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Abstract—This paper regards a network of wireless passive
sensors, suitable for radar applications. The network observes
multiple number of target signals to be estimated. We propose an
unbiased estimator whose error is minimized by optimizing both
the power allocation at sensor nodes and the fusion coefficients
at the fusion center. Since the underlying optimization problems
are subject to both the individual power constraints of sensor
nodes and a sum-power constraint of the sensor network, the
corresponding solution describes an optimized policy for efficient
power allocation to the sensor nodes and enables an energy-aware
operation of the sensor network. The results are compared via
numerical simulations.

Index Terms—resource optimization, signal detection, classifi-
cation, radar, best linear unbiased estimator

I. INTRODUCTION

In this paper which is an extension to the work in [1],
we consider a wireless sensor network to estimate the true
values of L active targets. The network consists of K wireless
passive sensors. This means that targets emit some signal
from themselves, while sensors passively sense the emitted
signals. Indeed, sensor nodes consume no power for sensing
the targets, while they consume power for transmitting their
observation towards a fusion center. We assume two different
types of power constraint, i.e., an individual output power
constraint and furthermore a sum-power constraint among all
sensors. The latter is to manage the interference in the network,
on the one hand, and to save worthwhile resources in order
to prolong the network lifetime, on the other hand. Then, the
fusion center multiplies each received signal by a so-called
fusion coefficient (or fusion rule) to estimate the real value of
the targets. The goal is to optimize the communication powers
of the sensor nodes and the fusion coefficients in order to min-
imize the estimation error at the fusion center. The considered
scenario is equivalent to a distributed multi-target radar system
in which expensive radar units are replaced by cheap and
weak sensor nodes. The system of consideration well suits the
monitoring applications in extreme environments. The reason
is that in such environments it is very hard to replace the
batteries of the sensors, therefore, lifetime management of the
network is of great significance.

Due to the rise of certain applications in the 5th genera-
tion wireless systems (5G), sensor networks for sensing and
monitoring are drastically gaining importance. However, for an
accurately performed sensing and monitoring task, an optimal
resource utilization is necessary, since the estimation perfor-
mance is increasing over the energy and power consumption
of the network. Thus, the optimization of energy and power
resources for a required system performance is of high interest

and investigated in many publications, especially for the single
target case. Indeed, the power allocation problem subject to
individual power limitations of the sensor nodes as well as a
sum-power constraint is solved in closed-form in [1]. For the
multi-target case the main topics for investigations address
the tracking and coverage problems. In [2], the objective
is to maximize the lifetime subject to power constraints
and coverage regions. Instead of maximizing the lifetime,
we minimize the estimation error in the present work. The
GaussMarkov mobility model is used in [3] to formulate the
tracking problem as a hierarchical Markov decision process,
which in turn is solved by neurodynamic programming. We
exploit an heuristic to achieve an accurate suboptimal solution
instead of the usage of sophisticated programming methods.
Since a centralized processing is difficult to handle in multi-
target scenarios, the authors in [4] investigate the tracking
problem by a distributed data processing. The approach in [5]
considers a scenario in which sensor nodes can be put into a
sleep mode with a timer that determines the sleep duration.
They show that optimizing the sleep duration improves the
tracking performance in sensor networks. In contrast to [4]
and [5], we investigate the centralized scenario and determine
the least reliable sensor nodes to keep them asleep for a
uniform time duration, respectively. It is to mention, that our
approach is more general and it can be used not only for
tracking but also for detection and classification of targets,
cf. [6].

The organization of this paper is as follows: the system
model is described in Sec. II. We propose an unbiased estima-
tor in Sec. III whose variance of error can be further minimized
by optimizing the power allocation among the sensor nodes
as well as optimizing the fusion rule at the fusion center. The
resulting optimization problems are solved in Sec. IV and V.
While the simulation results are presented in Sec. VI, Sec. VII
concludes this paper.

Notations: In this paper, upper and lower case boldface
symbols denote matrices and vectors, respectively. The symbol
N shows the set of natural numbers and the set of all complex
(real) matrices of size k×n is denoted by Ck×n (Rk×n). The
set of all real vectors of size k is also shown by Rk. The trace
of a matrix is shown by tr( · ). While [x]m or xm notifies the
mth element of vector x, we refer to the entry ij of matrix A
by [A]ij or aij . We use I and 0 to denote identity matrix and
all-zero vector, respectively, of proper sizes. While diag(A)
refers to a vector consisting of diagonal entries of A, symbol
Λx represents a diagonal matrix whose diagonal entries are
denoted by vector x. Moreover, ( · )∗ and ( · )′ are Hermitian



and transpose operators. Note that Hermitian of a scalar value
is the same as its complex conjugate. Moreover, E( · ) is the
expected value and the Kronecker delta function is shown by

δlm =

{
1 , l = m,

0 , l 6= m.

The operator vec(A) stacks all the columns of the matrix A
into one long vector. Besides, | · | and ‖ · ‖ denote absolute
value and Euclidean. Finally, O stands for big O notation.

II. SYSTEM MODEL

The Fig. 1 depicts the block diagram of the considered
system. As we see in the figure, the system of interest consists
of L ∈ N target signals, i.e., r1, · · · , rL, and K ∈ N sensors.
Let FK := {1, · · · ,K} and FL := {1, · · · , L} be the index
sets of all sensors and targets, respectively.

The target signals are complex-valued unknowns whose
power is assumed to be known, i.e., Rl := E(|rl|2), l ∈ FL.
Moreover, we assume that the targets slowly change so that
we can assume they are constant over one round of estimation.

Each sensor receives a noisy copy of all signals each of
which is multiplied by the sensing channel coefficient gkl[i] ∈
C. Indeed, gkl[i] corresponds to the sensing channel from lth

target towards the kth sensor at discrete time instant i. Note
that gkl[i] is a wide-sense stationary (WSS) random process
with zero mean and variance of Gkl. Also, measurement noise
mk[i] ∈ C at time instant i is a zero-mean WSS random
process whose variance is Mk. Both channel and noise terms
are assumed to be identically and independently distributed
(iid), which means

E
(
mk[i]m∗k′[i′]

)
= δkk,δii′Mk, ∀i, i′, k, k′ (1a)

E
(
gkl[i]g

∗
k′l′[i′]

)
= δkk′δll′δii′Gkl, ∀i, i′, k, k′, l, l′. (1b)

Furthermore, we assume that channel coefficients, noise
terms and target signals are pairwise independent, i.e.,

E
(
mk[i]r∗l

)
= E

(
mk[i]

)
E(r∗l ) = 0, ∀i, k, l, (2a)

E
(
gkl[i]r

∗
l

)
= E

(
gkl[i]

)
E(r∗l ) = 0, ∀i, k, l, (2b)

E
(
gkl[i]m

∗
k[i]
)

= E
(
gkl[i]

)
E
(
m∗k[i]

)
= 0, ∀i, k, l. (2c)

Each sensor, e.g., sensor k, amplifies the noisy received
signal by the non-negative coefficient uk and outputs the signal
xk[i] which is given by

xk[i] = uk

(
mk[i] +

L∑
l=1

gkl[i]rl

)
, k ∈ FK , (3)

which corresponds to the following output power

Xk := E
(∣∣xk[i]

∣∣2) =

(
Mk +

L∑
l=1

GklRl

)
u2
k. (4)

Then, the transmitted signal from each sensor undergoes the
impairment of the communication channel towards fusion cen-
ter. Unlike the sensing channel gkl[i] which is time-variant, we
assume that the communication channel hk varies very slowly
during the interval of estimation. Therefore, hk can be seen
as a time-invariant deterministic value. Each signal is further
affected by noise nk[i] at the fusion center antenna. Similarly,
we assume that nk[i] is complex-valued WSS random process
with zero mean and variance of Nk. Both noise term and
communication channel are also iid, which means

E
(
nk[i]n∗k′[i′]

)
= δkk′δii′Nk, ∀i, i′, k, k′, (5a)

E
(
mk[i]n∗k′[i′]

)
= E

(
mk[i]

)
E
(
n∗k′[i′]

)
= 0, ∀i, i′, k, k′.

(5b)
Finally, the fusion center multiplies the noisy received signal

from sensor node k by the fusion coefficient vk ∈ C which
leads to

yk[i] := vk(hkxk[i] + nk[i])

= vk

(
hkuk

(
mk[i] +

L∑
l=1

gkl[i]rl

)
+ nk[i]

)
. (6)

Therefore, the total observation of the targets at fusion center
is a (scalar and superimposed) signal described by

r̃[i] :=

K∑
k=1

yk[i]

=

L∑
l=1

rl

( K∑
k=1

vkhkukgkl[i]

)
+

K∑
k=1

vk(hkukmk[i] + nk[i]).

(7)

Obviously, we cannot estimate the true value of the target
signals using (7) since we have L unknowns and only one
equation. In order to have a feasible estimator, we need to
build up a determined system of equations which means we
need more than one time instant of observation. Let us define
the following vectors:

r =
[
r1, · · · , rL

]′
, (8a)

r̃ =
[
r̃[1], · · · , r̃[L]

]′
, (8b)

w =
[
w[1], · · · , w[L]

]′
, (8c)

where w[i] =
K∑

k=1

vk(hkukmk[i]+nk[i]) is the effective noise

at time instant i ∈ FL. Based on the independence assumptions
of the noise terms mk and nk, the noise covariance matrix
C := E(ww∗) can be written as

[C]ij =


K∑

k=1

(|hk|2u2
kMk +Nk)|vk|2 , i = j ,

0 , i 6= j .

(9)

Also, we define H as the (effective) sensing matrix whose
entries are represented by

[H]il =

K∑
k=1

vkhkukgkl[i], i, l ∈ FL. (10)
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Fig. 1: Block diagram of the multi-target wireless sensor
network

Then, the following equation describes the observation vector
for the fusion center at L different time instants:

r̃ = Hr + w. (11)

We assume that the sensor network under consideration de-
ploys accurate methods of channel estimation, therefore, all
the channel coefficients are known at the fusion center.

Furthermore, we assume that there are individual power
constraints given by

Xk ≤ Pk, k ∈ FK , (12)

and also a sum-power constraint

K∑
k=1

Xk =

K∑
k=1

(
Mk +

L∑
l=1

GklRl

)
u2
k ≤ Ptot. (13)

III. PROPOSED ESTIMATOR

Since the distribution of [H]il is unknown, deriving a
minimum variance unbiased estimator (MVUE) is not possible
[7]. Instead, we are interested in the best linear unbiased
estimator (BLUE), i.e., r̂, such that E(r̂ − r) = 0 and has
the minimum error variance. According to the Gauss-Markov
theorem the BLUE of the linear equation (11) is given by

r̂ = Σr̃ =
(
H∗C−1H

)−1

H∗C−1r̃

= r +
(
H∗C−1H

)−1

H∗C−1w, (14)

which leads to the following total estimation error

tr
((

H∗C−1H
)−1
)
. (15)

So, our objective is to solve the following optimization prob-
lem in order to find the best power allocation and fusion

strategy, i.e., uk and vk, which jointly minimize the total
estimation error of the BLUE:

min
vk,uk
k∈FK

tr
((

H∗C−1H
)−1
)

(16a)

s.t.
(
Mk +

L∑
l=1

GklRl

)
u2
k ≤ Pk, k ∈ FK , (16b)

K∑
k=1

(
Mk +

L∑
l=1

GklRl

)
u2
k ≤ Ptot. (16c)

Unfortunately, the problem (16) is hardly tractable due to its
very complicated objective function. Therefore, we set out
to obtain a suboptimal estimator by comparing the optimal
solution (14) of the BLUE with the observation (11). Since
both H and C are functions over all uk and vk, it seems to be
natural to optimize all uk and vk such that the observation r̃
achieves the same structure as is shown by (14). This means
that H must approach I for optimal u?k and v?k. Replacing
H = I into the objective (16a) yields the new objective
function which can be easily written, as below, using (9)
and (11)

E(‖r̃− r‖2) = L

K∑
k=1

(|hk|2u2
kMk +Nk)|vk|2 . (17)

By following this heuristic we first make the observation at
the fusion center unbiased and second minimize the variance
of the difference |r̃ − r|. In this way, the new optimization
problem reads

min
vk,uk
k∈FK

K∑
k=1

(|hk|2u2
kMk +Nk)|vk|2 (18a)

s.t.
K∑

k=1

vkhkukgkl[i] = δil, i, l ∈ FL, (18b)

as well as (16b) and (16c). The constraint given by (18b)
guarantees the unbiasedness of the proposed estimator. The
feasibility of this problem necessitates K > L2. The reason
is as follows: since the number of entries of H ∈ CL×L is
L2, we need at least L2 variables to prevent the underlying
system of equations from being overdetermined. In summary,
the feasibility of the system under consideration imposes some
requirements which are summarized in the Table I.

TABLE I: Facts and figures of the proposed estimator

Number of channel estimations
K + L2Kper target estimation

Minimum number of sensors L2

Number of system variables 2K
Minimum number of

2L2
system variables



IV. OPTIMIZING FUSION RULE

Let us rewrite the objective function in (18) into the vector
form below

f(u,v) :=

K∑
k=1

(|hk|2u2
kMk +Nk)|vk|2 = v∗Λdv, (19)

where [v]k := vk, [u]k := uk, [d]k := |hk|2u2
kMk + Nk for

all k ∈ FK . Also the constraint (18b) can be easily written in
the vector form

(R + Q)Λuv = e, (20)

where R,Q ∈ RL2×K are, respectively, the real and imaginary
part of the matrix S ∈ CL2×K defined as

S :=

S1

...
SL

 , [Sl]ik := hkgkl[i], i, l ∈ FL, k ∈ FK . (21)

Also, e ∈ {0, 1}L2

is constructed by stacking columns of I
into one vector. Let vr,vq ∈ RK be the real and imaginary
parts of v, then the optimal fusion strategy is described by the
solution of the following optimization problem

f(u,v?) = min
vr,vq∈RK

v′rΛdvr + v′qΛdvq (22a)

s.t. Brvr −Bqvq = e, (22b)
Brvq + Bqvr = 0, (22c)

where Br := RΛu and Bq := QΛu. Before finding the
solution of this problem, let us define B1,B2 ∈ RL2×L2

as

B1 := BrΛ
−1
d B′r + BqΛ

−1
d B′q, (23a)

B2 := BrΛ
−1
d B′q −BqΛ

−1
d B′r. (23b)

Let

L̃(vr,vq;λ,η) :=v′rΛdvr + v′qΛdvq−
2λ′(Brvr −Bqvq − e)−
2η′(Bqvr + Brvq), (24)

be the Lagrange dual function of the problem (22), where λ,
η are Lagrangian multipliers. By using the KKT conditions,
one can easily find the solution of (22). The corresponding
solution, given below, is optimal as the problem itself is
convex, therefore, the duality gap between primal and dual
problem is zero [8]. The optimal value of the problem (22)
and the Lagrangian multipliers are given by

v?
r = Λ−1

d

(
B′rλ

? + B′qη
?
)
, (25a)

v?
q = Λ−1

d

(
B′rη

? −B′qλ
?
)
, (25b)

λ? =
(
B1 + B2B

−1
1 B2

)−1

e, (25c)

η? = B−1
1 B2λ

?, (25d)

f(u,v?) = e′
(
B1 + B2B

−1
1 B2

)−1

e. (25e)

Note that the fusion rules are independent from the power
constraint (16b) and (16c).

V. POWER ALLOCATION

In this section we try to find the best power allocation
strategy for our sensor network for two different setups, i.e.,
with and without sum-power constraint. In both cases, an
individual power constraint is assumed for each sensor node.

A. Individual Power Constraint

We know that B1 and B2 depend on the uk, or accordingly,
on the output power Xk of sensor nodes k, defined by (4). Let
us introduce βk as

βk :=

√√√√√Nk

(
Mk +

L∑
l=1

GklRl

)
|hk|2Mk

, (26)

such that B1 and B2 can be rewritten as

B1 =

K∑
k=1

Xk

Xk + β2
k

1

|hk|2Mk

(
rkr′k + qkq′k

)
, (27a)

B2 =

K∑
k=1

Xk

Xk + β2
k

1

|hk|2Mk

(
rkq′k − qkr′k

)
, (27b)

where rk and qk are kth column of R and Q. By replacing the
objective function of (18) by (25e), and using (4), we achieve
the following optimizing problem

min
Xk

k∈FK

e′
(
B1 + B2B

−1
1 B2

)−1

e (28a)

s.t. 0 ≤ Xk ≤ Pk, k ∈ FK . (28b)

One can easily see that the objective function (28a) is not only
non-convex but also very complicated due to multiplication
and more importantly, twice matrix inversions. Therefore,
finding the optimum is not an easy task. We thus resort to
a suboptimal solution as follows.

From (27a) and (27b) it is evidenced that the diagonal
entries of B1 are summation of only positive values (unlike
the off-diagonal entries of B1 and B2 which are summation of
positive and negative values), thus they tend to be much larger
than the others. Note that the diagonal entries of B2 are always
zero. Consequently, we assume that at the optimum B1 has
dominant diagonal entries, i.e., B1 = Λb + B̄1 where the
entries of B̄1 and also B2 are negligible in comparison with
diagonal entries b of B1. Then, using Taylor expansion [9,
eq. (191)] we infer

B−1
1 ≈ Λ−1

b −Λ−1
b B̄1Λ

−1
b ≈ Λ−1

b , (29)

B1 + B2B
−1
1 B2 ≈ B1. (30)

Then the objective function (28a) approximates to∑
l∈FL

1

bl
, (31)

where F̄L is the set of indices such that el = 1, l ∈ F̄L. It
is obvious that cardinality of F̄L is L. For example in case
of 2 targets e = [1, 0, 0, 1]′ and then F̄2 = {1, 4}. Therefore,



instead of solving (28) we try to solve the relaxed optimization
problem as follows

min
Xk, k∈FK

bl, l∈{1,··· ,L2}

∑
l∈F̄L

1

bl
(32a)

s.t. 0 ≤ Xk ≤ Pk, k ∈ FK , (32b)
diag(B1) = b. (32c)

This problem is convex and can be solved easily by relevant
numerical tools. We use CVX [10] to solve this problem. In
order to compare the solution of the relaxed problem (32)
with the original one, we solve the original problem (28)
by two numerical solvers of MATLAB, i.e., fmincon and
patternsearch, whose solutions in our case are very close to
each other. Even though it cannot be claimed that they achieve
the global optimum, but the similarity of solutions gives us the
impression of global/near optimality. Nevertheless, providing
any proof is very hard. In addition, as we see in the simulation
results, the solution of the relaxed problem is very similar to
the one of the fmincon and patternsearch. In all three solutions,
we observe that each sensor consumes the whole available
individual power, i.e., Xk = Pk, which is in compliance with
the single target case [1].

B. Individual and Sum Power Constraint

It is a common practice to limit the total power consumed in
a communication system by imposing a sum-power constraint.
This increases lifetime of the network, while the interference
in the network is reduced. Therefore, we consider the opti-
mization problem

min
Xk

k∈FK

e′
(
B1 + B2B

−1
1 B2

)−1

e (33a)

s.t. 0 ≤ Xk ≤ Pk, k ∈ FK , (33b)
K∑

k=1

Xk ≤ Ptot. (33c)

The solution of this problem is not straightforward, but at this
point we suffice to solve the problem by means of numerical
methods, i.e., fmincon and patternsearch and leave any further
simplification, relaxation or analytical solution to a later time.

VI. SIMULATIONS

In this section, we present simulation results to evaluate
the system performance and also to validate our proposed
methods. In our simulations we perform the estimation of
the targets several times, each time with a different obser-
vation due to different realizations of channel and noise. The
channel coefficients and noise terms are complex-valued, iid
and normal distributed. The power of each target signal is
also assumed to be one. The variance of each sensing and
communication channel is one, while the variance of noise
terms defines the signal-to-noise ration (SNR). More precisely,
SNR := −20 log σ, where σ2 is the variance of noise terms
mk and nk.
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Fig. 2: Total estimation error of the proposed estimator (L = 2,
K = 16, Pk = 2, Ptot → ∞) over different observations. The power
allocation is performed by solving (28) using fmincon, patternsearch
and also by solving the relaxed optimization problem (32) using
CVX. All tools achieve the same solution except for numerical
inaccuracies.

First, we present the simulation result for the case with only
individual power constraint. The individual power constraints
are chosen such that the total injected power into the system
is independent of the number of sensors, so we can have a
fair comparison between networks with different number of
sensors, i.e., Pk = P0

K with P0 = 32. Fig. 2 depicts the
total estimation error of the proposed power allocation in (28)
and also the relaxed proposed method in (32). As we see in
the figure their performances are very close to each other.
This does not provide any proof of optimality, but rather an
evidence that the solvers do not get stuck in local optima.
More importantly, it highlights that the proposed relaxation of
(32) does not result in a noticeable performance loss.

Also, Fig. 3 plots the estimated signal targets over 500
different observations corresponding to different channel, i.e.,
gkl[i], i ∈ {1, · · · , 500} and noise realizations. In the figure
the red crosses show the constellation points of 4 different
targets. There are several facts regarding the figure which must
be considered: the estimates are symmetrically distributed
around each constellation point, i.e., within balls centered at
each of the 4 points with almost equal radii. The centers of
these balls, w.r.t targets, are neither rotated, nor shifted, nor
scaled. All these together emphasize the unbiasedness of the
proposed estimator. The radii of the balls depend on the noise
power, and as we see by increase of the SNR the balls shrink
and, thus, total estimation error reduces.

For simulating power allocation with sum-power constraint,
i.e., problem (33), we have chosen Ptot = 32 and Pk →∞. It
means the performance of the sensor network is not limited by
individual power constraint, but by sum-power constraint. As
we see in Fig. 4 fmincon always outperforms patternsearch,
since the total estimation error of the latter minus the one
of the former is always positive. Also, Fig. 5 depicts the
estimation of 2 target signals with fmincon. Here, the same
arguments of unbiasedness about Fig. 3 are valid.
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Fig. 3: Estimation of target signals with proposed estimator (L =
4, K = 256, Pk = 0.125, Ptot → ∞). Estimation is performed
500 times from different observations (different realizations). Power
allocation is done by solving (32) using CVX. The constellation of
targets are shown by red, while the estimates are shown by blue dots.
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Fig. 4: Total estimation error of the proposed estimator (L = 2,
K = 16, Pk → ∞, Ptot = 32) over different observations. The
power allocation is performed by solving (33) using fmincon and
patternsearch.

VII. CONCLUSION

In this paper we have proposed an unbiased estimator to
estimate the values of multiple target signals within a wire-
less network of sensors. The estimator does not impose any
assumption on the distribution of channel or noise. We further
have minimized the total estimation error of the estimator by
optimizing the fusion rules of the fusion center and also by
doing power allocation subject to individual and sum-power
constraints. The optimal fusion rule is provided in closed-
form, while for doing power allocation we have solved the
proposed optimization problem by means of numerical solvers.
Moreover, in case of only individual power constraint, we have
proposed a low complexity algorithm for power allocation
which does not suffer a big loss of performance in comparison
with the former solution. The solutions are not yet proved to
be optimal, but they seem promising.
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Fig. 5: Estimation of target signals with proposed estimator (L = 2,
K = 16, Pk → ∞, Ptot = 32). Estimation is performed 500 times
from different observations (different realizations). Power allocation
is performed by solving (33) using fmincon. The constellation of
targets are shown by red and the estimates are shown by blue dots.
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