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Abstract—Cooperative relay communication is an interesting
area of research, since it is to enhance data rate and coverage
in wireless networks. In this paper, we propose a method to
optimize power allocation strategy in an amplify-and-forward
relay system. Our objective is to attain a max—min fairness within
co-channel users. To reduce the complexity we maximize the
upper bound on the performance. The reason is that this bound
is observed to be tight in low noise conditions. Therefore, one
achievement of this work is separating the problem of relay pre-
coding design from power allocation. Then, the power control is
done iteratively via the proposed low-complexity algorithm whose
convergence is proven. The relay precoder can be subsequently
designed via existing methods, such as semidefinite programming,
nonetheless, it is beyond the main focus of the current work.
The optimality of the proposed power allocation algorithm is
very hard to mathematically prove. Yet, the simulation results
are promising.

Index Terms—iterative power allocation, non-alternating joint
design, max-min fairness, multi-user, multi-antenna relay

I. INTRODUCTION

This paper considers a two-way relay system (TWRS)
with a multiple-antenna half-duplex relay station (RS) and
several single-antenna mobile stations (MS). Such a system
is expected to offer a better performance compared to non-
cooperative systems. First, in the medium access (MAC)
phase, all users transmit data to RS which amplifies and
then forwards the received signal in the next phase, known
as broadcast (BC). The back propagated self-interference is
known at each node and can be easily removed [1], since
we assume all nodes have perfect knowledge of the channel
coefficients. The main goal of this paper is to maximize the
signal-to-interference-plus-noise ratio (SINR) of the weakest
user link subject to a given power constraint at relay and a
sum-power constraint on users.

Related Work: Cooperative systems were first introduced
in systems with one relay node in which only one-way
transmission is possible. [2] proposes an optimal solution for a
system consisting of one transmitting node and one receiving
node via multiple one-way single-antenna relay stations. The
bottleneck of this system compared to TWRS is the need of
four time hops for a complete bidirectional communication
which leads to capacity loss of % Contrarily, TWRS needs
only two hops and gains thus doubled throughput of the former
case. Such a scenario for a single pair of users is studied in

several works such as [3]-[7]. Later, multiuser TWRS (MU-
TWRS) with several transmitting pair of users, was studied
in many works. For instance [8] and [9] consider multiple
single-antenna relays, while in [1], [10] and [11] the system
is equipped with one multiple-input multiple-output (MIMO)
relay node. One famous method in these works is to maximize
minimum SINR of all users [1], [8] and [9]. The corresponding
optimization problem is known as max—min SINR optimiza-
tion which is non-convex and NP-hard, in general [12]. Most
proposed algorithms are oriented around convexifying this
problem by means of various relaxations/approximations [1].

While previous works consider symmetric relay systems,
many others investigate the asymmetric case where a MIMO
base station, a MIMO RS and several single-antenna users ex-
ist [13]-[17]. None of these works offer any optimal solutions
and come up with sub-optimal methods. A main concern of
ours is to avoid the so-called alternating optimization (AO)
which is commonly used in many of the mentioned works. It
provides no guarantee on the optimality, in spite of increased
complexity.

Contribution: First, we propose an optimization problem
which is different from the original problem. The proposed
problem tries to maximize the so-called minimax bound on
the original SINR maximization problem. This bound is tight
in high SNR, based on the simulation results, and more
importantly independent of the relay beamformer matrix, [18].
Therefore, the problems of relay beamformer and user power
allocation are separated. Then, a fast iterative method is
proposed to optimize power of users. We show afterwards,
that the original max—min fairness formulation in bidirectional
relays can be reformulated such that it is bounded by a
relaxed representation. This relax representation corresponds
to a similar classical fairness problem in MIMO systems
in [19]. We further show that the proposed sequence for
power allocation always converges to the optimal power of the
relaxed problem, i.e., classical MIMO fairness problem, which
is a lower bound of the proposed minimax bound optimization
and also an upper bound on the original SINR optimization in
relay systems.

None of this indicates the optimality with respect to the
original SINR maximization in relay systems, since we only
try to maximize the minimax bound whose optimum does not
necessarily coincide with the original problem. In fact, we



compromise on the optimality to reduce the complexity.

Once, the power is optimized, RS precoder can be found by
any existing methods. The main benefit of the present work
over AQO is that, it induces no outer (alternating) iterations and
the joint design is carried out in only one iteration.

This paper is organized as follows: Section II describes the
system model. Section III formulates the joint optimization
of relay and power control. Section IV proposes an algorithm
for power control, while section V discusses its convergence.
Numerical results along with the complexity analysis is given
in Section VI. Finally, Section VII concludes the paper.

Notations: Along this paper, upper and lower case boldface
symbols denote matrices and vectors, respectively. While R’}
shows the set of all non-negative real vectors of size n, the
set of all complex matrices of size k X n is denoted by
Ck*™ Trace of a matrix is shown by Tr( - ). Also, [X],
refers to the m!" element of vector x. We use I,, to show
the identity matrix of size n x n. Moreover, ( - )7, (- )T
and ( - )* are hermitian, transpose and complex conjugate
operations, respectively. £( - ) is the expected value and ®
notifies the Kronecker product. The sign > means positive
semi-definite matrix. Also, Apqz( - ), 0, and 1, refer to
maximum eigenvalue of a matrix, all-zero and all-one vectors
of size n, respectively. vec(A) vectorizes a matrix by stacking
its columns into one vector. The Kronecker delta function is

,l=m

shown by
5 — 1
Ilm — 0 ,l#m’

while || - ||, denotes norm n of a vector. Finally, O stands for
big O notation.

II. DATA MODEL AND SYSTEM SETUP

This paper considers a system consisting of one RS with
N antennas and M > 1 single-antenna users. Without loss
of generality, we assume that M is an even number such that
users are communicating in pairs in a multi-pair fashion. For
simplicity, let us assume there exits no line-of-sight (LoS)
or specular link between relay and users. We also assume
that channel state information (CSI) is perfectly known at
each node. Figure 1 depicts the setting of the system of
consideration. In MAC phase the received signal at RS is
determined by

Sr = Z hm\/pm T + 1Ny (1)

meM

Fig. 1. System setup of the considered network consisting of a
multiple-antenna bidirectional RS and multiple single-antenna users.

where h,,, € CV shows the propagation channel from m™ MS
to RS, while p,,, and z,, € C denote the transmit power and
signal of that MS, respectively. Note, p = [p1--- ,pam]? €
Rﬂ\f corresponds to the transmit power of users. Let M =
{1,...,M} be the set of all mobile nodes with elements
indexed by m. The additive noise at relay antennas is also
notified with n, € CV.

The reverse channel from RS to the m™" is represented by
h? in the slow fading conditions. We further assume data
symbols are independently and identically distributed (i.i.d)
with unit power, such that £(z;z},) = 0;,,. The noise n, ~
CN (0, 021y) is assumed to be zero-mean circular complex
Gaussian noise (CCGN), i.e.,

Hy = 621 y. 2)
After performing amplify-and-forward precoding, the RS
broadcasts the signal x, = €2s, in BC phase, where 2 €
CN*N is the corresponding RS precoding matrix. Let the
index m(m) € M be defined by

E(n,n

which will be hereafter noted in short from by m instead
of m(m). In fact, index 7 corresponds the desired node to
whom user m transmits signal x,,,. Assuming a narrowband
transmission over the channel along with superposition of
noise and interference, user [ receives the following signal
sent by user /:

57 = h;—T X, +np = hiTﬂ(th\/ﬁ Ty + 1) +17 (4)
meM
in which nj is the zero-mean Gaussian additive noise with the
variance of o2. For all users, the noise term is assumed to be
iid,ie., E(nn;,) = 0%m. Following the aforementioned
properties of the data symbols and noise terms, the power of
the signal in (4) can be written as

E(s;57) =Y pmhiQ I Qh,t0? Q7hIhI Q4 02
meM

%)

Since h{ ©h,, is a scalar value, which means vec(h{ Qh,,,) =
h;‘rﬂhm, we use the identities below, see [20],

vec(XYZ) = (27 ® X) vec(Y), (6)

XeY) I (XoY)=X"X @ YAY (7)

to simplify (5) to the following form

E(sps8) = > pmw™ (W, @ hhy)w
meM
+w (02 Iy ® b hy)w + o? (8)

where w = vec(2"). Note that each MS is aware of its back-
propagated signal, and also all channels, which enables for
self-interference suppression, [1]. Consequently, the SINR of



p w?(hf’h; ® h{lhi)w

,w) = . 9
(P, w) > pmwf(hfh, ® hZHhi)w +wH(c2Iy ® hZth)w + 02 2
meM\{l,1}
=A,
—_—~~
wf p; (h{'h; @ hf'h;) w
(P, w) = ; — 2 (10)
WH<U72[(IN ® hflhj) + (LINQ)] + Z p'rn[al'rn(hglhm ® h{IhZ) + 7 (hghm & IN)] )w
P (p) meM P (p)
=C; =Bim
the transmitted signal by /" MS at its corresponding node, i.e., III. JOINT OPTIMIZATION
77(p,w) or in short form 77, is expressed by (9). The max—min optimization that we consider is
In this paper, we consider two power constraints with . . )
respect to the given power budget P: first a sum-power 7 =P w") = Thax min ¥ (P, w) (17)
constraint on all users, i.e., ||p||1 < P, and second a power =
d t P(p)<P 18
constraint at RS, i.e., P.(p) = &(x%x,) < P. Note, the relay s (p) - (18)
lplli <P. (19

power depends also on the power of all the users. Therefore,
relay power is denoted by P.(p) instead of P,.

Using (6) and (7) and similar to (8), the total relay power
can be represented by

P.(p) = wH( (0?Iy @ Iy) + Z pm(hfh, ® IN))w,
— meM

)
707,IN2

(1)

or equivalently by

Pu(p) = wHiZw, Z = 6%In2 + Z pm(hh,, @ Iy).
meM
(12)

Straightforwardly, there always exists a non-negative slack
variable AP for which P.(p) = P — AP. This means the
following mathematical statement is true:

JAP>0= P,(p)=P—-AP<P, (13)
Thus, we can multiply the noise term o in the denominator
of (9) by

Wi (02In2 + Y pm(hfh, @ Iy))w
meM

1= —
P—- AP

(14)

Then, the resulting equation can be recast into (10) in which

0
Oy, =
: 1

Let us denote C; + > pmByn by Di(p). Then, we can

, me {l,1}

. (15)
, me M\{l,1}

meM
simplify equation (10) into the following:

wT Ajw

— ] .
wHD(p)w €M

Yi(p,w) =p (16)
It must be admitted that the steps to derive (16) are rather
complicated. On the other hand, one sees that (16) is rather

simple and represents SINR as an explicit function of p.

This problem is non-convex and N P-hard due to its quadratic
fractional objective function, [21]. It is also an extension to the
problem studied in our previous work [18], which optimizes
only relay beamformer with a given sum power constraint on
the relay and a fixed power allocation strategy among users.
More precisely, for a given fixed user power allocation p, [18]
considers the following problem

7(p,w”(p)) = max ml,in (P, w) (20

st. P.(p)<P. ()

Note that w*(p) indicates that for each given vector p,
the relay beamformer can be optimized, individually. The
corresponding optimum, i.e., v*(p) = v(p,w*(p)), differs if
the power allocation vector changes. One can easily observe

that (17) is equivalent to
7" = max 7*(p) (22)
st. |p|li < P. (23)

In [18], it is proved that v*(p) is upper-bounded by the so-
called minimax upper bound 4(p),

A = 1 )\ D71 A *
¥(p) = min max (P1D; ' (P)A)

This bound is used in what follows for the power allocation.

(24)

Proposition 1. At the optimal solution of (20), i.e., v*(p),
the relay power constraint is satisfied with the equality, i.e,
P,(p) = P. The proof is given in the appendix.

This deduces that AP = 0 in the equation (14). Thus, we
replace P,.(p) with P in (10) and accordingly in (16) .

It is important to note that for all [ € M, the matrices
A, are rank-1 and positive-semidefinite. On the other hand,
the matrices Dl_l(p) are full-rank, positive-definite and thus
invertible. Consequently, the matrices Dl_l(p)Al are rank-1
and positive-semidefinite. Therefore, the maximum eigenvalue
and trace of these matrices are equal. Hence, it is valid to write

y(p) = Fé}& filp), (25)



where

fi(p) = pi Tr (D' (P)AL) = Amaa (0D (P)AY). (26)

Now, the main questions arises; “how does %(p) helps us
to solve the power allocation problem?”. Even though it is
hard to mathematically prove, we have seen from numerous
simulations that the minimax upper bound is very tight in high
SNR regimes in the BC phase. More precisely, v*(p) — 9(p),
if o — 0 (for a fixed value of o¢,.). This can be, for instance,
well evidenced in [18, Figure 3]. Therefore and based on this
last observation, we assume that ¢ is infinitesimally small and
aim at solving the following problem instead of (22):

max 7(p) 27)

st [Iplls < P. (28)

Apparently, we cannot expect to achieve the optimum of (22),
even if (27) can be optimally solved. But, there is a big
advantage in doing so: 4(p) is apparently independent of relay
beamformer, i.e., w, which means relay beamforming problem
is segregated from power allocation problem. This avoids the
need of AO method, at the cost of sub-optimality.

IV. POWER CONTROL
By replacing (25) into (27), we form our proposed power
optimization problem as

f* =max min fi(p) (29)

P leM

st. |lpllh <P. (30)

This problem is also non-convex and very hard to solve.
But, we manage to solve it intuitively with a very simple
assumption which seems to be effective in the simulations.
Since (29) is a power allocation problem, it is expected at
optimum the sum power in (30) holds with equality, and all
functions f;(p) are equalized with the optimal value f*, [22].
This means ||p|/; = P, and also f;(p*) = f*,1 € M. Let
P ={p||lpli <P,p € RY} be the feasible set of power,
then the following statement for all [ € M is correct:

vp € P, 3A(p) > 0= fi(p) = f* — Ay(p). (3D

The intuitive assumption is assuming that we are close to the
optimum, i.e., p — p*. Thus, fi(p) — f* and A;(p) — 0.
Hence, usinf definition in (26) we can write

f*

= . 32
Tr (D; ' (p)A)) 32)

yz

To satisfy power constraint ||p||; < P with equality, we write:

*

— (D '(p)A)
P = P : f*

&3 T (D] (p)A)

1
Tr (Dfl(p)A
l ; l) . (33)

=P
ZEZ./\/l Tr (D;l(p)Ai)

This equation not only satisfies the power constraint, but also
requires no prior information of the optimal solution f*. Now,

we update the power iteratively using (33). Let k& denote the
iteration index, then p;(k 4 1) is determined by

= ni(k) pi(k) _,1
k=P @) (;A )

Algorithm 1 shows our proposed method for joint design
of relay and power control. In Section V we prove the
convergence of (34) based on a related problem.

(34)

Algorithm 1 Joint power allocation and relay design

randomize p(0) = po, define precision € > 0, set k =0
while var(p) > € do
calculate p;(k + 1) by (34)
k+—k+1
end while
return p (solve (20) with the returned p, see [1], [18])

It is significant to highlight, that in the simulation we
will choose pg completely randomly, without any a priori
knowledge of p*.

V. CONVERGENCE ANALYSIS

First, we need to point out few existing facts in order to
understand the convergence of Algorithm 1.
Fact 2. By replacing the variable y = (%Z)%w into (10)
and (16), SINR can be equivalently expressed by

y Py

Z yHley +ny
meM
where P; = p; ZféAlzfé, n; = Z’%Clzfé and Q. =
me’%BlmZ*%. Similarly, the relay power in (12) can be
identically described by

G(p,y) = ,VieM (35)

P(p) =w'Zw =P (2 y)"Z(Z7?y)  (36)
and since Z = 7, we have
P(p)=Py"y<P—oy"y<1 37)

Thus, the original optimization problem in (17) can be subse-
quently reformulated into the equivalent form below:

* = i 38
7" = max min G(p,y) (38)
st. |lp|L <P (39)

yly =1 (40)

Fact 3. The original optimization (17), or identically (38), is
upper-bounded by the following relaxed version

* LK = 1 , 41
=6 mgx VlIf'l'a:)‘EM lrél}\r/tl Cl(p Vl) “1)
st. |lplli <P 42)

vivi=1,1e M. 43)

The reason is simple, the problem in (41) has one beamforming
vector, vy, for each user. While in our problem relay has only
one beamformer for all the user, i.e., w ory.



In fact, (41) is a special case of the classical max—min
SINR in MIMO systems which was first studied by [19].
It is also mathematically identical to the dual problem of
multicell downlink beamforming, [23]. Later in [24], Cai et al.
proved convergence of the proposed method in [19]. Indeed,
(41) corresponds to SIMO case of [24] with the parameters
B = w = 1), therein. The sequence for updating the power
proposed in [24, eq. (26)], is the same as ours in (34). Let
first {(p) be the optimum of the following problem

((p) = (44)

max min A%
Vi, v leM Cl(p’ l)

st. vilvi=1,1e M. (45

and then the power vector achieved by Algorithm 1 be denoted
by p*, then it is correct to write ((p*) = max ¢(p) = (™.
pE

Remark 4. It is important to mention, that we are not
interested in beamforming vectors, i.e., vi, | € M. The only
reason for optimization over these vectors in (44) is to show

¢(p*) = ¢*.
Proposition 5. As it is proved in the appendix, * is upper
bounded by the optimal value of (29), i.e., (* < f*.

Corollary 6. Subsequent to the Proposition 5 and also previ-
ous facts, one can deduce v* < ((p*) = (* < f*.

Remark 7. Indeed, Corollary 6 states that sequence (34)
converges to the optimal power of the problem (41) which
is a lower bound of the proposed power allocation problem
in (29). The convergence of (34) is guaranteed based on the
proof provided in [24]. Since the sequence (34) is identical
to the one in [24], we deduce our proposed power sequence
always converges to the optimum of (41), i.e., ((p*) = C*.

Remark 8. Nevertheless, the proposed power sequence does
not necessarily achieve the optimum of the either of the
optimization problems in (22) and (29). The optimality with
respect to the problem (29) depends on the gap f* — (*.

If f* = (* =0 the optimum of (29) is achieved, but even
this does not imply the optimality with respect to the joint
optimization problem in (17), or equivalently (22) and (38).
The reason is that we have separated the relay beamforming
problem from power allocation. More precisely, (34) tries to
optimize power with respect to the upper bound of v*(p), ie.,

A(p), instead of v*(p) = v(p, w*(p)) itself.

Remark 9. Despite the satisfactory performance which is
evidenced by simulation results, authors do not claim any op-
timality of the proposed power allocation in (34). Anyhow, the
convergence is guaranteed. Most importantly, the convergence
is fast which might be considered as the main contribution of
the current work.

VI. SIMULATION AND COMPLEXITY ANALYSIS

To justify the results, we have performed simulations for
1000 different realizations of the channels. The presented
results are averaged over all attained data. We have assumed
that N = M =6, P = 100 and a fixed o, = 1 while varying

o from 0.01 to 1. The channel coefficients are Rayleigh
distributed with real and imaginary parts that are i.i.d Gaussian
random variables with zero mean and unit variance.

Figure 2 shows the minimax bound 4(p) with and without
power control. In the figure we can observe how power control
can increase the bound compared to the case that power is
equally distributed among users, i.e., p; = %, l € M. For
comparison, (29) is solved by Optimization toolbox of Matlab
which is based on Lagrange multipliers method. Interestingly
and due to selected parameter which impose limited precision
on the Matlab solver, (34) outperforms Matlab. Also, the upper
bound of SINR after relay precoder optimization, using SDP-
bisection is shown in the figure, see [18] for more details. Note
that the tightness hypothesis of minimax bound in high SNR,
even after power control, is verified.

As discussed earlier, the proposed method always converges,
regardless of the choice of initial power vector pg. For each
realization of the channel and SNR value the proposed power
sequence is simulated with 100 different values of pg. The
values of pg are chosen randomly with the uniform distribu-
tion. The variance of the 100 resulting values of 4(p) for each
realization of channel and each SNR value is calculated. This
variance is in the order of 10710 for ¢ = 102, which justifies
the convergence of the proposed method.

Also, simulations show that (34) converges fast. In order
to provide a rough estimate of complexity, the runtime of the
proposed method is compared with the one of the Optimization
toolbox. The simulations are done with the same computer.
The execution time of our sequence is about 400 ms, which
is almost 3% of the one required by Matlab’s Optimization
toolbox. This is not unexpected, since the only difficulty of
(34) is matrix inversion whose complexity is O(n?). Besides,
the number of iterations for the proposed sequence to converge
is between 7 — 8 in average for ¢ = 10712,

VII. CONCLUSION

This paper proposes a fast power allocation algorithm for
mobile nodes in TWRS. The proposed method is based on
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Fig. 2. The minimax bound #(p) optimized by, i.e., 1) proposed
method (red), 2) Optimization toolbox of Matlab (blue) and 3) equal
power allocation (solid black). Also dashed black line shows SDP
bound (without randomization), see [18].



maximizing the minimax bound on SINR which is shown by
simulations to be tight in high SNR. Even though the proposed
optimization problem is non-convex and hard to solve, we have
proposed a fast sequence. We have shown that the proposed
power allocation, regardless of the choice of initial power
vector, convergences to a value which is a lower bound of
the proposed optimization problem (29).
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APPENDIX

Proof of Proposition 1. Similar to [2], it can be shown that
SINR of each and every user, is increasing as P,.(p) increases.
This fact can also be justified obviously, since the denominator
of (10) is monotonically decreasing with respect to the relay
power. Subsequently, the optimality of (20) is gained when the
relay power reaches its maximum P. O

Proof of Proposition 5. Following the same idea presented in
[18, Lemma 1 & Proposition 1] for finding minimax bound
(24), we exchange the order of max and min in (44):

< i 46
¢(p) < min Jmax G(p,vi) (46)
S.t. VlHVl =1, le M. 47)
Since
max , Vi) = v
|\vk\‘2:1Cl(P 1) max - max G(p,vi)
keMm ke M\{1}
= max max ((p,y)
[[Vi]]2=1 [ly|l2=1
EeM\{I}
= I HlﬁiX 1 )\max(plDfl(p)Al) = Amax(plDfl(p)Al),
Vill2=
keM\ {1}
(48)
it is obvious that
< min Amax (D} (P)A 49
¢(p) < min Amax (1D, (P) Av) (49)

and consequently
= r;{lea;’(qp) < ]glea%( mlin Amax (plDfl(p)Al) = f*, (50)

using which, along with (26) and (29), the proof is complete.
O
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