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ABSTRACT

The mutual coherence provides a basis for deriving recovery guar-
antees in compressed sensing. In this paper, the mutual coherence
of spherical harmonics sensing matrices is examined for a class of
sensing patterns common in practice and is used as a figure of merit
for designing sensing matrices. We will show that for each sampling
pattern, the coherence is lower bounded by the inner product of two
Legendre polynomials with different degrees. In some practical sit-
uation, it is desirable to have sampling points on a sphere follow a
regular pattern, hence, facilitating the measurement process. It will
be shown that for a class of sampling patterns, the mutual coher-
ence would be at its maximum, yielding the worst performance. Fi-
nally, the sampling strategy is proposed to achieve the derived lower
bound.

Index Terms— Coherence, sparse recovery, spherical harmon-
ics

1. INTRODUCTION

In compressed sensing, there are well known conditions on the sens-
ing matrix for stable and robust signal recovery. The Restricted
Isometry Property (RIP) provides recovery guarantees for sparse sig-
nal and it has been proven that random matrices with sub-Gaussian
distribution satisfy RIP with high probability. Unlike RIP [1, 2], the
mutual coherence can be numerically evaluated for a given matrix
and therefore it is a computable figure of merit for sparse recovery.
For a matrix A = (a1,a2, . . . ,aN ) ∈ Cm×N , the mutual coher-
ence of A is defined as

µ(A) = max
1≤q 6=r≤N

|〈aq,ar〉|
‖aq‖2‖ar‖2

. (1)

In general, the mutual coherence leads to pessimistic recovery guar-
antees, usually necessitating very low mutual coherence for compa-
rable recovery guarantees to RIP. The coherence might nonetheless
be used for designing deterministic sensing matrices. Particularly in
the context of bounded orthonormal systems, the sensing matrix has
already some additional structures coming from the orthogonal basis
which prevents us from using proposals like those inspired by coding
theory [3] for deterministic sensing matrices. Using mutual coher-
ence for design and analysis of deterministic sensing matrices was
studied in many different areas, from coding theory [4, 5], commu-
nication [6, 7], quantum measurement [8, 9] and machine learning
[10, 11]. Specifically in compressed sensing, for example, in [12]
the authors define an algorithm to optimize measurement matrix for
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compressed sensing. The initial idea is to define t-averaged mutual
coherence as a threshold and optimize the Gram matrix based on sin-
gular value decomposition. Recently, in [13], rather than optimizing
the off-diagonal matrix of Gram matrix, the authors try to find a
new frame with low mutual coherence property. The same condition
applies in [14, Chapter 14], where the authors discuss recovery con-
dition based on the mutual coherence with random signal models,
specifically Bernoulli and uniform distribution. In general, sensing
matrices with lower mutual coherence provide better sparse recovery
guarantees. The mutual coherence is lower bounded by the so called
Welch bound, defined in the context of correlation measurements of
different signals [15], given as

µ(A) ≥

√
N −m
m(N − 1)

. (2)

The bound is achieved, for instance, by considering the Grassman-
nian frame, which is equiangular and tight [6]. However, it has been
shown that this class of frames only exists for certain pairs of m and
N [16]. It is moreover difficult or sometimes not possible to find
these frames for certain structured matrices, as in bounded orthonor-
mal systems.

In this work, we are interested in coherence-based analysis of
sensing matrices that are constructed from spherical harmonics ex-
pansion. Spherical harmonics as orthonormal basis are widely used
in order to analyze the signal on the sphere, for example, spherical
near-field antenna measurement [17], earth magnetic fields [18] and
spherical microphone array [19]. In [20, 21], random sensing matri-
ces were discussed for spherical harmonics. Since spherical harmon-
ics are not uniformly bounded, random sensing matrices could only
fulfill RIP after appropriate pre-conditioning techniques. Neverthe-
less, it is desirable to generate sensing matrices with more regular
structures in practical applications. For instance, the measurements
in antenna design are done using a robotic probe, favoring more
smooth and regular movements rather than random movements on
the sphere. This paper is organized as follows. In section 2, the main
definitions and the properties of spherical harmonics are provided.
In section 3, the coherence analysis is conducted for a class of sam-
pling patterns and a lower bound on the coherence itself is derived.
Numerical experiments of sparse recovery and computation time of
the algorithm to achieve the lower bound are presented in section 4.
Finally, the conclusion and future works are discussed in section 5.

1.1. Notation

The elevation and azimuth are denoted by θ and φ, respectively. Vec-
tors are presented by small bold letters and matrices by capital bold
letters. The set {1, ...,m} is denoted by [m].



2. DEFINITIONS AND BACKGROUNDS

Definition 1 (Spherical harmonics). Spherical harmonics of degree
l and order k are defined as follows:

Yk
l (θ, φ) = Nk

l P
k
l (cos θ)ejkφ (3)

whereNk
l =

√
2l+1
4π

(l−k)!
(l+k)!

is the normalization factor andP kl (cos θ)

is the associated Legendre polynomial. For k = 0, the associated
Legendre polynomials become Legendre polynomials Pl(cos θ).

Legendre polynomials are either even or odd determined by the
relation

Pl(− cos θ) = (−1)lPl(cos θ). (4)
For θ = 0, it is well known that Pl(1) = 1. Furthermore, the
Legendre polynomials at 0 are evaluated as

Pl(0) =

{
(−1)l/2 l!

2l( l
2
)!2

if l is even including 0,

0 l is odd.
(5)

Spherical harmonics create a basis for square integrable functions
over S2, that is each function f ∈ L2(S2) can be written in terms of
spherical harmonics as

f(θ, φ) =

∞∑
l=0

l∑
k=−l

f̂kl Yk
l (θ, φ). (6)

This is also called the S2-Fourier expansion with Fourier coefficient
f̂kl where

f̂kl =

∫ 2π

0

∫ π

0

f(θ, φ) Yk
l (θ, φ) sin θdθdφ. (7)

Spherical harmonics are orthonormal with respect to the uniform
measure on the sphere dν = sin θdθdφ, namely:∫ 2π

0

∫ π

0

Yk
l (θ, φ)Yk′

l′ (θ, φ) sin θdθdφ = δll′δkk′ (8)

where δll′ is Kronecker delta In this work, instead of infinite expan-
sion, we suppose that the functions are bandlimited.

Definition 2 (Bandlimited functions and sparse expansion). A func-
tion f ∈ L2(S2) is bandlimited with bandwidth B if it is expressed
in terms of spherical harmonics of degree less thanB. A bandlimited
function is said to be s−sparse if the vector of spherical harmonics
coefficients, f = (f̂k,nl ) for 0 ≤ l ≤ B − 1,−l ≤ k ≤ l , is
s-sparse, that is ‖f‖0 ≤ s.

The sensing matrix A is constructed using following entries

Ap,q = Yk(q)

l(q) (θp, φp), (9)

where p ∈ [m] is the index of a sampling point and q ∈ [N ] is an
index used to provide the degree and order of each basis, l(q), k(q),
belonging to the set JS :

JS = {(l, k) | 0 ≤ l ≤ B − 1,−l ≤ k ≤ l} (10)

where |JS | = N = B2. It can be seen that the set JS contains
combinations between permissible degrees and orders, each pair cor-
responding to a column. Let the matrix A ∈ Cm×N be constructed
from m samples of normalized spherical harmonics, (θp, φp), p ∈
[m]. The mutual coherence of a matrix from spherical harmonics
can be written as follow:

µ(A) =max
q 6=r

∣∣∣∣ m∑
p=1

Yk(q)

l(q)
(θp, φp)Yk(r)

l(r)
(θp, φp)

‖Yk(q)

l(q)
(θ, φ)‖2‖Yk(r)

l(r)
(θ, φ)‖2

∣∣∣∣ (11)

2.1. Spherical near-field antenna measurement

The main application of spherical harmonics and their extension,
Wigner-D functions, is the spherical near-field antenna measure-
ment. This is defined in [17] by using the transmission formula as
follows:

y(θ, φ, χ) = v

vmax∑
n=−vmax

2∑
h=1

B∑
l=1

l∑
k=−l

ThlkDk,n
l (θ, φ, χ) (12)

where y(θ, φ, χ) is a bandlimited near-field sample with Wigner-D
functions as a basis, h denotes the both transverse electric (TE) and
magnetic (TM), n and χ denote order and angle to measure polar-
ization, respectively.

Dk,n
l (θ, φ, χ) = Nle

−jkφdk,nl (cos θ)e−jnχ (13)

where dk,nl (cos θ) is Wigner-d functions. Normally, it is enough to
consider co-polarization of the antenna i.e n = 0. In this setting, the
Wigner-D functions become spherical harmonics, with the following
relation

D−k,0l (θ, φ, 0) = (−1)k
√

4π

2l + 1
Y kl (θ, φ). (14)

The classical method requires equiangular sampling pattern and uses
discrete Fourier transform to estimate the transmission coefficient
Thlk. It has been shown already in [22, 23, 24] that, the measure-
ment speed and accuracy in spherical near-field measurement could
be improved by using compressed sensing. However, the analysis on
deterministic sampling is not yet addressed and we try to address this
issue. In particular, it is shown why the equiangular sampling is not
proper sampling in term of sparse recovery in spherical harmonics
expansion.

3. MAIN RESULT

In order to design a sensing matrix from spherical harmonics, the
goal is to find pairs (θp, φp), p ∈ [m], that minimize the mutual
coherence of the sensing matrix from spherical harmonics. We can
formulate the problem as follows:

minimize
θp,φp,p∈[m]

µ(A) subject to θp ∈ [0, π], φp ∈ [0, 2π)

(15)
These problems are non-convex in general since the Legendre poly-
nomials and trigonometric polynomials ej(k

(r)−k(q))φp are non-
convex. Therefore, the objective function contains many local
maxima and minima. Furthermore, the problem becomes more
complicated if we consider certain constraints on sampling patterns
over the sphere. Indeed one can see that certain sampling patterns
lead to maximum coherence due to symmetry property of spherical
harmonics. This is demonstrated in the following theorem.

Theorem 3. Let the matrix A ∈ Cm×N be constructed from sam-
ples of spherical harmonics Yk

l (θ, φ) for a signal with bandwidthB
using a sampling pattern that satisfies

2kφi ≡ 2kφj mod 2π,∀i, j ∈ [m]

for some −(B − 1) ≤ k ≤ B − 1. Then the mutual coherence of
this matrix attains its maximum, i.e., µ(A) = 1.



Proof. What is essential for the proof is the symmetry property of
associated Legendre polynomials [25],[26, Eq. 47] stated as follows

P−kl (cos θ) = (−1)kClkP
k
l (cos θ) (16)

where Clk = (l−k)!
(l+k)!

. For the case of spherical harmonics, this im-
plies that

Y−kl (θ, φ) = (−1)kYk
l (θ, φ) = (−1)kYk

l (θ, φ)e−j2kφ.

Now if 2kφi ≡ 2kφj mod 2π for all i, j ∈ [m], then e−j2kφi =
e−j2kφj , and hence:

Y−kl (θ,φ) = CkYk
l (θ,φ)

for some constant Ck. This means that there are two columns of the
matrix, corresponding to these two basis functions, totally coherent
with each other and therefore yielding the coherence equal to one.

Remark 4. The previous theorem precludes some familiar sampling
patterns. For example, if the number of samples are odd and smaller
than 2B − 1 for the equiangular sampling pattern on azimuth, φp =
2π(p−1)
m−1

for p ∈ [m], then one will get a matrix of full coherence
with columns corresponding to k = m−1

2
being totally coherent.

Finding the optimal sequence on θp, φp, p ∈ [m] is difficult
since we have two independent variables in a non-convex function.
As it can be seen from the above theorem, the coherence is more
sensitive to choice of φp. In this article, instead of looking for both
θp, φp, p ∈ [m], the choice of φp, p ∈ [m] is optimized given a
fixed pattern on θp, p ∈ [m], for example, the class of equispaced
and symmetric samples namely θp = arccos( 2p−m−1

m−1
), p ∈ [m].

This class of sampling patterns is easy to implement since it gives
equispace property on the interval [−1, 1]. The following theorem
provides a lower bound on the coherence of this specific matrix.

Theorem 5 (Lower bound of a coherence of a matrix from spher-
ical harmonics). For symmetric and equispaced sampling patterns
with cos θp = 2p−m−1

m−1
, p ∈ [m], the coherence of corresponding

sensing matrix from spherical harmonics is lower bounded by

µ(A) ≥
∣∣∣∣ m∑
p=1

P̂B−1(cos θp)P̂B−3(cos θp)

∣∣∣∣ (17)

where P̂l(cos θ) is the Legendre polynomial of degree l ∈ {0, . . . , B−
1} which is normalized with its `2-norm.

Proof. Let us first write the coherence of a matrix which is sampled
from spherical harmonics and write the lower bound as follows:

µ(A) = max
q 6=r

∣∣∣∣ m∑
p=1

Yk(q)

l(q)
(θp, φp)Yk(r)

l(r)
(θp, φp)

‖Yk(q)

l(q)
(θ, φ)‖2‖Yk(r)

l(r)
(θ, φ)‖2

∣∣∣∣
≥ max

l(q) 6=l(r)
k(r)=k(q)

∣∣∣∣∑m
p=1 P

k(q)

l(q)
(cos θp)P

k(r)

l(r)
(cos θp)

∣∣∣∣
‖P k(q)

l(q)
(cos θ)‖2‖P k

(r)

l(r)
(cos θ)‖2

≥ max
l(q) 6=l(r)

k(r)=k(q)=0

∣∣∣∣∑m
p=1 Pl(q)(cos θp)Pl(r)(cos θp)

∣∣∣∣
‖Pl(q)(cos θ)‖2‖Pl(r)(cos θ)‖2

≥
∣∣∣∣ m∑
p=1

P̂B−1(cos θp)P̂B−3(cos θp)

∣∣∣∣.

(18)

Note that by choosing k(r) = k(q) = 0, the associated Legen-
dre polynomials become Legendre polynomials. Moreover if l(q)

and l(r) are not both even or odd simultaneously, the corresponding

sum
∣∣∣∣∑m

p=1 Pl(q)(cos θp)Pl(r)(cos θp)

∣∣∣∣ is zero. This is because the

product of Legendre polynomials would be an odd function summed
over points symmetric around the origin. Therefore the choice of
two consecutive maximum degree l1 = B− 2 and l2 = B− 1 leads
to zero and instead l1 = B − 3 and l2 = B − 1 are chosen.

Using a more demanding and complex proof, it can be shown
that the last inequality in (18) is an equality if the number of mea-
surements m are large enough. The proof is lengthy and is not pre-
sented here. It utilizes the following characterization of Legendre
polynomials assuming l2 > l1 :

Pl1(cos θp)Pl2(cos θp) =

l2+l1∑
l̂=l2−l1

ηl̂(l1, l2)Pl̂(cos θp) (19)

where ηl̂(l1, l2) = (2l̂ + 1)

(
l1 l2 l̂
0 0 0

)2

and
(
l1 l2 l̂
0 0 0

)
is

Wigner 3j-symbols. In this way, the inner products are represented
as a linear combination of Pl̂(cos θp). For this choice of θp and
regardless of the design for φp, the mutual coherence is absolutely
lower bounded by choosing l1 = B − 3 and l2 = B − 1 which
leads to a good lower bound as shown in the next section. In other
words, the lower bound acts as a benchmark to see if φp’s are chosen
properly. The azimuth angle φp affects the coherence only through
the exponential functions ejkφp . The goal is to choose those φp so
that the maximum inner product is minimized. We will discuss a
numerical approach to this problem in the next section.

4. NUMERICAL EXAMPLE

In this section, we will compare the coherence of sensing matrices
from bandlimited spherical harmonics with B = 7 that are sampled
by several well known sampling patterns on the sphere, for exam-
ple spiral [27], Hammersley [28], Fibonacci [29], equiangular sam-
pling, and our proposed sampling pattern with equispaced property
on cos θ. In this numerical experiment, two equispaced samples on
cos θ will be used, namely cos θp = 2p−m−1

m−1
, p ∈ [m] which is

defined as sampling 1 and cos θp = 2p
m
, p ∈ [−m−1

2
, . . . , m−1

2
] as

sampling 2, where m is odd for all sampling patterns. The pattern
search algorithm [30] is used to find the vector φ ∈ Rm in (15) given
the vector θ ∈ Rm. The method is described in Algorithm 1. The

Algorithm 1 Pattern search
Initialization : θ,φ0 ∈ Rm as initial points , ∆0 > 0 as initial step size ,
standard basis ei for i ∈ [m] , λ ∈ (0, 1)
for k = 0, 1, . . . until halting criterion do

if µ(θ,x) < µ(θ,φk) for x ∈ Sk := {φk ±∆kei} then
φk+1 = x mod 2π
∆k+1 = ∆k

else
φk+1 = φk mod 2π
∆k+1 = λ∆k

end if
end for

algorithm starts by choosing uniformly random sampling on the in-
terval φ ∈ [0, 2π). Pattern search method tries to find the minimum
coherence and its minimizer by checking the neighboring vectors



where the step size is given as ∆ for every iteration. If the search
is failed, then the step size is decreased by scaling with λ. The al-
gorithm stops when the number of iteration is achieved or when the
difference between the solution coherence and lower bound from the
product of Legendre polynomials is small |µk − µLB | ≤ ε. In gen-
eral, this algorithm is heuristic and there is no guarantee that the
solution will converge to the global optimum even though there is a
discussion on the convergence of this algorithm, for example in [30].
However, as it can be seen numerically from Fig.1, the algorithm 1
could find a sequence φp ∈ [0, 2π) , p ∈ [m] achieving the Legendre
bound of sampling 1 as discussed in Theorem 5. Hence, it shows the
tightness of the Legendre bound for l1 = B − 3 and l2 = B − 1.
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Fig. 1. Coherence of different sampling pattern

By using sampling 2, the coherence could be improved in gen-
eral. However the lower bound becomes loose as it moves below
the Welch bound, as numerically shown in Fig.1. Nevertheless, the
lower bound is achieved for the number of sample m = 9. This
construction avoids placing sampling points on the poles since the
maximum of Legendre polynomials occurs on the poles (θ = π and
θ = 0). By avoiding these points, the coherence of the sensing ma-
trix can be reduced. Furthermore, it shows that well known sampling
patterns on the sphere, i.e spiral, Fibonacci and Hammersley points,
do not tend to have lower coherence when the number of samples are
increased. Therefore, those sampling patterns are not suitable to be
used for designing sensing matrices. Additionally, the equiangular
sampling gives the worst results as discussed in Remark 4.

Fig. 2. Computation time of algorithm 1 for sampling 1

It is interesting to observe the computation time of the algorithm
1 in order to find azimuth angle φ ∈ Rm that could achieve the Leg-
endre bound. In order to address this question, the computation time
of Algorithm 1 for sampling 1 is given in Fig.2. In this figure, the nu-
merical experiments forN = 49 andN = 100 are investigated with
an error tolerance of |µk − µLB | ≤ ε = 10−4. When we double the

dimension of the signal, it is apparent that the computation time to
achieve the same error tolerance would increase approximately five-
fold. However, as already discussed for sampling 2, it is difficult to
achieve the Legendre bound and its computation time is longer than
that of sampling 1.

4.1. Sparse recovery performance

In this section, the sensing matrices constructed from several sam-
pling patterns are examined to recover sparse signal. The l1-norm
minimization package YALL1[31] is used to evaluate the phase tran-
sition diagrams with 50 trials, bandlimited degree B = 7 and N =
B2 = 49. Figure 3 presents the phase transition diagram of all
sampling patterns. It can be seen that our proposed sampling pat-
tern, namely equispaced and symmetric on the elevation gives better
recovery performance compared to other sampling patterns. In con-
trast, equiangular sampling has the worst performance in terms of
sparse recovery due to the coherence properties as discussed in The-
orem 3.
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Fig. 3. Phase transition of different sampling pattern

5. CONCLUSION AND FUTURE WORKS

In this work, the coherence-based analysis of sensing matrices from
spherical harmonics is discussed. It is shown in Theorem 3 that the
equiangular sampling is not suitable to design a sensing matrix for
sparse recovery. Using equispaced sampling pattern on cos θ, the
lower bound of coherence could be obtained, which consists of the
product two Legendre polynomials of different degrees. The de-
gree should be chosen in such a way that the product of the Leg-
endre polynomials is an even function. Numerically, for equispaced
sampling on cos θ, it is possible to find a vector of azimuth angles
φ ∈ Rm that could achieve the lower bound. This can be accom-
plished by implementing a simple pattern search algorithm. In fu-
ture works, the framework will be extended to Wigner-D basis ex-
pansions and the theoretical background for the choice on φ will be
addressed.



6. REFERENCES

[1] Afonso S Bandeira, Edgar Dobriban, Dustin G Mixon, and
William F Sawin, “Certifying the restricted isometry property
is hard,” IEEE Transactions on Information Theory, vol. 59,
no. 6, pp. 3448–3450, 2013.

[2] Andreas M Tillmann and Marc E Pfetsch, “The computational
complexity of the restricted isometry property, the nullspace
property, and related concepts in compressed sensing,” IEEE
Transactions on Information Theory, vol. 60, no. 2, pp. 1248–
1259, 2014.

[3] A. Mazumdar and A. Barg, “General constructions of deter-
ministic (Statistical) RIP matrices for compressive sampling,”
in 2011 IEEE International Symposium on Information Theory
Proceedings, July 2011, pp. 678–682.

[4] Philippe Delsarte, Jean-Marie Goethals, and Johan Jacob Sei-
del, “Spherical codes and designs,” Geometriae Dedicata, vol.
6, no. 3, pp. 363–388, 1977.

[5] Henning Zörlein and Martin Bossert, “Coherence optimization
and best complex antipodal spherical codes,” IEEE Transac-
tions on Signal Processing, vol. 63, no. 24, pp. 6606–6615,
2015.

[6] Thomas Strohmer and Robert W Heath, “Grassmannian frames
with applications to coding and communication,” Applied and
computational harmonic analysis, vol. 14, no. 3, pp. 257–275,
2003.

[7] David J Love, Robert W Heath, and Thomas Strohmer,
“Grassmannian beamforming for multiple-input multiple-
output wireless systems,” IEEE Transactions on Information
Theory, vol. 49, no. 10, pp. 2735–2747, 2003.

[8] Yonina C Eldar and G David Forney, “Optimal tight frames and
quantum measurement,” IEEE Transactions on Information
Theory, vol. 48, no. 3, pp. 599–610, 2002.

[9] Andrew J Scott, “Tight informationally complete quantum
measurements,” Journal of Physics A: Mathematical and Gen-
eral, vol. 39, no. 43, pp. 13507, 2006.

[10] Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney,
and David P Woodruff, “Fast approximation of matrix coher-
ence and statistical leverage,” Journal of Machine Learning
Research, vol. 13, no. Dec, pp. 3475–3506, 2012.

[11] Mehryar Mohri and Ameet Talwalkar, “Can matrix coherence
be efficiently and accurately estimated?,” in Proceedings of the
Fourteenth International Conference on Artificial Intelligence
and Statistics, 2011, pp. 534–542.

[12] Michael Elad, “Optimized projections for compressed sens-
ing,” IEEE Transactions on Signal Processing, vol. 55, no. 12,
pp. 5695–5702, 2007.

[13] Cristian Rusu and Nuria González-Prelcic, “Designing inco-
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