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m Channel sounding

= in wireless communications
= in underwater acoustic communications

m Control engineering
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Formal problem statement

His an unknown linear operator (e.g., system or channel)

x(t) r(t)
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m Review the fundamental limits of system identification
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The aim of this talk

m Review the fundamental limits of system identification

= Show how we can “break” these limits when H is “sparse”



Identification of linear operators

All “reasonable” bounded, linear operators can be represented as
[Grochenig, 2001):

r(t) = (Hz)(t / Swi (7, v)z(t — 7)e?*™ dvdr
= /h(t, T)x(t — 7)dT

h(t,T) /SH 7, v)el ™ dy
\,_/

kernel  spreading function



Identification of linear operators

All “reasonable” bounded, linear operators can be represented as
[Grochenig, 2001):

r(t) = (Hz)(t / Swi (7, v)z(t — 7)e?*™ dvdr

= /h(t,T)x(t—T)dT

h(t,T) /SH 7, v)el ™ dy
\,_/

kernel  spreading function

Determine h(t, 7) (or Sy(7, v)) from r(t) and knowledge of z(t)
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Why it always works in the LTI-case
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Identification in the linear time-varying (LTV) case:

o(t) = 8(t) = r(t) = / h(t, 7)5(t — 7)dr = h(t, 1)
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Identification by using a Dirac train

Track evolution of LTV system by transmitting a Dirac train

z(t) = > 8(t — Ltto)
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Identification by using a Dirac train

Track evolution of LTV system by transmitting a Dirac train

z(t) = > 8(t — Ltto)

{=—00

Corresponding output signal is

r(t) = i h(t,t — fto)

f=—00



Identification by using a Dirac train cont'd
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Identification by using a Dirac train cont'd

h(t,t) h(t,t —to) h(t,t — 2to)
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Sufficient condition for identifiability

m Torecover h(t, ) from r(t) it is sufficient to have

sampling theorem
—_—

210 < tg <L
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between h(t, t—lty)



Sufficient condition for identifiability

m Torecover h(t, ) from r(t) it is sufficient to have

sampling theorem
—_—
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m His identifiable if
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m Underspread channels = A(supp(Sy)) < 1

m Overspread channels = A(supp(Sg)) > 1
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Practical systems are often “sparse”

Underwater acoustic communication channels [Eggen, 1997]
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Sparse spreading function in mobile communications
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support area

T may be > 1
s o>
>e |
v
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support area

T may be > 1
s o>
>e |
v

But support area needs to be known!
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Counting signal space dimensions [Kailath, 1963]

® Input signal has bandwidth 2IW
m Output signal observed over an interval of length 2D

m Use the 2WT-Theorem [Landau, Pollak, Slepian, 1961-62]
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Counting signal space dimensions cont'd
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Counting signal space dimensions cont'd
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Unknown support in v direction only
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Su(7,v)is a “sparse” multi-band signal as a function of v
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Spectrum has sparse support in [— fo, fo
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m Spectral occupancy T € [~ fo, fol

= Sampling set M [ [ M

P ={tn} = {z(tn)} o
[Landau, 1967]: To reconstruct stably need

D_('P) = lim inf w
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> |T]

D~ (P): lower Beurling density
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Landau’s multi-band sampling theorem

m Spectral occupancy T € [~ fo, fol

= Sampling set M [ [ M

P = {tn} = {z(tn)} o
[Landau, 1967]: To reconstruct stably need

D= (P) = lim inf [POltt+r]
r—00 teR r

> |T]

D~ (P): lower Beurling density

= There exists a stable universal sampling set P with
D= (P) = |T| [Venkataramani & Bresler, 2001]
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Unknown spectral support set

m Consider the set of all signals with |spectral support| < C
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Unknown spectral support set

m Consider the set of all signals with |spectral support| < C

X(f)

Sl=
—

TL

= Multicoset sampling [Bresler, Feng, 1996,...]

Overall sampling
rate:




A stable universal sampling set
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A stable universal sampling set P with D= (P) = 2C

x(f)
m Every K x K submatrix of F has full rank
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x(f)
m Every K x K submatrix of F has full rank

= No two different x(f) can map to the same y(f) if
D~ (P) > 2x(Landau rate)



A stable universal sampling set P with D= (P) = 2C

1,

L

Yi(f) [

| = FH L
Yk (f) :

v(f) KxL, K<L TT:

By
=

m Every K x K submatrix of F has full rank
= No two different x(f) can map to the same y(f) if
D~ (P) > 2x(Landau rate)

Spectrum-blind sampling entails a factor-of-two penalty in the
sampling rate
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Unknown support in Unknown supportin
v-direction only T-direction only
- supp(Sm) - supp(Sw)
| ’
IS E—
o —




Unknown support in
v-direction only

ol

supp(Sw)

/

Ul

i
|

v

Unknown support in
T-direction only

. supp(Sw)

[ ] 1

25/31



Example: Hy, Hy € X (A)
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Example: Hy, H € X'(A)

A>1
X(A) = {H: A(supp(Su)) < A} " supp (S, )
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Sufficiency of A < 1/2

m Probing signal: Periodic weighted Dirac train
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Sufficiency of A < 1/2

m Probing signal: Periodic weighted Dirac train
Cc1 C1

= 1

0 T TL t

€o

= Reduce problem to solution of (continuum of) linear system
of equations where Sy is the unknown



Tmax
= Approximate supp(Sk) by rect-
angles of area 1/L:
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Sufficiency of A < 1/2

Tmax
= Approximate supp(Sg) by rect-
angles of area 1/L:

-

d |
1
TL
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m Zaktransform [Janssen, 1988] of r(t) = (Hzx)(¢):

Z.(t, f) £ ) r(t —mT L)
meZ
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Sufficiency of A < 1/2 contd
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A continuum of compressed sensing problems
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A continuum of compressed sensing problems
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A continuum of compressed sensing problems

]
[]
z1(t, f) (] - t U
| = A % () eU ni
21t f) 7/
z(t,f) LxL? D
_._
s(t,f)

m By [Lawrence et al. 2005], there exists {cy, ..., ¢ —1 } such that
every L x L submatrix of A has full rank

= No two different s(t, f) can map to the same z(¢, f) if
Is(t, fllg < %, ie,ifA< Ll =1
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Eliminating the factor of two penalty

There is no penalty for not knowing supp(Si) upfront

zl(tv f)

u(t f)

- N @[]]

m Can identify supp(Sy) if dimension of subspace spanned by

s(t1, f1),s(te, f2), ... is sufficiently large




Eliminating the factor of two penalty

There is no penalty for not knowing supp(Si) upfront

zl(tv f)

u(t f)

- N @[]]

m Can identify supp(Sy) if dimension of subspace spanned by

s(t1, f1),s(te, f2), ... is sufficiently large

= MUSIC [Schmidt, 1986] or ESPRIT [Paulraj et al., 1985] provably

recover Sg when A(supp(Sw)) < 1




Thank you



