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Abstract—We discuss receiver clock correction and associ-
ated performance bounds for passive emitter localization using
TDOA measurements from asynchronous sensor networks. In
the considered system, passive receiving sensors are augmented
with beacons at known locations that perform approximately
periodical transmissions, used for calibration of the system
synchronization. The precise transmission times as well as the
transmission interval of the beacon messages are unknown.
Similarly the transmissions of the target are irregular and do not,
in general, occur simultaneous with the beacon transmissions.
The clocks of each sensor are described by a linear error
model. Based on that, we compare different snapshot based
approaches for clock correction and derive theoretical limits for
the localization of the target based on the modified Cramér-
Rao lower bound (MCRLB). Simulation results are presented
to illustrate the theoretical findings and show that our proposed
estimators perform close to the MCRLB. Additional experimental
results verify the analysis and the approach in a realistic large
scale scenario.

Index Terms—TDOA, Localization, Clock drift, Beacon,
Cramér-Rao bound

I. INTRODUCTION

Time measurement based localization systems either rely
on very accurate synchronization between the anchor points,
or, in asynchronous systems, require accurate estimation of
the clock offsets to achieve optimum performance. Network
infrastructure assisted passive localization has been in the
center of various research activities for several decades. In
comparison, results on the operation of such systems with
asynchronous, drifting clocks and wireless synchronization are
rather young.

The most common approach to localization is divided in two
stages, where first a physical signal parameter is estimated,
in our case the time of arrival (TOA), and second the target
location is obtained using a second algorithm that takes the
measurements, TOAs or the resulting time differences of
arrival (TDOAs) as an input, e.g., [1]–[4]. Due to hardware
imperfections and physical constraints, impairments of the
first stage are not uncommon in practice. The requirement
of nanosecond accuracy for decimeter level localization is
challenging even for the most accurate clocks. For optimum
localization performance, it is therefore necessary to apply
correction methods to cope with the effects of asynchronous
clocks. Accordingly, in [5] the idea of differential TDOA
(DTDOA) has been introduced in order to correct for clock

offsets. Further, in [6] the use of a calibration emitter, also
known as beacon, has been proposed. However, the authors
focus on inaccurate knowledge of sensor locations rather
than asynchronous clocks. Later, [7] proposed a protocol for
passive localization with asynchronous clocks where one of
the anchors actively transmits a reference signal. The problem
has also been investigated in a downlink fashion [8], where the
transmitting anchors’ clocks are assumed to be perfect, but the
receiving target possesses a drifting clock. An extension of this
scenario to cooperative localization is given in [9]. Most of the
publications in this area apply the Cramér-Rao lower bound
(CRLB) to derive theoretical performance limits. As described
in [9], for problems with many interlinked parameters that all
need to be estimated, the modified CRLB (MCRLB) often is
more practical and provides more insight into the problem. It
has been introduced in [10] and further thoroughly examined
in [11] and [12]. In the present paper, the methodology of the
modified bound is followed, as it constitutes a feasible way of
deriving theoretical performance limits.

In contrast to the previous works, we consider a different
system model, where the investigated system consists of
distributed passive sensors, i.e., they can only receive, and
additional beacons, that can only transmit. The beacons are not
collocated with the sensors, sensor and beacon locations are
known and the sensor clocks are running asynchronously and
experience drift over time. Recently, in [13] a similar system
has been considered. However, this paper does not present any
theoretical bounds and assumes a very precisely timed beacon
signal, where the exact time difference between two beacon
transmissions is known, which we do not have in our case.
Another implementation of such a system for wildlife tracking
has been described in [14]. Previously, the sensors have been
synchronized with GPS and therefore the clock drift has been
neglected in practice, while for the present paper we consider
the same system running with asynchronous, drifting clocks.
For numerical evaluation we then obtain recorded TOAs
from the fusion center of the system under this deteriorated
conditions. Due to stringent constraints in battery size of the
target and beacons, the rate of transmissions in the system is
strictly limited. Further, target and beacon transmissions are
not synchronized and therefore the time difference between
the received messages can lead to large differences in the
local clocks, during one set of measurements. Hence, we



derive the necessary clock correction algorithms and evaluate
their performance using simulations and a comparison with
the MCRLB. For validation, we then apply the correction
algorithms to the recorded TOAs.

The remainder of the paper is structured as follows. In
Sec. II the model for the localization system and the erroneous
clocks is defined. Subsequently, in Sec. III estimators for the
correction are discussed. Then in Sec. IV the bounds for dif-
ferent clock correction approaches are derived. Finally, Sec. V
provides simulation and experimental results to demonstrate
and verify the performance of the discussed approaches. A
short conclusion of the work is given in Sec. VI.

II. SYSTEM AND CLOCK MODEL

We consider a system of M distributed receiving sensors
that are localizing a moving transmitter. The system is consid-
ered to be passive and has no communication between the sen-
sors and the transmitting target. Additionally, two transmitting
beacons at known locations are available for synchronization.
We assume that each sensor i is independently able to estimate
the TOA ti,k of the received signal from either the target
k = 0 or the two beacons k ∈ {1, 2}, based on a pilot
sequence. The location can then be determined using the
TDOAs τij,k = ti,k−tj,k between receiver i and the reference
receiver j. In the following we apply [3] to find the solution
and exclusively focus on the problem of correctly determining
the TOAs and resulting TDOAs respectively. For that, the time
offset caused by the drifting clocks at receiver i is modeled
as [15]

ti = εit+ φi , (1)

where t is the real time, φi a constant initial offset at time
instance t(0) = 0 and εi the drift rate, which is assumed to
be constant over the course of a measurement period and
Gaussian distributed with respect to different clocks. The mean
of εi is 1 and its standard deviation σεi depends on the specific
clock type, it can reach as low as 10−12 for GPS disciplined
oscillators (GPSDOs) and up to 10−5 for a temperature
compensated crystal oscillator (TCXO). This especially means
that in a system with several sensors, their clocks will often
drift in different directions with respect to real time. Hence,
assuming that target and beacon transmissions occur at a
relatively low rate, e.g., 1 Hz, considerable relative errors
between sensor clocks might be introduced. This can also lead
to an association problem of the received transmissions at the
different sensors. We assume that a mechanism exist to resolve
this problem, such as unique message identifiers embedded in
the signal. Another physical layer approach is to perform a
plausibility check by comparing known and estimated beacon
locations.

In order to perform clock synchronization between two sen-
sors, two beacons at different locations are needed. However, a
single beacon is sufficient to achieve a reasonable approximate
solution as described later. Figure 1 shows the transmission
sequence of the involved signal bursts at time instances t(q).
A transmitted signal from beacon or target k at time index q

Fig. 1: Transmission sequence of a beacon augmented passive
TDOA localization system using TOA measurements. Differ-
ent combinations of measurements can be used to estimate the
clock parameters and subsequently localize the target.

receives the sensor i at the TOA

t
(q)
i,k = εi

(
t(q) +

di,k
c

)
+ φi + n

(q)
i , (2)

where n(q)i is a realization of zero-mean Gaussian noise with
variance σ2

ni
and di,k is the distance between the beacon or

target and the sensor

di,k = ‖pk − pi‖2 , (3)

with the two dimensional coordinate vector pk = [xk, yk]T .
The TDOA is then given as the difference

τij,k = t
(q)
i,k − t

(q)
j,k

= (εi − εj)t(q) + εi
di,k
c
− εj

dj,k
c

+ φi − φj + n
(q)
i − n

(q)
j .

(4)

Localization algorithms eventually require the distance differ-
ences

δij,k = di,k − dj,k , (5)

in order to geometrically determine the target coordinates.
Hence, correction of the parameters εi and φi is necessary. A
possible way to remove parameters that are constant between
two TDOA measurements is the differential time difference of
arrival (DTDOA)

∆τ
(q,r)
ij,kl = τ

(q)
ij,k − τ

(r)
ij,l . (6)

Different types of DTDOA measurements are possible. A
DTDOA between receptions of the same transmitter, e.g., the
same beacon, at different time instance yields

∆τ
(q,r)
ij,kk = (εi−εj)(t(q)−t(r))+n

(q)
i −n

(q)
j −n

(r)
i +n

(r)
j . (7)

Clearly, the constant term φi − φj is cancelled out. Another
type of DTDOA is between different transmitters k and l, i.e.,



two different beacons or one beacon and the target, at different
time instances

∆τ
(q,r)
ij,kl = (εi − εj)(t(q) − t(r))

+εi

(
di,k
c
− di,l

c

)
− εj

(
dj,k
c
− dj,l

c

)
+n

(q)
i − n

(q)
j − n

(r)
i + n

(r)
j ,

(8)

again this eliminates the offset φi − φj . However the simple
formation of DTDOAs is not able to remove εi and hence, for
larger time spans between beacon and target transmissions,
ignoring these erroneous clock rates leads to a drastic degra-
dation of the system accuracy.

III. CLOCK ERROR CORRECTION

Next, four different estimators are defined that are useful in
different situations, which depend on the amount of noise, the
quality of the clocks and the time span between transmissions.

1) TDOA estimation without correction: Assuming that the
clocks are of very high accuracy and synchronization is close
to perfect, i.e, εi = 1 and φi = 0, simple TDOA estimation
without further clock synchronization may be used based
on (4).

2) TDOA estimation with offset correction: If very accurate
clocks (εi = 1) are available, that are not absolutely synchro-
nized, i.e., φi 6= 0, a DTDOA with a single beacon may be
used based on (8). Equivalently, the difference φi − φj can
also be estimated explicitly using a single TDOA (4) from a
beacon if the clock rates εi are known

∆φ̂1j = τ1j,k −
1

c
δ1j,k , (9)

where without loss of generality, one may set the time of
transmission t(0) = 0. The distance differences needed by the
localization algorithm are then

δ̂1j,l = c · (τ1j,l − τ1j,k) + δ1j,k . (10)

3) TDOA estimation with approximate offset and rate cor-
rection: When lower quality, unsynchronized clocks are used,
i.e, εi 6= 1, φi 6= 0 it becomes necessary to correct for
both parameters. This can be approximately achieved using
a single beacon, however, two transmissions from that beacon
are now required. The estimation of φi depends on εi, hence
we begin with the estimation εi then subsequently estimate φi
and correct the initially measured TOAs.

Let i = 1 be the reference sensor. The time t(0) − t(1)
between two beacon transmissions of a single beacon k can
be estimated using a single sensor’s clock. Compared to the
true time difference between transmission this time difference
is scaled

t(0) − t(1) =
1

ε1
(t

(0)
1,k − t

(1)
1,k − n

(0)
1 + n

(1)
1 ) . (11)

Considering this scaling, the DTDOA for the same beacon can
be written as

∆τ
(0,1)
1j,kk =

(
1− εj

ε1

)
(t

(0)
1,k − t

(1)
1,k)

+
εj
ε1

(n
(0)
1 − n

(1)
1 )− n(0)j + n

(1)
j . (12)

From this, obviously not all clock rates can be estimated but
it is possible to estimate them relative to the reference sensor,
as βj =

εj
ε1

. The estimator of βj can be written as

β̂j =
−∆τ

(0,1)
1j,kk + (t

(0)
1,k − t

(1)
1,k)

(t
(0)
1,k − t

(1)
1,k)

, j ∈ 2, . . . ,M . (13)

Further, ε̂1 = 1 is a reasonable choice based on the the mean
value of the distribution. Therefore, the estimate of clock rates
will become ε̂j = β̂j . Using those estimated values for the
rates, next the absolute clock offsets of all sensors is estimated

φ̂j = t
(0)
j,k − ε̂j

dj,k
c
, j ∈ 1, . . . ,M . (14)

With all of this the TOAs of the target can be corrected as

δ̂1j,l = c ·
(
t
(3)
1,l − φ̂1
ε̂1

−
t
(3)
j,l − φ̂j
ε̂j

)
, (15)

and then used by the localization algorithm to determine the
location p0. Neglecting estimation error, the clock correction
essentially enforces equal clock rates in all sensors, which are
identical to the true value of ε1. A look at (4) reveals that this
approach is reasonable as the term (εi − εj)t(q) becomes zero
and the scaling in the term εi

di,k
c − εj

dj,k
c is less critical due

to the errors in the rates being relatively small.
4) TDOA estimation with offset and rate correction:

Finally, if the system dimensions become very large, e.g.,
satellite based systems, or the speed of the wave is low, e.g.,
ultrasound based systems, the error in the approximation of
ε1 can no longer be neglected any more. Fortunately, using a
second beacon at a different location, an estimate for ε1 can be
obtained. Considering the time difference of two transmission
from the two different beacons k and k′

t(0) − t(2) =
1

ε1
(t

(0)
1,k − t

(2)

1,k′) −
(
d1,k
c

− d1,k′

c

)
− 1

ε1
(n

(0)
1 − n

(2)
1 ) ,

(16)

this further results in

∆τ
(0,2)

1j,kk′=(1 − βj)(t
(0)
1,k − t

(2)

1,k′)

+ ε1βj

(
d1,k
c

− d1,k′

c

)
− ε1βj

(
dj,k
c

− dj,k′

c

)
+ βj(n

(0)
1 − n

(2)
1 ) − n

(0)
j + n

(2)
j , (17)

and leads to an estimator for ε1

ε̂1 = c ·
∆τ

(0,2)
1j,kk′ − (1− β̂j)(t(0)1,k − t

(2)
1,k′)

β̂j(δ1j,k − δ1j,k′)
. (18)

where β̂j is estimated using (13). Analogously to the last
case, using (14) and (15), the necessary input values for the
localization algorithm can be obtained.



IV. MODIFIED CRLB

In this section, theoretical limits of the estimation of target
location p0 using TDOAs from (4) are derived. For any
unbiased estimator, a lower bound on the variance of the error
is provided by the Cramér-Rao lower bound (CRLB) [16]. It
is based on the inverse of the Fisher information matrix (FIM)
which is in our case given as

[I(u)]n,m = −E

{
∂2 ln p(τ ;u)

∂un∂um

}
, (19)

where τ = [τ12,k, . . . , τ1M,k]T is the vector of TDOAs (4) of
the target when sensor i = 1 is the reference sensor, and the
vector u of parameters to be estimated.

For the problem at hand u consists of the target coordinates
as well as the clock parameters. The relationship between these
parameters makes an analytical derivation of the CRLB very
challenging. An approach that provides a less tight bound but
simplifies the computation is the MCRLB for vector param-
eter estimation [11]. To derive the MCRLB expression, the
estimation parameters are split into u, the vector of estimation
parameters, and v, the vector of unwanted parameters, which
are defined differently for each case considered below. We
assume u to be deterministic, and v to be random with known
probability distribution function. Then, the conditional FIM
I(v;u) is calculated using the expectation operator as

[I(u;v)]n,m = −Eτ |v

{
∂2 ln p(τ |v;u)

∂un∂um

}
, (20)

with the probability density function p(τ |u;v)

p(τ |v;u)=
1

(2π)
M−1

2 det(C−1)
1
2

· exp

(
− 1

2
(τ − µ)TC−1(τ − µ)

)
, (21)

The conditional FIM can be calculated as [16]

[I(u;v)]n,m =

[
∂µ

∂un

]T

C−1

[
∂µ

∂um

]
+

1

2
tr
(
C−1 ∂C

∂un
C−1 ∂C

∂um

)
.

(22)
According to [11], taking the expectation over v, one can
then obtain the modified Fisher information matrix (MFIM)
Imod(u) with

[Imod(u)]n,m = Ev{[I(u;v)]n,m} . (23)

This leads to the modified lower bound on the estimation
variance

var(ûm) ≥
[
Imod(u)−1

]
m,m

. (24)

Next, this can be used to determine the bounds for the
localization with the different clock correction approaches.

1) TDOA estimation without correction: In this case there
is only a single transmission from the target k = 0 avail-
able. We consider u = [x0, y0]T as estimation parameters
and v = [ε1, . . . , εM , φ1, . . . , φM ]T as the unwanted param-
eters. To calculate the lower bound on the estimation er-
ror, we directly use the MCRLB from (24) with the mean

µ = [µ2, . . . , µM ]T and the covariance matrix C of τ

µi = (ε1 − εi)t(q) + ε1
d1,k
c
− εi

di,k
c

+ φ1 − φi , (25)

C = diag(σ2
n2
, . . . , σ2

nM
) + σ2

n1
1M−11

T
M−1 . (26)

For the cases that beacon transmissions are available, this
simple MCRLB is unacceptably loose and we resort to a two-
step approach, where we first obtain bounds for the clock
parameters and then, in the second step, derive the bound for
the target location.

2) TDOA estimation with offset correction: In this case
a single beacon k = 1 is available and the clock offsets φi
can be estimated. Hence, the estimation parameter vector for
the first step becomes u = [φ1, . . . , φM ]T and the vector of
unwanted parameters v = [ε1, . . . , εM ]T . Then, the MCRLB
on the estimation of the clock offsets φi is calculated using
the mean and covariance matrix from (25) and (26). In the
second step, we have u = [x0, y0]T , and v = [ε1, . . . , εM ]T .
We model the clock offsets as φ̂i = φi + ωi, where φ̂i is
an estimate with the error ωi modeled as a Gaussian random
variable, ωi ∼ N (0, σ2

φi
), where σ2

φi
is given by the bound

from the first step. The second step mean and the covariance
matrix then become

µi = (ε1 − εi)t(q) + ε1
d1,0
c
− εi

di,0
c

+ φ̂i − φ̂j , (27)

C = diag(s21,φ, . . . , s
2
M,φ) + s21,φ1M−11

T
M−1 , (28)

where s2i,φ = σ2
ni

+ σ2
φi

. This leads to the MCRLB of the
target location.

3) TDOA estimation with approximate offset and rate cor-
rection: When two transmissions of the beacon k = 1 are
available, it is possible to estimate the clock offsets φi as well
as the clock rates εi, except for one, e.g., ε1. Thus, similar
to the last case, in the first step, we define the vectors as
u = [ε2, . . . , εM , φ1, . . . , φM ]T and v = [ε1].
In the second step, we model both the clock offset and rate as
Gaussian random variables φ̂i = φi + ωi, i = 1, . . . ,M and
ε̂i = εi+ξi, i = 2, . . . ,M , where ωi and ξi are the errors in the
clock offset and rate estimation, modeled as Gaussian random
variables ωi ∼ N (0, σ2

φi
) and ξi ∼ N (0, σ2

εi). Variances σ2
φi

and σ2
εi are derived using the the first step MCRLB. To

calculate the MCRLB on the estimation of the target position
we incorporate the clock offset and clock rate models into (4).
The second step mean and covariance matrix for this case are

µi = (ε1 − ε̂i)t(q) + ε1
d1,0
c
− ε̂i

di,0
c

+ φ̂i − φ̂j , (29)

C = diag(s21,ε, . . . , s
2
M,ε) + s21,φ1M−11

T
M−1 , (30)

where s2i,ε = σ2
εi(t

(q) +
di,0
c )2 + σ2

ni
+ σ2

φi
and s1,φ is the

same as in the last case. Similarly, the second step parameter
vectors are u = [x0, y0]T and v = [ε1].

4) TDOA estimation with offset and rate correction: Fi-
nally, with the aid of two beacons k ∈ {1, 2}, it is possible
to estimate the clock rates of all the sensors. Hence, in this
case there are no unwanted parameters, neither in the first nor
in the second step. The first step estimation parameter vector
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Fig. 2: (a) The MCRLB compared with simulations for different availability of beacon messages with φi = 0. 1) Baseline,
no beacons used. 2) Single beacon message, estimation of φi. 3) Two messages from the same beacon, estimation of φi and
εi while ε̂1 = 1. 4) Three messages from two beacons, full estimation of φi and εi. (b) Impact of time dependent clock rate
modeled as a random walk, using method 3).

is v = [ε1, . . . , εM , φ1, . . . , φM ]T . We calculate the variance
of the clock parameters estimation error using the standard
CRLB. Analogous to the last case in the second step, we
model all the clock rates and offsets with Gaussian random
variables. Thus, the bound for the target location is derived
with the estimation parameter vector u = [x0, y0]T , mean

µi = (ε̂1 − ε̂i)t(q) + ε̂1
d1,0
c
− ε̂i

di,0
c

+ φ̂i − φ̂j , (31)

and covariance matrix

C = diag(s21,ε, . . . , s
2
M,ε) + s21,ε1M−11

T
M−1 . (32)

V. RESULTS

Simulative as well as experimental results have been ob-
tained for verification. In the simulation, 5 sensors have been
placed using the same geometry as given in the experimental
system, depicted in Fig. 3 (a). First, receiver clocks have been
modeled according to (1) and the time between transmissions
is 2 s. The standard deviation of the error in each TOA
measurement is σni

= 10−8. It is then possible to compare
the analytical expressions for the bounds with Monte Carlo
simulation result. This is shown in Fig. 2 (a). From the
plot it is found that if very good clocks are available it is
recommendable to not apply any correction. That is due to
the additional noise terms introduced into the solution due to
additional measurements of the beacon signals. Note that this
assumes that the offsets φi are close to zero. When the error
in the TOA becomes large due to uncompensated differing
clock rates, it leads to large outliers of the estimated location,
caused by the nonlinear nature of the hyperbolic geometry.

This can be observed in the upper right corner of Fig. 2 (a).
Further, due to bad conditioning of the problem, as seen
in (18), for the given system dimensions, full correction of all
εi provides much worse performance than the approximation
ε̂1 = 1, which itself should be used only for clocks with
σε ≥ 4× 10−9. However, this threshold obviously depends
on the time between the beacon transmissions and also the
measurement noise. Therefore, in a second simulation, the
time dependence of the clock rates εi is modeled using a
Brownian random walk approach where σ2

η is the variance of
the additional Gaussian noise, that is cumulatively added. We
then vary the time between the transmissions and observe the
degradation of the localization in terms of root mean square
error (RMSE). The resulting plot is presented in Fig. 2 (b).
This can be used to select the rate of the beacon transmission
based on the specification of the used sensor clocks.

Experimental measurements have been obtained from the
ATLAS system [14] with a subset of 5 sensors as shown in
Fig. 3 (a). Target tags, which are usually attached to birds for
tracking, transmit a binary frequency shift keying signal every
1 s with a bandwidth of 2 MHz. Beacons transmit an identical
signal every 2 s. Transmitted data is a 8192 long random code
sequence, that yields a large correlation gain at the receiver
and enables simultaneous channel access for a large number
of tags. The sensors are based on software defined radio with
Ettus USRP N200 frontends that contain a TCXO frequency
reference specified with 2.5 ppm. However, according to the
estimation for the recorded data set, all 5 sensor clock rates
are within less than 1 ppm. Fig. 3 (b) shows the drift in the
location of a static target when just the offset correction from
Sec. III-2 or the offset and rate correction from Sec. III-3 is
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Fig. 3: (a) Geometry of the considered localization sensor network [14], (b) drift in the location of a stationary target with
correction of φi compared to the case with correction of φi and εi while ε̂1 = 1.

used. The RMSE for the two cases is 334.71 m and 8.40 m
respectively.

VI. CONCLUSION

In this paper we have analyzed the sensitivity of a par-
ticular type of passive localization system with respect to
different qualities of the sensor clocks. Four different cases
have been identified and correction methods have been derived
accordingly, together with the corresponding modified Cramér-
Rao lower bounds. Results from simulation and a deployed
experimental wildlife tracking system clearly illustrate that the
considered system is able to perform well with drifting sensor
clocks.
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