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Abstract—A collaborative spectrum sensing system with a
fusion center, which utilizes the eigenvalues of the sample
covariance matrix for detection, is investigated. On the example of
two widely known detectors, we show that imperfect calibration
with respect to the noise powers of the receivers leads to a so-
called SNR wall in eigenvalue-based detectors. The SNR wall
manifests itself as an SNR threshold below which detection
becomes impossible even if the number of samples tends to
infinity. We quantify the performance limits of the detectors in
question by deriving lower bounds on the SNR wall and verify
them by numerical evaluation. The results show that a very large
number of cooperating receivers is needed to enable detection at
very low SNRs, which are customary in spectrum sensing.

Index Terms—eigenvalue-based spectrum sensing, cooperative
spectrum sensing, SNR walls, noise uncertainty

I. INTRODUCTION

The scarcity of available spectral resources presents a major
challenge for the advance of future wireless communication
technologies, where increasing data rates is a key demand.
One of the proposed strategies for overcoming this problem is
dynamic spectrum access, in which unlicensed secondary users
(SUs) utilize frequency bands when the licensees, the primary
users (PUs), are not using it [1]. An interesting subgroup
of research focuses on opportunistic spectrum access, where
the SUs decide autonomously whether to transmit in vacant
frequency bands. Obviously, it is of utmost importance to
ensure reliable detection of the presence of PUs, in order to
avoid interference for the licensed primary system.

Observing a frequency band in order to decide its occupancy
status is known as spectrum sensing. Many approaches requir-
ing various degrees of prior knowledge have been investigated
[2]. A very widely known approach that requires no knowledge
about the PU signal is energy detection (ED) [3]. While this
detector is very elegant due to its simplicity, its performance it
limited severely under uncertainty of the receiver noise power
[4]. There exists a so-called SNR wall, i.e., an SNR threshold
below which detection is impossible even if the number of
samples goes towards infinity. More generally, it was shown
in [5] that also other detectors proposed in spectrum sensing
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or universally in signal detection [6] suffer from the same
phenomenon when uncertainties in the system model exist.

Another class of spectrum sensing detectors that rely on
the assumption that receiver noise is uncorrelated is called
eigenvalue-based detection (EVD). As the name suggests,
they evaluate the eigenvalues of the sample covariance matrix
for detection. Several different detectors have been proposed,
e.g., [2], [7], [8]. Widely known is the maximum-minimum
eigenvalue (MME) detector [7] and the generalized likelihood
ratio test (GLRT) [8]–[10]. It is commonly claimed that these
detectors are immune to the receiver noise uncertainty problem
(cf. [7], [8]). The impact of noise estimation techniques for
EVD has been studied in [11], [12].

Whether uncertainties in the receiver noise powers may lead
to an SNR wall in a cooperative EVD system, however, is still
an open problem. In this work, we will answer this question
by showing that imperfect calibration will result in an SNR
wall. Furthermore, we will quantify the performance limits
of two widely known detectors by deriving lower bounds on
the SNR wall. For this, a commonly used system model is
presented in Section II and the basics of EVD as well as a
summary of relevant results about SNR walls in spectrum
sensing are given in Sections III and IV, respectively. We
introduce a noise calibration uncertainty model in Section V
for this investigation. In Section VI we derive lower bounds
for the SNR walls of the MME and the GLRT detector and
verify the results by numerical evaluation in Section VII.

II. SYSTEM MODEL

We study a spectrum sensing scenario of K cooperating
SUs, that strive to determine the occupancy status of a fre-
quency band. Their goal is to determine whether the frequency
band in question is currently in use by its PU or not, i.e., to
distinguish between two hypotheses based on discrete complex
baseband samples. The hypothesis test can be stated as

H0 : y(t) = w(t)

H1 : y(t) = h s(t) + w(t) .
(1)

Under H0, only receiver noise, which is modeled by w(t), is
present. It is assumed that the noise is drawn identically and
independently (i.i.d.) for each time-index t ∈ N and that it
follows a (K-dimensional) zero mean complex circularly sym-



metric Gaussian distribution with a scaled identity matrix σ2
w I

as its covariance matrix (denoted as w(t) ∼ CN (0, σ2
w I)).

Under H1, the PU signal s(t), which is distorted by the
communication channel, and additive noise is received. For the
sake of simplicity, we assume that the channel is memoryless
and the channel coefficients h remain constant during the sens-
ing interval. The PU signal is simply modeled as a zero mean
random variable with variance σ2

s of unknown distribution.
We assume that the signal and every noise component are
independent for each time instance.

The spectrum sensing system employs a cooperative block
detection scheme where each SU takes a block of N consecu-
tive samples and sends them to a Fusion Center (FC). A joint
decision is taken at the FC by calculating a test statistic on all
available samples and subsequently comparing the resulting
scalar value to a predetermined threshold γ. It is convenient
to use matrix notation to analyze the block detection scheme
by combining N consecutive sampled vectors into a K × N
matrix Y = [y(1), . . . ,y(N)]. This can similarly be done
for the noise to gain a noise matrix W and for the distorted
PU signal to attain X = hs with the help of the row vector
s = [s(1), . . . , s(N)]. Thus, under H0 Y = W is received,
whereas Y = X + W is received under H1. Due to the
stationarity of the random processes, the average receiver
signal-to-noise ratio (SNR) is constant for the sensing interval
and can be defined as

α =
E[ ‖h s(t)‖22 ]
E[ ‖w(t)‖22 ]

=
σ2
s ‖h‖22
Kσ2

w

. (2)

This system model is widely used for the analysis of EVD
systems, e.g., [10]–[13].

III. EIGENVALUE-BASED DETECTION

A typical assumption in communication systems is that re-
ceiver noise is uncorrelated among time and between multiple
receivers. In contrast to that, a noisy signal that is oversam-
pled at a single receiver or is simultaneously perceived at
multiple receivers shows correlation. This feature is exploited
in eigenvalue-based detection by estimating the covariance
matrix and calculating a test statistic based on its eigenvalues.
The statistical covariance matrix of the received signal is

Ry = E[y(t)yH(t)] =

{
R0 = Rw under H0,

R1 = Rx + Rw under H1.
(3)

There, the signal and noise covariance matrices are Rw = σ2
w I

and Rx = σ2
s hhH, respectively.

Let λ denote the vector of the ordered eigenvalues of Ry

in ascending order, i.e., λ1 ≤ λ2 ≤ · · · ≤ λK . Then the
eigenvalues of the statistical covariance matrix under H0 are
λj = σ2

w for j = 1, . . . ,K. Since Rx is of rank one and Rw is
a scaled identity matrix, the eigenvalues under H1 are readily
given by λ1 = σ2

s ‖h‖22 + σ2
w and λj = σ2

w for j = 2, . . . ,K.
In a practical system, the statistical covariance matrix is

estimated by the sample covariance matrix, which can be
calculated as

R̂y =
1

N
YYH . (4)

Its vector of ordered eigenvalues will be denoted as λ̂. For
N → ∞, the estimation from (4) converges to the statistical
covariance matrix.

In the following, we will introduce two eigenvalue-based
detectors that will be utilized in this work.

A. MME

The first work to utilize eigenvalues of the sample covari-
ance matrix for detection in the spectrum sensing context
was the maximum-minimum eigenvalue (MME) detector in-
troduced in [7]. As a test statistic the ratio of the largest and
the smallest eigenvalue of R̂y is used:

TMME =
max(λ̂)

min(λ̂)
=
λ̂K

λ̂1
. (5)

B. GLRT

A detector which depends on the ratio of the ratio of the
largest eigenvalue and the trace of the sample covariance
matrix was reported in [8]. It can also be derived as the
generalized likelihood ratio test (GLRT) for the system model
from Section II, cf. [9], [10]. We will utilize the detector
in an equivalent form in this work, that can be found by
realizing that the trace of a matrix can be expressed as the
sum of its eigenvalues and utilizing a monotonous nonlinear
transformation to gain the test statistic [10]:

TGLRT =
max(λ̂)∑K−1
j=1 λ̂j

=
λK∑K−1
j=1 λ̂j

. (6)

IV. SNR WALLS IN SPECTRUM SENSING

To achieve tractable results, performance analysis of de-
tectors is typically performed on simplified models, such as
the one from Section II. In a practical application, however,
the detector must face the entire complexity of a real world
scenario. There, some parameters of the model can never be
known exactly. Instead they are only available as estimates
up to a finite precision. These uncertainties in the model
lead to fundamental limits in detection performance, which
cannot be overcome by increasing the sensing time, even if the
number of samples tends to infinity. The SNR below which the
detector will fail to robustly detect a signal under the model
uncertainties in question is called the SNR wall [5]. Examples
of relevant model uncertainties include the receiver noise
(power, spectral coloring, stationarity), the communication
channel (fading, stationarity) and receiver imperfections (non-
ideal filtering, I/Q imbalance, quantization errors) [6].

To formally define the SNR wall, we closely follow the
definition from [6]. Instead of modeling the components of
the system with fixed distributions / processes, each com-
ponent (signal, noise & channel) is allowed to follow any
distribution / process belonging to a set, which captures the
relevant uncertainties of said component. That is, the PU signal
process s(t) may follow any distribution S ∈ S. This can by
analogously defined for the channel process as H ∈ H and
the noise process W ∈ W. Let T be any test statistic to be
used for block detection operating on N samples with a given



threshold γ, then the probability of false-alarm PFA and the
probability of missed detection PMD depending on the tuple
(W,S,H) are defined as

PFA(W ) = P(T ≥ γ | H0,W ) , (7)
PMD(W,S,H) = P(T < γ | H1,W, S,H) . (8)

We say that a detector robustly achieves an operating point
(PFA, PMD) if it holds that

sup
W∈W

PFA(W ) ≤ PFA , (9)

sup
W∈W,S∈S,H∈H

PMD(W,S,H) ≤ PMD . (10)

A detector is called non-robust, if it cannot robustly achieve
(PFA, PMD), with PFA, PMD ∈ (0, 0.5), even if N is arbitrarily
large. The SNR wall is then defined as

αwall = sup{αc | detector is non-robust ∀α < αc} . (11)

Equivalently, the detector is non-robust if the set of medians
(or the set of means if the distributions of the test statistic
are symmetric) of the test statistic T under both hypotheses
overlap.

Most well known is the result about the SNR wall of the
energy detector (ED). The ED simply employs the signal
energy as test statistic [3]. Thus, the receiver noise power
must be known precisely to set the detection threshold. If only
an estimation of the noise power is available which lies in
the interval [ρ−1σ2

w, ρσ
2
w], then the SNR wall of the energy

detector is [4], [5]

αED
wall =

ρ2 − 1

ρ
. (12)

Here, the factor ρ > 1 describes the amount of uncertainty
about the noise power.

Eigenvalue-based detectors relying on the largest eigenvalue
for detection, like the MME and the GLRT detector, require a
minimum SNR for detection such that the largest eigenvalue
under H0 and H1 can be distinguished [11], [13], i.e., it must
hold that

α > (
√
KN)−1 . (13)

Note, however, that this does not lead to an SNR wall, since
this threshold is dependent on N .

V. NOISE CALIBRATION UNCERTAINTY IN COOPERATIVE
EIGENVALUE-BASED DETECTION

In the literature, eigenvalue-based detectors are commonly
thought to be immune to the noise uncertainty problem,
see, e.g., [7], [8]. Indeed, if a single SU (exploiting time-
correlation) is concerned, the noise power (including the
uncertainty factor ρ) may be factored out in both nominator
and denominator and thus it cancels out in the ratio for the
detectors (5) and (6).

For a cooperative system, knowledge of the noise powers
is not needed if and only if the noise powers of the receivers
are exactly the same. Otherwise, a calibration step must be

performed to scale the noise powers of the receivers to a com-
mon level to set the threshold. Assuming this calibration step is
perfect is unrealistic and can be refuted by the same reasoning
that states a noise power uncertainty must be respected in the
first place. Particularly problematic is the fact that the SUs
may reside in different geographical locations with diverse
environmental characteristics like temperature, humidity and
electromagnetic interference that influence the noise powers
of the receivers.

In this work, we analyze the influence of a mismatch in
noise power calibration of a cooperative eigenvalue-based
spectrum sensing system. To investigate this effect in isolation
we assume the model from Section II is exact for the channel
and the PU signal. The noise is modeled having uncertainty
with respect to the noise power calibration of the receivers,
such that W ∈W, where W contains all (K-dimensional) zero
mean complex circularly symmetric Gaussian distributions
with diagonal covariance matrix Σ = diag(σ2

w1
, . . . , σ2

wK
).

There, the noise power of each individual user j = 1, . . . ,K
may lie in an interval with uncertainty factor ρ, i.e., σ2

wj
∈

[ρ−1σ2
w, ρσ

2
w]. This models the remaining uncertainty about

the noise powers after imperfect calibration and its influence
on the detectors will be quantified in the remainder of the
paper.

VI. PERFORMANCE LIMITS OF COOPERATIVE
EIGENVALUE-BASED DETECTORS

In this section, we investigate the performance limit of the
detectors from (5) and (6) under noise calibration uncertainty
by deriving lower bounds on the SNR wall. Two scenarios
will be analyzed.

First, an average case is studied, where a prior distribution
is assigned to the noise uncertainty. For this case, under H0

an instance W ∈ W will be considered in which the noise
powers σ2

wj
, j = 1, . . . ,K are assigned a prior distribution.

We assume they are i.i.d. and follow a rectangular distribution
with support [ρ−1σ2

w, ρσ
2
w]. Under H1, the noise powers are

considered to be perfectly calibrated. By showing that the sets
of means for the test statistic under both hypotheses overlap
in the asymptotic regime (N → ∞), we prove that there is
an SNR wall and obtain a lower bound since the case under
investigation does not correspond to the worst case, cf. (11).

Secondly, a worst-case analysis is performed which yields
a tighter lower bound on the SNR wall for the MME and
the GLRT by investigating the worst case scenario of the test
statistic under H0, while again assuming perfect calibration
under H1.

Note, that finding the worst-case for imperfectly calibrated
receivers under H1 leads to the study of complicated non-
convex optimization problems.

A. MME

1) Average case performance limit: For the lower bound
we assume σ2

wj
, to be i.i.d. and following a rectangular

distribution on the support [ρ−1, ρ] for j = 1, . . . ,K under
H0. Note, that since the noise powers cancel out in the ratio



under both hypotheses for all detectors investigated here, we
assume w.l.o.g. σ2

w = 1 for the derivation. The MME test
statistic from (5) is the ratio of the extreme eigenvalues. In the
asymptotic regime (N → ∞) these correspond to the largest
and the smallest noise powers in the K×K covariance matrix
Σ. Due to the assumptions this is equivalent to studying the
order statistic of an affinely transformed standard rectangular
distribution with K samples.

Let U(1) ≤ · · · ≤ U(K) denote the order statistic of a
random sample with K samples from a standard rectangular
distribution (with support [0, 1]) with PDF fU and CDF FU .
Then the joint PDF of U(1) and U(K) can be found by inserting
fU and FU into the general form (cf. [14, Th. 5.4.6, p. 230]):

f(U(1),U(K))(u, v) = K(K − 1) (v − u)(K−2) , (14)

which is valid for 0 ≤ u < v ≤ 1 and zero otherwise.
Now the asymptotic mean of the MME test statistic under

H0 can be found as

EH0
[TMME] = E

[
U(K) + (ρ2 − 1)−1

U(1) + (ρ2 − 1)−1

]
, (15)

using the affine transformation (ρ− ρ−1)U(j) + ρ−1 for j =
1,K. Let a := (ρ2−1)−1. Linearly transforming the joint PDF
of U(1) and U(K) from (15) by a in each argument changes
only its domain to a ≤ u < v ≤ 1+a. Thus, we can calculate
the mean of TMME under H0 by solving:

E

[
U(K) + a

U(1) + a

]
=

1+a∫
u=a

1+a∫
v=u

v

u
f(U(1),U(K))(u, v) dv du

= (K − 1)(1 + a)

1+a∫
a

(1 + a− u)(K−1)
u

du+
1

K
. (16)

The remaining integral in (16) can be found by using the bino-
mial theorem, solving the resulting integrals and rearranging,
see (17). Inserting the result into (16), resubstituting a and
simplifying we finally gain the desired result as (18).

Unfortunately, (18) is a rather complicated expression which
does not seem to possess an easier formulation. As an
alternative, we derive an approximation to EH0

[TMME] by
ignoring the correlation between nominator and denominator
and using the marginal distributions. The marginal distribution
of the j-th order statistic U(j) is beta distributed, i.e., U(j) ∼
Beta(j,K−j+1) with mean E[U(j)] =

j
K+1 [14, Ex. 5.4.5, p.

230]. Utilizing a first order bivariate Taylor expansion around
the point (EH0

[λK ],EH0
[λ1]), given as EH0

[λK

λ1
] ≈ EH0

[λK ]

EH0
[λ1]

,
it follows that

EH0
[TMME] ≈

E
[
(ρ− ρ−1)U(K) + ρ−1

]
E
[
(ρ− ρ−1)U(1) + ρ−1

] =
Kρ2 + 1

K + ρ
.

(19)
As already mentioned in Section V, under H1 we assume

the SUs to be perfectly calibrated, that is σ2
wj

= σ2
w for j =

1, . . . ,K. Then, assuming σ2
w = 1 again, using the asymptotic

eigenvalues from Section III and using (2) we obtain

EH1 [TMME] = σ2
s ‖h‖22 + 1 = Kα+ 1 . (20)

In order to find the SNR wall, we seek the point at which
the mean under both hypotheses overlap, that is the SNR for
which EH0

[TMME]
!
= EH1

[TMME]. Since for this model we
have not considered the worst case under both hypotheses,
this value will be a lower bound to the actual SNR wall and
it holds:

αMME
wall ≥

EH0
[TMME]− 1

K
. (21)

By numerically evaluating (18) and inserting the value into
(21), a lower bound for the SNR wall under this average case
analysis can be investigated. A simple closed-form approxi-
mation for this lower bound can be obtained by inserting the
approximation from (19) into (21) and simplifying:

αMME
wall '

ρ2 − 1

K

(
K − 1

K + ρ2

)
. (22)

2) Lower bound on the SNR wall: In order to obtain a
tighter lower bound on the SNR wall we consider a different
scenario, where no prior distribution is assigned to the noise
power under H0. Instead, a worst-case analysis is performed
where it is assumed that σ2

wj
∈ [ρ−1, ρ] for j = 1, . . . ,K.

Obviously, for the worst-case under H0, the test statistic is as
large as possible. It can be easily seen that this happens when
the largest and the smallest eigenvalue attain the largest and
smallest possible value in the interval [ρ−1, ρ], respectively.
Thus, it holds

EH0 [TMME] ≤
ρ

ρ−1
= ρ2 . (23)

Inserting (23) into the formula for the SNR wall lower
bound from (21), we gain a tighter lower bound on the SNR
wall as follows:

αMME
wall ≥

ρ2 − 1

K
. (24)

Comparing (22) and (24), it is clear that the new bound is
always larger than the former bound.

B. GLRT

1) Average case performance limit: For the analysis of the
average case performance limit of the GLRT detector we make
use of the same scenario as introduced in Section VI-A1.
As we have seen there, respecting the correlation of the
order statistics resulted in a cumbersome expression. Since
we expect the same to happen for the GLRT, we directly turn
to an approximation for the average case. We will later see in
Section VII that this approach is justified.

Analogous to the approximation developed for the MME
detector, we ignore the existing correlation between nominator
and denominator to derive an approximation to EH0 [TGLRT].
For the nominator, we can make use of the results from
Section VI-A1. The denominator is the sum of the (K − 1)
remaining eigenvalues, or equivalently put, the sum of all
eigenvalues minus the largest one. In principle this can also be
related to the order statistic of standard uniformly distributed
samples, which was used in Section VI-A1. Since this would
involve a rather complex calculation, we approximate the



1+a∫
a

(1 + a− u)(K−1)
u

du =

(K−1)∑
j=1

(
(K − 1)

j

)
(1 + a)(K−j−1)

1+a∫
a

(−u)j
u

du+ (1 + a)(K−1)
1+a∫
a

1

u
du

=

(K−1)∑
j=1

(
(K − 1)

j

)
(1 + a)(K−j−1)(−1)j

(
(1 + a)j

j
− aj

j

)
+ (1 + a)(K−1) log

(
1 + a

a

)
(17)

EH0
[TMME] = (K − 1)

(ρ2K)

(ρ2 − 1)K

log(ρ2) +

(K−1)∑
j=1

(
(K − 1)

j

)
(−1)j
j

(1− ρ−2j)

+
1

K
(18)

denominator by the mean of the sum of (K−1) i.i.d. samples
from the rectangular distribution with support [ρ−1, ρ]:

EH0
[TGLRT] ≈

E
[
(ρ− ρ−1)U(K) + ρ−1

]∑(K−1)
j=1 E[σ2

wj
]

= 2
(ρ− ρ−1) K

K+1 + ρ−1

(K − 1)(ρ+ ρ−1)
(25)

≈
(ρ− ρ−1) K

K+1 + ρ−1

(K − 1)
. (26)

In the last step we used that E[σ2
wj

] = (ρ+ρ−1)
2 ≈ 1 for the

noise uncertainties considered here, say ρdB ≤ 2 dB, where
ρdB = 10 log10(ρ).

Under H1, where the receivers are assumed to be perfectly
calibrated, the mean of the test statistic can easily be found as

EH1
[TGLRT] =

Kα+ 1

(K − 1)
. (27)

Finding the SNR for which EH0 [TGLRT] and EH1 [TGLRT]
overlap, results in a lower bound on the SNR wall of the
GLRT:

αGLRT
wall ≥

(K − 1)EH0
[TGLRT]− 1

K
. (28)

Inserting (26) into (28) yields an approximation for the lower
bound in this average case scenario:

αGLRT
wall '

ρ2K + 1

ρ (K + 1)K
− 1

K
. (29)

2) Lower bound on the SNR wall: To obtain a tighter lower
bound, we again consider the scenario from Section VI-A2,
where no prior distribution is assigned to the noise powers
of the SUs under H0. It can be seen directly, that the worst
case for the GLRT is when the eigenvalues are λj = ρ−1 for
j = 1, . . . , (K − 1) and λK = ρ, such that

EH0
[TGLRT] ≤

ρ

(K − 1) ρ−1
=

ρ2

(K − 1)
. (30)

Inserting (30) into (28) finally gives the tighter lower bound

αGLRT
wall ≥

ρ2 − 1

K
. (31)

Notice that the tighter lower bound coincides with the one
obtained for the MME detector in (24).

VII. NUMERICAL EVALUATION

First, in Figure 1, we inspect the results for the mean of the
test statistics under H0 that were derived for the MME and
the GLRT. The results of a Monte-Carlo simulation with 106

trials, where the average case scenario from Sections VI-A1
and VI-B1 was simulated, is used to verify the exact results
and the tightness of the approximations. For both the MME
and the GLRT we see that the approach chosen for the
approximations was justified as the approximation is very
tight. At this scale, for small K in Figure 1a a barely
noticeable deviance can be observed. For large uncertainties
ρ the deviation becomes visible in Figure 1b, but is still
negligible for the range of ρ considered here.
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(a) EH0 [T ] for different number of SUs K and ρdB = 1 dB.
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(b) EH0
[T ] for K = 8 and different noise uncertainties ρdB.

Fig. 1. EH0
[T ] for the MME and the GLRT. The plot utilizes the exact

formula (avg.) from (18), the approximations (app.) from (19) and (26) and the
worst-cases (w.c.) from (23) and (30). Results from a Monte-Carlo simulation
(emp.) are drawn to verify the analytical results.

We expect that the GLRT is more robust towards noise
uncertainties, since it averages over the noise powers of K−1
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Fig. 2. Lower bounds on the SNR wall for the MME and the GLRT.
The plot utilizes (21) for the average case (avg.) from (21) using (18), the
approximations (app.) from (22) and (29) and the worst-cases (w.c.) from (24)
and (31). The SNR wall of the ED from (12) is depicted as a reference.

receivers. Indeed, we see in Figure 1a that as K increases the
mean of the MME for the average case scenario converges
to the worst-case. This is due to the fact that the MME uses
the extreme eigenvalues, which have an increasing likelihood
to be near the worst case ones as K increases. Evaluating the
relative deviation to the worst-case value for (18) and (26) over
K we get a decrease from approximately 26% for K = 2 to
3.7% for K = 24 for the MME, while the decrease for the
GLRT is from 26.6% for K = 2 to 21.7% for K = 24.

In Figure 2 the lower bounds on the SNR wall of the MME
and the GLRT obtained in Section VI are depicted and the
SNR wall of the ED is included as a reference. While it
seems that the MME and the GLRT improve the value of
the SNR wall with respect to the ED, we must keep in mind
that we have only obtained lower bounds on the SNR wall. If
the SUs are not perfectly calibrated, we must conclude that a
very large number of cooperating SUs is needed to be able to
detect at the desired SNRs in spectrum sensing (α ≈ −22 dB).
Moreover, while their worst-case lower bound is equal, we
see that on average the GLRT is less susceptible to noise
calibration uncertainties than the MME.

VIII. CONCLUSION

In this work, we have analyzed the effect of noise calibration
uncertainties in a cooperative spectrum sensing system operat-

ing with a fusion center. The investigation was performed on
the example of two widely known detectors (MME & GLRT),
which operate on the eigenvalues of the sample covariance
matrix. A simple system model was utilized, where the signal
of one potentially present primary user is observed through
a constant memoryless channel with additive white Gaussian
noise. To study the fundamental limits of the detectors in
question under model uncertainties an imperfect calibration
of noise powers of the cooperating secondary users was
considered. Two lower bounds for the SNR wall of each
detector were derived. The first one with an average case
view, where a uniform prior distribution for the noise powers
of the receivers was assumed. The second one, in which
a worst-case scenario was contemplated. It could be shown
that the GLRT is more resilient to noise power calibration
uncertainties compared to the MME on average, however, the
worst-case lower bounds for the SNR wall of both detectors
are equal. More generally, it can be concluded that a very
large number of cooperating nodes is needed in the presence
of noise calibration uncertainties to successfully detect signals
at very low SNRs, which are prevalent in spectrum sensing.
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