noise at receiver i
yi(t) Received signal at receiver i
ti Time shift due to signal propagation seen at receiver i
hi Channel coefficient for receiver i
pk Coordinates of the transmitter (2D)
ri Coordinates of a receiver (2D)
τi,j,k Time difference of arrival TDOA between two receive anten-

nas i and j and transmitter k
c Propagation speed of the wave
di,k Range, distance between transmitter k and receiver i
δi,j,k Distance difference, between transmitter k and receivers i and

j

gi,1, gi,2, Ki,
A,B,C,D,
α, β, γ

Auxiliary variables

τ̂k Vector of estimated TDOAs for transmitter k
τk Vector of true TDOAs for transmitter k
Ryiyj(τ) Cross-correlation function between signals yi(t) and yj(t)
T Observation time for continuous cross-correlation function
Ts Sampling interval
R̂yiyj [κ] Discreet estimator for cross-correlation function
Zi[m] Discreet Fourier transform of signal zi[n]
Bi,k(x) Pieces of B-spline
ζ(x)3 Piece of cubic spline
νi Weights of cubic spline
x(t) Signals with waveform known to receiver such as OFDM

signals
Xk Message symbol transmitted over the kth subcarrier
Nsym Number of OFDM subcarriers
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Ncp Number of cyclic prefix samples
Tsym OFDM symbol duration
Tcp OFDM cyclic prefix duration
∆f Subcarrier spacing
rect(t) Rectangular function
P [n] Correlator function for OFDM time synchronization
Hj Jacobian matrix of TDOAs
DOPj Dilution of precision with reference sensor j
σ2
w Variance of additive noise
E Signal energy
N0 Noise power spectral density
F̄ 2 Mean square bandwidth
SNR Signal-to-noise ratio
Cp Covariance matrix of location estimate
Cτ Covariance matrix of TDOA estimates
I(τ ) Fisher information matrix
στ Variance of TDOA estimates
πκ Kalman filter state vector
Φ Kalman filter motion model Matrix
M Kalman filter measurement matrix
Q Kalman filter model covariance matrix
Rk Kalman filter measurement covariance matrix in time step k
πκ|κ−1 A-priori state estimate
πκ|κ A-posteriori state estimate
P κ|κ−1 A-priori covariance matrix
P κ|κ A-posteriori covariance matrix
φi Time offset of clock in receiver i
εi Drift rate of clock in receiver i with respect to real time

t
(q)
i,k TOA from transmitter k, signal transmitted at time instance

q received at sensor i

n
(q)
i Additive Gaussian noise of received signal transmitted at in-

stance q at receiver i

119



List of Symbols and Notation

∆τ (q,r)
i,j,k,k DTDOA of two received signals transmitted at time instances

q and r from the same transmitter k

∆τ (q,r)
i,j,k,l DTDOA of two received signals transmitted at time instances

q and r from different transmitters k and l
βj Ratio between clock rate of receiver j and reference receiver

clock
u Vector of estimation parameters for MCRLB analysis
v Vector of unwanted parameters for MCRLB analysis
p(τk|v; u) Joint conditional probability density function
µ Vector of expected values
C Covariance matrix
σ2
φi

Variance of clock offset φ
σ2
εi

Variance of clock rate ε

Chapter 4

R Number of receivers
Q Number of transmitters
yr(γ) Vector of received signal of receiver r
ȳref (γ) Normalized received signal vector of reference receiver
Ψr Matrix of time shifted reference receiver signals for receiver r
Φr Random subsampling matrix for receiver r
N Number of uncompressed signal samples
m Number of compressed samples
Ar Fat matrix, multiplication of Φ and Ψ
br Sparse coefficient vector
G Grid of potential transmitter location bins
L1 Number of location rows
L2 Number of location columns
K Number of location bins
xk Cartesian coordinates of transmitter bin
zr Cartesian coordinates of receiver bin
εr Threshold for residual

120



P Set of location bins containing transmitters
βr Auxiliary variable for OMP type localization algorithm

Chapter 5

djk Distance between sensor j and k
D Matrix of pairwise sensor distances
∆j,k,l Distance differences of sensor triples
xj True sensor location
x̂j Estimated relative sensor location
T, a, b Parameters of Procrustes transform

∆̂(i)
j,k,l Distance differences of sensor triples in estimated configu-

ration

S(x̂(i)
1 , . . . , x̂(i)

M ) Stress function

b(i)
j,k, v

(i)
j,k,l,d

(i)
j ,o(i+1) Auxiliary variables for DMDS algorithm

α Step size for iterative algorithm

x̂(i)
j Estimated sensor location in algorithm step i

x̃(i)
j Estimated sensor location in algorithm step i with offset
R(i) Rate of change of Stress function
ε Threshold for Stress
δ Threshold for change of Stress
X̂ Vector of estimated sensor coordinates (configuration)
h Coefficient for numerical gradient calculation
κ Dimension of Cartesian sensor coordinates in numeric gradi-

ent calculation
Λb,k,l Distance differences of sensor-beacon triples

Λ̂b,k,l(X̂) Distance differences of sensor-beacon triples in estimated
configuration

β Weighting factor for weighted gradient descend
Θj,k,l Differential Distance differences of sensor triples with respect

to timing reference beacon
Ωb,k,l Differential Distance differences of sensor-beacon triples with

respect to timing reference beacon
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List of Symbols and Notation

Θ̂j,k,l(X̂) Differential Distance differences of sensor triples with respect
to timing reference beacon in estimated configuration

Ω̂b,k,l(X̂) Differential Distance differences of sensor-beacon triples with
respect to timing reference beacon in estimated configuration

Chapter 6

f0 Frequency of reference clock
f(t) Frequency of device under test
yi Frequency error with respect to reference clock
ȳj Average of frequency error
σAVAR(τ) Allan deviation
e Error between expected TDOA and measurement
Kij Constant offset of TDOA measurement
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