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Abstract—In this paper, we consider the problem of local-
izing multiple non-collaborative transmitters by a network
of distributed sensor nodes. The nodes are equipped with
versatile sensing capabilities allowing them to estimate the
time differences of arrival (TDoAs) and/or the directions
of arrival (DoAs) of the incoming waves. We formulate the
localization task as a joint block-sparse recovery problem and
develop a framework that allows to accommodate different
types of measures, such as the beamformer outputs in case
of DoAs or cross-correlation functions in case of TDoAs. We
then propose a reduced-size location recovery approach in
which we perform multiple location estimations from partial
combinations of measures that are later fused together. Our
results indicate that in doing so we can achieve estimation
performance superior to that of the fully joint recovery, while
keeping a lower computational complexity.

I. INTRODUCTION

Localization of spatially distributed transmitters is an
important task in a number of practical applications. In
radio-localization, one aims to determine the unknown lo-
cations of transmitters by exploiting propagation parameters
of the emitted signals, e.g., based on time, phase, or power
measures [1]. One can also apply hybrid approaches that
combine multiple signal measures, such as time- and phase
differences for instance, as these are known to provide
improved estimation performance [2], [3]. Along with tra-
ditional localization methods it has been recently proposed
to use the ideas from compressed sensing to formulate the
radio-localization task as a sparse recovery problem [4]–
[11]. Compressed sensing is a recently emerged sampling
paradigm that allows to reduce signal sampling rate without
loss of information, provided that the signal possesses
a sparse representation [12]. This said, it is especially
appealing for localization schemes where, due to centralized
baseband signal processing, a high volume of data has to
be transported through the backhaul.

In order to be able to formulate the localization problem
based on the notion of sparsity, it is necessary to find
a suitable sparsity-promoting representation. In search for
such sparse formulations, the majority of the work in this
area considers one particular type of measure. Thus, the
seminal work [4], representative of a number of related
papers on super-resolution direction finding such as [13],
[14] for instance, focuses on a sparse version of a DoA
estimation problem. Sparsity-promoting formulations of the

time difference of arrival (TDoA) based localization can be
found in [7], [8], [11], while [5], [6] and, more recently, [9]
provide an example of similar approaches based on received
signal strength (RSS) measurements. Finally, [10] discusses
a sparsity based approach applied to radar processing that
combines TDoA and DoA measurements. It assumes a
collaborative scheme where an accurate knowledge of the
transmitted signal is available. In all of these, one represents
the localization space (the angular space in case of DoA
estimation) by a discrete grid, which is used to devise a
sparsifying dictionary.

Inspired by these developments, in the current work we
adopt the sparse recovery framework for non-collaborative
hybrid TDoA/DoA localization of multiple sources using a
combination of different measures. To do so, we split the
spatial location area into a number of location bins and
create sparsifying dictionaries for each considered measure.
We then take advantage of the shared structure of the active
atoms in the individual dictionaries to formulate the location
estimation task as a joint block-sparse recovery problem. As
such, it can then be solved by applying available recovery
algorithms such as the block orthogonal matching pursuit
(BOMP) from [15] for instance. However, the problem
size and hence the estimation complexity increases rapidly
with the number of sensors and the number of different
measures used [10], making a direct recovery from all
available measures computationally inefficient. To tackle
this problem, we propose a reduced-size method in which
we perform multiple location estimations from (different)
partial combinations of measures. The resulting candidate
estimates are then fused together by applying 2D Gaussian
smoothing. This allows us to significantly reduce the size
of each individual recovery problem while still enjoying the
benefits of the joint block-sparse signal structure.

We evaluate the performance of the proposed estimation
method with respect to the SNR and the compression rate.
Our numerical results indicate that a reduced-size recovery
from partial combinations provides an overall location esti-
mation performance similar to the direct fully joint recovery,
yet outperforming it in the lower SNRs. An additional
advantage of the proposed method is that it allows for a
distributed approach to location recovery which means that
one can potentually avoid fully centralized processing.
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II. SYSTEM MODEL

A. Sensing scenario

Consider a system of N sensing nodes (Rxn, n ∈ [1, N ])
and M signal sources (Txm, m ∈ [1,M ]) distributed over
some spatial area F , as shown in Figure 1. The sensing
nodes are equipped with one or more sensing capabilities,
such as precise time synchronization for time difference
of arrival (TDoA) estimation and/or antenna arrays for
direction of arrival (DoA) estimation. The sensors Rxn are
collaborative in that they share the received data with a
central processing unit, referred to as the fusion center (FC).
To enable the data exchange, it is assumed that the nodes
are inter-connected via high speed data links. The sources
Txm, on the other hand, are non-collaborative, meaning that
they do not provide their synchronization information, while
the signals from different transmitters are independent and
uncorrelated. However, Txm are assumed to operate within
the same standard in the sense of using the same modula-
tion, bandwidth, and possibly central frequency which are
known to Rxn.

We suppose that F is divided into a set of location
bins k = {1, 2, 3, . . . ,K}. Each bin corresponds to cer-
tain spatial coordinates (xk1 , yk2) with k1 = 1, . . . ,K1 and
k2 = 1, . . . ,K2 where K = K1K2. Furthermore, we as-
sume that the sensor nodes are placed at some known coor-
dinates (xr

n, y
r
n), n = 1, . . . , N , while the signal sources are

located at (xs
m, y

s
m),m = 1, . . . ,M , which are unknown.

Next, we associate a binary value cb,k ∈ {0, 1} to each
location bin, depending on the presence (cb,k = 1) or
absence (cb,k = 0) of the signal source at this location. By
collecting cb,k together, we can represent the location plane
F via a length-K binary vector cb = [cb,1, . . . , cb,K ]T.
Assuming that the number of sources is low with respect
to the number of locations bins, cb has M � K non-zero
entries only and hence it is M -sparse.

B. Signal model

In the presence of M signal sources, each sensor Rxi
receives a superposition of M transmitted signals sm(t). Let
hm,i(t) be an impulse response of the propagation channel
between the m-th signal source and the i-th sensor. Then,
the input signal of the m-th sensor is given by

ri(t) =

M∑
m=1

hm,i(t) ∗ sm(t) =

M∑
m=1

sm,i(t), (1)

where sm,i(t) = hm,i(t) ∗ sm(t) and ∗ denotes the con-
volution operation. Assuming time-invariant channels, at
different nodes one observes different (scaled and delayed)
copies of sm(t). Given (1), the localization task is to infer
the source locations (xs

m, y
s
m) from the set of measurements

{ri(t)}Ni=1. In terms of the discrete vector of locations cb,
this is equivalent to determining the support S(cb), where
S(x)

∆
= {i : xi 6= 0} for any vector x.

Without loss of generality, in the following we rep-
resent ri(t) by its Nyquist sampled baseband version
ri[n] =

∑M
m=1 sm,i[n]. Note that for the sake of brevity

Figure 1. A sensing scenario with M = 3 signal sources Txm and N = 5
sensing nodes Rxn connected via a backhaul to the fusion center.

we describe the proposed joint localization framework in
detail on an example of a single-path scenario where hm,i(t)
consists of a single (line of sight (LoS)) component such
that

ri[n] =

M∑
m=1

αm,ism[n− τm,i]. (2)

Here, αm,i and τm,i are the attenuation and the (sample)
delay of the LoS path from the mth signal source to the ith
sensor, respectively. We then briefly discuss a more generic
case of multipath propagation afterwards in Section V.

III. JOINT SPARSE LOCALIZATION FRAMEWORK

A. Generic framework description

Given N inputs ri[n] to N sensors Rxi, we can obtain a
total of L signal measures y` ∈ CQ`×1, each a functional
of the location vector cb, i.e.,

y` = Φ`(cb). (3)

Note that the actual value of L depends on which particular
measure is used. In (3), Φ` represents a mapping from the
binary location space to the `-th (complex) measure vector
while ` = 1, 2, . . . , L. Note that the mapping is defined by
the type of measure as well (e.g., time, phase, power, etc.). It
can also be dimensionality reducing such that Q` < QNyq,`

where QNyq,` denotes the size of the `-th measure computed
at the Nyquist rate of the corresponding input signal.

Representing the operation of Φ` as an inner product
between some Q` × K dictionary Φ` and a K-length
coefficient vector c`, we obtain

y` = Φ`c`, (4)

where each c` is M`-sparse1. Expression (4) presents a
typical sparse recovery problem that can be solved by
applying available recovery techniques. As a result, from (4)
one could obtain estimates S(ĉ`) for each c` individually.
Once these are found, the (vector) indices of the source

1In general, S(c`) is not necessarily equal to S(cb) but rather S(c`) ⊇
S(cb) due to the possible presence of multipath, hence M` ≥M .
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locations could be inferred from the set {S(ĉ`)}L`=1, e.g., by
taking an intersection over the individual support estimates.

Alternatively, we can collect all individual measures
y` in a single Q-long vector y = [yH

1 , . . . ,y
H
L ]H, where

Q =
∑L
`=1Q` and (·)H is the Hermitian transpose, to obtain

y =


Φ1 0 · · · 0
0 Φ2 · · · 0
...

...
. . .

...
0 0 ΦL



c1

c2

...
cL

 = Φc. (5)

The Q × LK matrix Φ here is a block diagonal matrix
that contains individual dictionaries Φ`, whereas c is an
LK-length coefficient vector that collects vectors c`.

Consider now the structure of c. In a single-path sce-
nario (2), we can always construct Φ` such that all c` have
the same support set irrespective of the measure used, i.e.,
S(c`) = S(cb) for all ` ∈ [1, L]. In this case, the non-zeros
in c appear in a periodic structure that admits a block-sparse
representation. Note that we can rearrange c into another
length-LK vector c̄ by aggregating every K-th element as

c̄ = [c1 · · · c(L−1)K+1︸ ︷︷ ︸
c̄1

. . . cK · · · c(L−1)K+K︸ ︷︷ ︸
c̄L

]T,

where (·)T denotes the vector/matrix transpose. For a rear-
ranged coefficient vector c̄, (5) transforms into

y = [Φ̄1 Φ̄2 · · · Φ̄L]


c̄1

c̄2

...
c̄L

 = Φ̄c̄, (6)

where Φ̄ = [Φ̄1 Φ̄2 · · · Φ̄L] is a column-wise rearranged
version of Φ such that

Φ̄` =

ϕ1,` · · · 0
...

. . .
...

0 · · · ϕL,`


with ϕi,j denoting the j-th column of Φi. In (6), the vector
c̄ is block M -sparse meaning that only M out of L blocks
c̄` are non-identically zero. Furthermore, the block support
of c̄, denoted by Ω, is equal to the support of cb. This
being said, it is known that exploiting the joint block-sparse
structure of (6), by using block-sparse adaptation of OMP
for instance [15]–[17], allows improving overall recovery
performance compared to the individual recovery according
to (4). In both cases however, we need to find appropriate
sparsity-promoting dictionaries first. In the following, we
show how one can construct Φ` and Φ on the example of
the phase and time delay based measures y`.

B. Dictionary building

1) Phase delay dictionary: Suppose the sensor nodes are
equipped with antenna arrays for DoA estimation, each with
ni elements. Then, for an input of form (2) the (noise-free)
baseband signal at the sensor output can be expressed as

ri[n] =

M∑
m=1

ai(θm,i)sm,i[n], (7)

where ri[n] ∈ Cni×1 is a vector of antenna outputs,
sm,i[n] = αm,ism[n − τm,i] and a(θ) denotes the antenna
response as a function2 of the azimuth angle, where θm,i is
the (azimuth) angle of arrival of the m-th source signal at
the i-th sensor. We write (7) in a matrix form as

ri[n] = Aisi[n], (8)

where Ai = [ai(θ1,i),ai(θ2,i), · · · ,ai(θK,i)] ∈ Cni×K is
the array steering matrix of the i-th sensor and θk,i is the
(azimuth) LoS direction from the k-th location bin to the
i-th sensor. A length-K vector si[n] here contains complex
amplitudes sm,i[n] at the indices corresponding to θm,i.

Given (8), we can introduce a pi×ni compression matrix
Wi that combines ni antenna outputs into pi < ni receiver
channels [18] such that

r̃i[n] = WiAisi[n] = Ãisi[n], (9)

where Ãi = WiAi ∈ Cpi×ni is the effective array manifold
after the combining. We notice that (9) has the desired form
of (4) where Ãi constitutes the dictionary Φ`, y` = r̃i[n],
and si[n] is the M -sparse coefficient vector. Note that for a
single dictionary Ãi one can form multiple measures y`,
one for each sample index n. Therefore, from N DoA
sensors we can have Ldoa = NT measures y`, where T
denotes the number of samples taken in (9).

2) Time delay dictionary: Consider now time-
synchronized receiver nodes that are capable of time
delay measurements for TDoA estimation. In this case, we
compute the (discrete) cross-correlation functions of the
signals received at two receivers with indices i1 6= i2 as

Ri1,i2 [p] =
1

T

n1+T∑
n=n1

r∗i1 [n]ri2 [n+ p] =
1

T
rH
i1r

(p)
i2
, (10)

where ri1 = [ri1 [n1], . . . , ri1 [n1 + T ]]H, r(p)
i2

= [ri2 [n1 +
p], . . . , ri2 [n1 + p+ T ]]H and p ∈ [0, T − 1] represents the
time delay in samples.

Noting that ri[n] =
∑M
m=1 sm,i[n] and taking into

account the propagation model (2), we can obtain

Ri1,i2 [p] =

M∑
m=1

α(i1,i2)
m

1

T

n1+T∑
n=n1

s∗m[n]sm[n+ p− τ (i1,i2)
m ]︸ ︷︷ ︸

Rm[p−τ(i1,i2)
m ]

+
∑

m1 6=m2

α(i1,i2)
m1,m2

1

T

n1+T∑
n=n1

s∗m1
[n]sm2 [n+ p− τ (i1,i2)

m1,m2
]︸ ︷︷ ︸

Rm1,m2
[p−τ(i1,i2)

m1,m2
]

.

(11)

In (11), Rm[p] = 1
T

∑n1+T
n=n1

s∗m[n]sm[n+ p] denotes the
(discrete) autocorrelation function of the m-th source
signal, while Rm1,m2

[p] = 1
T

∑n1+T
n=n1

s∗m1
[n]sm2

[n+ p]

2Note that a is generally a function of both azimuth and elevation angles
of arrival as well as the polarization state of the incident plain wave. Since
in this work we are interested in 2D localization, we assume that the
sources are located in the azimuthal plane of the receiver antenna arrays
and the impinging waves are co-polarized with them.
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is the cross-correlation term between two
signals from two sources Rxm1 and Rxm2 ,
where m1,m2 ∈ [1,M ] : m1 6= m2. This said,
τ

(i1,i2)
m = τm,i1 − τm,i2 and τ

(i1,i2)
m1,m2 = τm1,i1 − τm2,i2

are the relative delays in samples between different signal
copies at two receivers, whereas α

(i1,i2)
m = α∗m,i1αm,i2

and α
(i1,i2)
m1,m2 = α∗m1,i1

αm1,i2 . Since the individual signals
sm(t) are uncorrelated, Rm1,m2 [p] ≈ 0 and, therefore3,

Ri1,i2 [p] ∼=
M∑
m=1

α(i1,i2)
m Rm[p− τ (i1,i2)

m ]. (12)

Furthermore, Txm are assumed to be operating within the
same standard which means that Rm[p] = R[p] for all m =
1, 2, . . . ,M and

Ri1,i2 [p] ∼=
M∑
m=1

α(i1,i2)
m R[p− τ (i1,i2)

m ], (13)

where R[p] denotes the basic discrete baseband auto-
correlation function of the system’s waveform.

Given (13), we introduce P×T matricesBi that represent
the sub-sampling operation such that r̃i = Biri and

R̃i1,i2 [p] =
1

P
r̃H
i1 r̃

(p)
i2

=
1

P
rH
i1B

T
i1Bi2r

(p)
i2

∼=
M∑
m=1

α(i1,i2)
m R̃i1,i2 [p− τ (i1,i2)

m ], (14)

where r̃(p)
i = [r̃i[n1 + p], . . . , r̃i[n1 + p+ T ]]T, R̃i1,i2 [p] is

the basic discrete baseband auto-correlation function that
corresponds to the sub-sampling operation of BT

i1
Bi2 and

p ∈ [0, P−1]. The matricesBi in (14) can be obtained from
a T × T identity matrix IT by randomly selecting P rows
from it, for instance. Note that we arrive at the Nyquist-rate
relation (12) by simply choosing Bi = IT .

In order to obtain a formulation compatible with
(4), we represent (14) in a matrix form by stak-
ing individual R̃i1,i2 [p] into a length-P vector rq =
[R̃i1,i2 [0], . . . , R̃i1,i2 [P − 1]]T and constructing a P × K
dictionaryRq from R̃i1,i2 [p] computed for K relative delays
corresponding to K location bins. Then,

rq = Rqαq, (15)

where q = (i2 − i1) + C2
N − C2

N−i1+1 for i1 ∈ [1, N ] and
i2 ∈ [i1 + 1, N ] while CKN is the binomial coefficient. Ac-
cording to (14), the k-th column of Rq contains R̃i1,i2 [p−
τ

(i1,i2)
k ], where τ (i1,i2)

k is the relative delay in samples of
the LoS paths from the k-th location bin to i1-th and i2-
th sensors while αq is a K-length vector that contains
elements α(i1,i2)

m at indices km : τ
(i1,i2)
km

= τ
(i1,i2)
m . Hence,

in this case we have that Φ` = Rq , c` = αq and y` = rq .
In conclusion, we note that when all Rxi are TDoA-capable
sensors, one can obtain a total of Ltdoa = C2

N measures y`.

3Note that the approximation here is due to the limited number of
samples taken for computation of the cross-correlation function in (10).

IV. LOCATION RECOVERY

A. Simultaneous joint recovery

In previous section, we have constructed two different
sparsifying dictionaries, Ãi for the DoA-type measures and
Rq for the TDoA-type measures where i = 1, . . . , Ldoa

and q = 1, . . . , Ltdoa. Note that Ldoa ≤ NT is the number
of sensors that are equipped for DoA estimation times the
number of (time) snapshots taken, whereas Ltdoa ≤ C2

N

is the number of sensor pairs that are equipped for TDoA
estimation. Given the relations (9), (15), we can now form y
by collecting all available ri, rq together and build Φ from
the corresponding dictionaries Ãi,Rq according to (5). This
yields a total vector y of length Q =

∑Ndoa

i=1 pi + PNtdoa

and Φ of size Q× LK where L = Ldoa + Ltdoa. After
solving (6), we can obtain the vector of source locations cb

by evaluating the block support Ω and then computing the
location bin states cb,k as

cb,k =

{
1 , k ∈ Ω
0 , otherwise .

Subsequently, we can represent the source locations on a
plane by rearranging cb back into an K2 ×K1 matrix F .

However such an approach can potentially result in
a significant computational complexity due to the large
dimensions Q and LK. To circumvent this problem while
still being able to enjoy the benefits of the joint block-sparse
structure of (6), in the following we propose a reduced-sized
approach based on partial joint recovery and subsequent
estimate fusion.

B. Reduced-size joint recovery

Instead of collecting all available measures into a single
vector y, we can form partial combinations by stacking
(e.g., random) subsets of Lj ≤ L individual measures4 into
length-(Qj ≤ Q) vectors y(j) such that

y(j) = Ψjbj , (16)

where Ψj is an Qj × LjK block-diagonal sub-matrix of
Φ, while bj is a corresponding length-LjK sub-vector
of c. Note that Lj = L corresponds to the original full-
size formulation (5). Denoting by Ωj the block support of
bj , after solving (16) we obtain a set of support estimates
{Ωj}Lc

j=1 and a corresponding set of vector location esti-
mates {cb,j}Lc

j=1 where Lc is the number of different subset
combinations. Now we need to superpose cb,j into the final
estimate of the source locations. To do so, we first rearrange
each cb,j into a K2×K1 location matrix Fj . We then apply
a 2D Gaussian filter with an impulse response

g(k1, k2) =
1

2πσ2
e−

k21+k22
2σ2 , (17)

4Note that the subset size Lj can be different for different vectors y(j),
while the individual measures y` can be used more then once in different
subset combinations.
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where σ2 denotes the variance in grid points, to obtain
smoothed location plane estimates F̃j , which we afterwards
combine together as

F̂ =
1

Lc

Lc∑
j=1

F̃j . (18)

In the last step, we estimate the source locations as the ones
that correspond to M largest peaks5 in F̂ .

V. A NOTE ON MODEL EXTENSIONS

For the sake of simplicity, so far we have considered a
single-path LoS propagation scenario and TDoA dictionary
built on the assumption of known transmitter waveforms. In
the following, we briefly discuss how the proposed frame-
work can be applied with multipath and in a completely
blind scenario when the transmitted waveforms are not
known at the receivers.

A. Multipath propagation scenario

In the case of multipath, the individual coefficient
vectors c` do not necessarily share exactly the same
support, but rather S(c`) ⊆ S(cb) for any `, where
∩̀S(c`) = S(cb). Therefore, the rearranged vector c̄ will

now have M̄ = |⋃` S(c`)| non-identically zero blocks
where M ≤ M̄ ≤∑`M` −ML. However, only M of
them will contain significant number of elements, i.e., the
ones corresponding to the support of cb, while the rest are
likely to contain only a few (� L) non-zeros. This is be-
cause they originate from the multipath components whose
spatial “locations” differ depending on the positions of both
sensors and sources. Furthermore, the non-zero coefficients
corresponding to the multipath components are also likely
to be of lower magnitude. Altogether, this means that in
the case of multipath the coefficient vector c̄ will preserve
a quasi-block sparse structure, albeit approximately.

B. TDoA dictionary with unknown signal waveforms

While building the dictionary for time delay based mea-
sures in Section III-B2, we have assumed that the trans-
mitters operate within the same standard that is known to
the receivers. This implies that the basic autocorrelation
function R[p] is the same for all Txm and it is known. In a
scenario where the transmitted waveforms are unknown or
can vary from transmitter to transmitter, instead of using the
exact basic autocorrelation function to compose Rq in (15)
we can compute its bandlimited approximation, provided
that the bandwidth is (at least approximately) known.

VI. NUMERICAL RESULTS

To evaluate the proposed localization framework, we
simulate a scenario with M = 4 sources and N = 5 sensors
distributed over an 1000×1000 m area. The positions of the
sensing nodes are fixed and constant throughout the evalu-
ation at the locations schematically illustrated in Figure 2,

5Note that when M is not known a prior one could apply a thresholding
approach and pick those locations that correspond to the peaks exceeding
some pre-defined threshold value.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x, [km]

y
,[

km
]

Tx
Rx

Figure 2. A single realization of a sensing scenario for numerical evalu-
ation with M = 4 signal sources Txm positioned randomly and N = 5
sensing nodes Rxn located at coordinates xr

n, y
r
n ∈ {0.25, 0.5, 0.75} km.

while the Tx coordinates are generated uniformly at random.
The location area is divided into K = 2500 grid points
placed at dgrd = 20 m. Each sensor is capable of providing
both TDoA and DoA measures y` such that the total number
of measures available is L = N !

2(N−2)! +N = 15. Out of
these, we either select Lc = 50 (different) random subsets
of size Lj ∈ [2, 4] for partial joint recovery according to
(16) or use all measures at once as in (6). In both cases,
to solve the associated sparse recovery problem we use
the BOMP algorithm from [15]. For the DoA part, the
sensors employ uniform circular arrays (UCAs), each with
ni = 10 elements. For the TDoA part, it is assumed that
the sources use QPSK-modulation with a 0.5 roll-off factor
raised cosine filter, an oversampling factor of 10 and a
bandwidth of 10 MHz. Additionally, when computing the
TDoA measures rq we apply compression matricesBi = B
composed of a random selection of P rows from IT . The
resulting compression rate is defined as T−P

T where the total
number of samples taken is T = 104.

Figure 3 presents an average (among 600 Monte Carlo
realizations) localization error in terms of the root mean
squared error (RMSE) between the true and the estimated
source locations in units of the grid step. It shows the RMSE
as a function of the SNR and the compression rate in a
form of a color-plot for the cases when we use i) only a
single type of measures (denoted by TDoA-only or DoA-
only), or ii) a mixture of both measures (denoted by hybrid
TDoA/DoA). Furthermore, we display the results for the
full simultaneous (Lj = L, upper row) and the reduced-size
partial (Lj ∈ [2, 4], lower row) joint recovery. We observe
that, while the overall trend for both recovery approaches is
similar, namely the hybrid TDoA/DoA approach expectedly
outperforms the localization based on a single DoA or
TDoA measure, the reduced-size recovery in each case
provides better estimation accuracy in the lower SNRs. Note
that for the TDoA-based localization the RMSE naturally
deteriorates at higher compression rates, whereas it exhibits
no such behavior for the DoA-only based localization, as
no compression in the spatial domain has been applied (i.e.,
Wi = Ini for all i = 1, . . . , N ).
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Figure 3. RMSE vs. SNR vs. compression rate for 3 considered scenarios and two recovery approaches. The first row shows the results for the
simultaneous recovery where Lj = L, whereas the second row presents corresponding figures for reduced-size approach with partial recovery with
Lj ∈ [3, 5] and fusion.

VII. CONCLUSIONS

In this work, we considered the task of localizing multiple
non-collaborative transmitters by a network of distributed
sensor nodes that are capable of TDoA and DoA estima-
tion. We developed a sparse localization framework that
formulates the localization task as a joint block-sparse re-
covery problem allowing us to perform location estimation
from both types of measures simultaneously. Our results
indicate that the proposed reduced-size estimation method
outperforms fully joint recovery, while keeping a lower
computational complexity.
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