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ABSTRACT

We are concerned with the recovery of s−sparse Wigner-D expan-
sions in terms of N Wigner-D functions. Considered as a gen-
eralization of spherical harmonics, Wigner-D functions are eigen-
functions of Laplace-Beltrami operator and form an orthonormal
system. However, since they are not uniformly bounded, the ex-
isting results on Bounded Orthonormal System (BOS) do not ap-
ply. Using previously introduced preconditioning technique, a new
orthonormal and bounded system is obtained for which Restricted
Isometry Property (RIP) property can be established. We show that
the number of sufficient samples for sparse recovery scales with
N1/6 s log3(s) log(N). The phase transition diagram for this prob-
lem is also presented. We will also discuss the application of our
results in the spherical near-field antenna measurement.

Index Terms— Compressed sensing, Wigner-D functions,
Bounded Orthonormal Systems, Spherical Harmonics

1. INTRODUCTION

Consider a general function expanded in terms ofN orthonormal ba-
sis functions. If the expansion is sparse, in other words if it contains
only a few non-zero coefficients, it is of high practical interest to see
whether the coefficients can be recovered by a number of samples
smaller thanN . In general, Compressed Sensing (CS) theory is con-
cerned with the recovery of sparse signals using only few samples
and it has sparkled a significant amount of research after the pio-
neering works in [1, 2]. It aims at finding necessary and sufficient
conditions for signal recovery by a low complexity solving algo-
rithm, and also discusses the stability of the solution to measurement
noise and its robustness to sparsity defect. One recurring method is
Basis Pursuit (BP) algorithm which consists of minimizing the `1-
norm. A well known sufficient condition for recovery using BP, as
well as other algorithms such as greedy methods and thresholding
algorithms, is the RIP property of the measurement matrix [3]. Ev-
ery matrix satisfying RIP property of order s is intuitively almost a
norm-preserving transformation on the space of s−sparse vectors.
RIP has been first introduced in [4] and later it has been shown that
Gaussian random matrices satisfy it [5]. The stability and robust-
ness of BP under the RIP condition is discussed in [1]. In general,
subgaussian random matrices satisfy the RIP and can be used for
recovery [3].

However in most of the practical scenarios of interest and par-
ticularly in case of orthonormal systems, the measurement matrix
possesses particular structures and complete random measurements
such as Gaussian is not possible. For instance, the rows of the
measurement matrix in an orthonormal system, are samples of N
orthonormal functions at a given time. If m sampling times are
chosen randomly and independently according to certain measure,

the m × N resulting matrix can be shown to satisfy the RIP prop-
erty for BOS. First it was shown in [5] that partial random Fourier
matrices satisfy RIP with Ω(s log6(N)) measurements. After fur-
ther improvements in [6], the authors in [7] manage to improve the
bound on measurement numbers for BOS to Ω(s log3(s) log(N)).
Recently Bourgain tightened the bound for Hadamard matrices to
Ω(s log(s) log2(N)) [8] and similar results has been obtained in [9].
For discrete Fourier transform matrix, the bound has been improved
to Ω(s log(N)) [10] for s dividing N .

For the existing bounds, the number of necessary measurements
m is scaled with K2, where K is the bound on basis functions.
Therefore the bound on basis functions should be either indepen-
dent of N or should scale with lower powers of N . A trivial lower
bound forK is equal to one and it is obtained for instance by Fourier
matrix. Legendre polynomials, defined on [−1, 1], are bounded by
K =

√
2N − 1 which provides useless bound on m. However

if the inner product of functions is taken according to Chebyshev
probability measure and Legendre polynomials are weighted accord-
ingly to guarantee orthogonality, the bound is found to be K =

√
3

[11]. The change of measure serves to damp Legendre functions
at the endpoints of the interval where they have the biggest growth.
The technique is used later on for bounding spherical harmonics.
Spherical harmonics, functions of azimuth φ and elevation θ, are
basis functions for the Hilbert space of L2 functions on S2. The
spherical harmonics are bounded by K ≈ N1/2, and therefore pro-
duce useless bound on the required measurements. Using similar
change of measure technique, Rauhut and Ward improved the bound
to K ≈ N1/8 with preconditioning each function by sin(θ)1/2

and using the product measure on sphere instead of the uniform
measure[12]. Using the measure | tan(θ)|1/3dθdφ, the bound has
been later improved in [13] to K ≈ N1/12 which applies, in a more
general setting, to joint eigenfunctions of the Laplace-Beltrami op-
erator on arbitrary surfaces of revolution. Combined with bounds
on BOS, the required measurements for recovery turns out to be
Ω(N1/6s log3(s) log(N)). In this work, similar to the works in
[12, 13], we derive a sufficient condition for recovery of sparse co-
efficients of Wigner-D expansions [14]. Considered as an extension
of spherical harmonics, Wigner-D functions are used widely in near-
field antenna measurements as the basis of linear equation of the
electromagnetic fields the antenna. Although an eigenfunction of
the Laplace-Beltrami operator, the Wigner-D functions are not de-
fined on S2 but rather on the group of all rotations in R3, namely
SO(3) which is a compact three dimensional manifold. The expan-
sion in terms of N Wigner-D functions involves Jacobi polynomials
of lesser degree and therefore provides better bounds after precondi-
tioning. The main steps consist of proving RIP for random samples
of preconditioned functions and then applying recovery results from
BOS. The paper is organized as follows. In section 2, the main def-
initions are provided as well as the main theorems used throughout



the paper. In section 3, the RIP theorem for Wigner-D functions and
the theorem on sufficient conditions for recovery are stated. The nu-
merical experiments and the application in spherical near-field mea-
surement are presented in section 4. Finally, The proof of main re-
sults is relegated to the appendix.

1.1. Notation

θ is used for elevation and φ for azimuth. N is the set of natural
numbers including zero. Vectors are presented by small bold letters
and matrices by capital bold letters. the set {1, ..., N} is denoted by
[N ].

2. DEFINITIONS AND BACKGROUND

2.1. Wigner-D Functions

Wigner-D functions form an orthogonal basis for the group of all
rotations on 3-dimensional space SO(3) [14].

Definition 1. Wigner-D function of degree l and orders k and n are
defined as follows:

Dk,n
l (θ, φ, χ) = Nle

−jkφdk,nl (cos θ)e−jnχ (1)

where θ ∈ [0, π], φ ∈ [0, 2π) and χ ∈ [0, 2π) are Euler angles

and Nl =
√

2l+1
8π2 is a normalization factor to get the orthonormal

property. Here dk,nl (cos θ) is Wigner-d function and is defined as:

dk,nl (cos θ) = ω
√
γ sinµ

(
θ

2

)
cosλ

(
θ

2

)
P (µ,λ)
α (cos θ) (2)

where γ = α!(α+µ+λ)!
(α+µ)!(α+λ)!

, µ = |k−n|, λ = |k+n|, α = l−
(
µ+λ
2

)
and

ω =

{
1 if n ≥ k
(−1)n−k if n < k

with degree 0 ≤ l ≤ ∞ and order−l ≤ k, n ≤ l, ∀l, k, n ∈ N. The
function P (µ,λ)

α is the Jacobi polynomial.

Note that the Wigner-D function can be considered as the prod-
uct of three functions, each one belonging to different set of or-
thonormal functions. Particularly, Wigner-d functions are weighted
Jacobi polynomials that are orthogonal with respect to normalized
Lebesgue measure.

Remark 2. Wigner-D functions are sometimes called generalized
spherical harmonics. The relation between Wigner-D function Dk,n

l

and spherical harmonics Y kl is as follows

D−k,0l (θ, φ, 0) = (−1)k
√

4π

2l + 1
Y kl (θ, φ). (3)

Wigner-d function on the other hand is related to associated Legen-
dre polynomials as follows:

dk,0l (cos θ) =

√
(l − k)!

(l + k)!
P kl (cos θ) (4)

Definition 3 (Wigner-D expansion). The expansion of the func-
tion g ∈ L2(SO(3)) in terms of Wigner-D functions Dk,n

l (θ, φ, χ)
writes as

g(θ, φ, χ) =

∞∑
l=0

l∑
k=−l

l∑
n=−l

ĝk,nl Dk,n
l (θ, φ, χ). (5)

This is also called the SO(3) Fourier expansion with Fourier coeffi-
cient ĝk,nl where

ĝk,nl =

∫ 2π

0

∫ 2π

0

∫ π

0

g(θ, φ, χ) Dk,n
l (θ, φ, χ) sin θdθdφdχ. (6)

Wigner-D functions are orthonormal with respect to the uniform
measure on the sphere dν = sin θdθdφdχ, namely:∫ 2π

0

∫ 2π

0

∫ π

0

Dk,n
l (θ, φ, χ)Dk′,n′

l′ (θ, φ, χ) sin θdθdφdχ

= δll′δkk′δnn′

(7)

where δll′ is Kronecker delta. In this work, instead of infinite ex-
pansion, we suppose that the functions are bandlimited. A function
g ∈ L2(SO(3)) is bandlimited with bandwidth B if it is expressed
in terms of Wigner-D functions of degree less thanB. A bandlimited
function is said to be s−sparse if the vector of Wigner-D coefficients,
g = (ĝk,nl ) for 0 ≤ l ≤ B − 1,−l ≤ k, n ≤ l , is s-sparse, that is
‖g‖0 ≤ s. Alternatively, it is possible to work with best s−sparse
approximation of the vector. lp-error of best s-term approximation
of the coefficients, σs(g)p, is defined as

σs(g)p = inf
z:‖z‖0≤s

{‖g − z‖p}. (8)

The goal is to recover the vector g or approximate it using sam-
ples of the function g. As we see in the section, one partic-
ular important feature for this purpose is an upper bound on
Wigner-D functions of degree less that B, i.e. an upper bound
on sup

0≤l≤B−1,−l≤k,n≤l
‖Dk,n

l ‖∞. As it is clear from (1), it boils

down to finding an upper bound for Wigner-d functions. We have
seen that Wigner-d functions is nothing but weighted Jacobi polyno-
mial. An upper bound on general weighted orthonormal functions
is discussed in [11, Theorem 6.1] and also in [15]. However, we
use directly the upper bound on Wigner-d function obtained in [16,
Theorem 1.1].

Lemma 4 (Bound for Jacobi polynomials Wigner-d functions [16]).
For Jacobi polynomials P (µ,λ)

α of degree α and of order (µ, λ), there
exists a constant C ≥ 0 such that:

‖(sin θ)1/2√γ sinµ
(
θ

2

)
cosλ

(
θ

2

)
P (µ,λ)
α (cos θ)‖∞

≤ C(2α+ µ+ λ+ 1)−1/4. (9)

Corollary 5 ( Bound for Wigner-d functions ). For Wigner-d func-
tion dk,nl (cos θ), there exists a constant C ≥ 0 such that:

‖(sin θ)1/2dk,nl (cos θ)‖∞ ≤ C(2l + 1)−1/4.

The previous corollary is easily obtained using µ, λ ≥ 0 defined
as in Definition 1 and observing that 2α+ µ+ λ equals 2l. We will
later use this corollary to find an upper bound on weighted Wigner-D
functions.

2.2. Sparse Recovery for BOS

In this part, the main theorems concerning sparse recovery of BOS
are presented. We do not go through the details since the results
are well known [3, 11]. A sufficient condition for sparse recovery is
obtained in terms of RIP.



Definition 6. The restricted isometry constant δs associated to the
matrix A is the smallest number δ such that for all s−sparse vectors
x

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22.

It can be shown that a matrix that is constructed using random
samples of orthonormal functions satisfy RIP. Following theorem
states this result.

Theorem 7 (RIP for BOS [3]). Consider a set of bounded orthonor-
mal basis ψj , j ∈ [N ] that are orthonormal with respect to measure
ν on measurable space D. Consider the matrix ψ ∈ Cm×N with
entries

ψi,j = ψj(ti), i ∈ [m] , j ∈ [N ]

constructed with i.i.d. samples ti from the measure ν. Suppose that
supj∈[N ]‖ψj‖∞ ≤ K. If

m ≥ C δ−2K2 s log3(s) log(N)

then with probability at least 1−N−γlog
3(s), the restricted isometry

constant δs of 1√
m
ψ satisfies δs ≤ δ. The constants C, γ ≥ 0 are

universal.

Once the RIP property is satisfied by a matrix, s−sparse vectors
are recovered uniquely using BP algorithm. intuitively, RIP property
implies null space property which is necessary and sufficient condi-
tion for unique recovery. Moreover RIP property guarantees robust
and stable recovery as shown in the following theorem.

Theorem 8 (Sparse Recovery for RIP Matrices [3]). Let the matrix
ψ ∈ Cm×N has restricted isometry constant δ2s ≤ 0.4931. Sup-
pose that the measurements are noisy y = ψx+η with ‖η‖∞ ≤ ε.
If x# is the minimizer of

arg min‖z‖1 subject to ‖y −ψx‖2 ≤ ε,

then ‖x− x#‖2 ≤ C1σs(x)1 +C2
√
sε where C1, C2 depend only

on δ2s. Without noise, we have x = x# for s−sparse vectors x.

3. MAIN RESULTS

Since Wigner-D functions are orthonormal, it suffices to find a useful
upper bound K on them and then using it in Theorem 7.The follow-
ing proposition serves this purpose.

Proposition 9 (Bounds on preconditioned Wigner-D functions).
The Wigner-D functions Dk,n

l (θ, φ, χ) preconditioned with (sin θ)1/2

form orthonormal basis with respect to the product measure dν =
dθdφdχ and satisfy the following upper bound.

sup
l,k,n

∥∥∥(sin θ)1/2Dk,n
l (θ, φ, χ)

∥∥∥
∞
≤ C0N

1
12

where N is the total number of Wigner-D functions of degree less
than B.

Proof. See Appendix

Note that the number of all orthonormal basis functions N is re-
lated B by N = B(2B−1)(2B+1)

3
. The role of preconditioning func-

tion is to counter the increase of Wigner-D functions at the endpoints
of the interval. Another bound can be obtained using [13, Corollary
2]. For a compact n-dimensional Riemannian manifold, a uniform
bound on the first N eigenfunctions are obtained as Nn−1/2n. For

SO(3), a 3-dimensional compact manifold, this approach yields the
boundN1/3 which is worse than the results above. As stated in [13],
this bound deteriorates as the dimension of underlying manifold in-
creases. Note that the general results in [11, 13] do not apply here
since Wigner-D functions are not defined for surfaces of revolution.
However the bound for Wigner-D functions is similar to the case of
spherical harmonics in [12] where ‖(sin θ)1/2 Y kl (θ, φ)‖∞ ≤ C(l+

1)1/4. Burq et all [13] improved the bound using another precondi-
tioning function to ‖(sin2 θ cos θ)1/6 Y kl (θ, φ)‖∞ ≤ C(l + 1)1/6

with respect to the measure dν = | tan θ|1/3dθdφ. In the numerical
results, we also consider the performance of this measure. However,
it is not clear at the moment how a similar bound can be obtained for
eigenfunctions on SO(3).

From Proposition 9, we can use Theorem 7 and 8 to prove sparse
recovery guarantees for the coefficients of Wigner-D expansion us-
ing random samples of the function. The following theorem summa-
rizes this result.

Theorem 10 (RIP-BOS for Wigner-D functions). Consider Wigner-
D basis functions Dk,n

l (θ, φ, χ) of degree less than B. Let N be the
number of these basis functions. Let the matrix A ∈ Cm×N be such
that the entries of row i are Dk,n

l (θi, φi, χi) where (θi, φi, χi) are
i.i.d. samples using the product measure. Let P be a diagonal matrix
with Pii = sin(θi)

1/2. Suppose that the number of measurements
satisfy the following inequality

m ≥ C∗N1/6 s log3(s) log(N).

Also suppose that we observe the noisy measurements y = Ag + η

with ‖ η ‖∞≤ ε. Then with probability at least 1−N−γlog
3(s), the

following holds. If g# is the solution to the following problem

g# = arg min ‖z‖1 subject to ‖PAz−Py‖2 ≤
√
mε.

then, ∥∥∥g − g#
∥∥∥
2
≤ C1σs(g)1√

s
+ C2ε

The constant C∗, C1, C2 are universal. Without noise, the recovery
is unique for s−sparse signal, namely g = g#.

Proof. See Appendix

4. NUMERICAL EXAMPLE

4.1. Simulation

The sparse recovery performance is studied for Wigner-D functions
of degree less than B = 5. For sparse recovery algorithm, we will
use `1-norm minimization package YALL1 [17]. Figure 1 shows
the phase transition diagram for sparse recovery of Wigner-D basis
expansion using random sampling by two measures, product mea-
sure dθdφdχ and the measure | tan θ|1/3dθdφdχ. The patch color
around each point represents the recovery probability. The lines rep-
resent the probability of success around 0.5 for both measures. In
this numerical example, we consider uniformly distributed support
selection with standard normal distribution of non-zero values for the
sparse vector. For each simulation, we count the frequency of suc-
cess of `1-norm minimization out of 50 trials with threshold 1e−3.
It can be seen that measure | tan θ|1/3dθdφdχ can improve the mea-
surement bound compared to dθdφdχ.



Fig. 1. Sample measure (up :dθdφdχ, down :| tan θ|1/3dθdφdχ)

4.2. Spherical Near-Field Measurement

The spherical near-field measurement of the antenna is defined in
[18] and it uses the transmission formula as follows

y(θ, φ, χ) = v

vmax∑
n=−vmax

2∑
h=1

B∑
l=1

l∑
k=−l

ThlkDk,n
l (θ, φ, χ) (10)

where y(θ, φ, χ) is a bandlimited near-field sample with Wigner-D
functions as basis, h denotes the both transverse electric (TE) and
magnetic (TM), n and χ denote order and angle to measure polar-
ization, respectively. Normally, it is desirable to measure co- and
cross-polarization of the antenna and to use n = ±1, with angle
χ ∈ {0, π/2}. The goal is to estimate the transmission coefficient
of the target antenna Thlk in near-field measurements and use it to
determine far-field pattern. The classical method [18] uses Fourier
analysis with equiangular sample to get the transmission coefficient
Thlk and lacks the degree of freedom to choose different sampling
pattern. In real measurement, we have to consider long duration of
measurement time due to total number of samples even though the
transmission coefficient is compressible and its support is smaller
than measured total samples. In order to get better understanding
of spherical near-field measurement we refer to [18, 19]. Figure 2
shows far-field reconstruction after estimating transmission coeffi-
cient using `1-norm minimization. It can be seen that the classi-
cal method fails to determine far-field pattern using same number of
measurements as previously defined `1 minimization.

5. CONCLUSION AND DISCUSSION

In this work, sparse recovery guarantees are provided for recovering
sparse expansion in terms of Wigner-D functions. Using a bound
on Wigner-d functions and Jacobi polynomials, an upper bound
is obtained for Wigner-D functions which leads to constructing a
measurement matrix satisfying RIP. Numerically, phase transi-
tion diagram shows recovery condition for this basis function and

Fig. 2. Far-field pattern of array 8 dipoles (φ-cut= 0◦)

shows how changing the sampling measure can improve the per-
formance. However, it is interesting to note that if one could apply
the bounds in [13], the measurement number would scale with
O(N1/9s log3(s) log(N)). This possibility is verified by the nu-
merical results using the measure dν = | tan θ|1/3dθdφdχ. Given
the recent progress in [8, 9, 10], another line of work consists in
improving the RIP bounds for BOS.
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A. APPENDIX

A.1. Proof of Proposition 9

Using Corollary 5, we can see that :

‖(sin θ)1/2Nl Dk,n
l (θ, φ, χ)‖∞ = ‖(sin θ)1/2Nl dk,nl (cos θ)‖∞

≤ C Nl (2l + 1)−1/4 =
C√
8π2

(2l + 1)1/4

≤ C√
8π2

(2B − 1)1/4

Note that the number of all orthonormal basis functions N is related
B by N = B(2B−1)(2B+1)

3
. Using the inequality (2B− 1)3 ≤ 6N ,

we have for some constant C0:

‖(sin θ)1/2Nl Dk,n
l (θ, φ, χ)‖∞ ≤

C√
8π2

(6N)1/12 = C0N
1/12.

A.2. Proof of Theorem 10

Consider the functions ϕk,nl (θ, φ, χ) = P (θ)Dk,n
l (θ, φ, χ), with

product measure dν. Note that the product measure dν = dθdφdχ
with preconditioning function P (θ)2 = sin(θ) yields the uniform
measure. Orthonormality can then be checked easily:∫

SO(3)

ϕk,nl (θ, φ, χ)ϕk
′,n′

l′
(
θ, φ, χ

)
dν∫

SO(3)

Dk,n
l (θ, φ, χ)Dk′,n′

l′
(
θ, φ, χ

)
sin(θ)dθdφdχ = δnn′δkk′δll′ .

Therefore the functions ϕk,nl (θ, φ, χ) form an orthonormal basis
with bound provided in the Proposition 9. Using these facts along
with Theorem 7 and 8 finishes the proof.
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