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ABSTRACT

In this work, we investigate adaptive learning techniques in hybrid
Petri nets (HPNs) that can model biological systems. In partic-
ular, based on a state space formulation we develop a decision-
aided adaptive gradient descent (DAAGD) algorithm capable of
cost-effectively estimating the parameters used in an HPN model.
Contrary to standard gradient descent techniques, the DAAGD algo-
rithm does not require prior knowledge, i.e., information about the
discrete transitions’ firing instants. Simulations of a gene regulatory
network assess the performance of the proposed DAAGD algorithm
against standard gradient descent algorithms with full, imperfect and
no prior knowledge.

Index Terms— Bioinformatics and genomics, statistical learn-
ing, machine learning and pattern recognition, detection and estima-
tion theory, adaptive signal processing

1. INTRODUCTION

Petri nets (PNs) play an important role in modeling methods for sys-
tems biology [1]. Among other benefits they have the advantage of
providing a precise mathematical description of a system while still
being illustrative. Besides various medical and biological [2], [3] as
well as industrial [4] and smart home [5] applications, hybrid Petri
net (HPN) models have been developed to represent gene regulatory
networks [6] and biopathways [7].

Knowing about PNs’ modeling capabilities, the need for param-
eter estimation techniques arises, in particular those which can iden-
tify a network’s structure [8]. Previous work on parameter estimation
has made use of different metaheuristics such as simulated anneal-
ing, genetic algorithms and evolutionary programming [8]. Attempts
to improve the computational efficiency were made by decompos-
ing a model into smaller parts and estimating their parameters sep-
arately [9]. Furthermore, [10] adapts a data assimilation approach
using particle filtering to approximate the Bayes estimators.

Especially for medical applications, the proposition of learning
HPNs is very promising due to its white box modeling concept.
Classical machine learning concepts such as neural networks are
black box models and, therefore, not very predictable and reliable
in this field. Yet, there is a strong need for clinical decision sup-
port systems [11], [12], [13], [14], [15]. Our approach can target
two possible use cases: (i) individual medicine with reliable models
of patient-adapted pathophysiological processes and (ii) drug design
with models of in vitro experiments.

Contribution: The system model considered in this work espe-
cially aims at investigating the possibilities of combining determinis-
tic and stochastic PN models. The rationale is that knowledge about
a disease process can be modeled using deterministic PNs. Simul-
taneously, there are many complex and unknown processes occur-
ring in the human body that could be modeled stochastically. Thus,
the interaction between these two parts becomes a research topic of
potential for investigation. We present a system model which com-
bines the deterministic and the stochastic part of a PN with an inter-
connecting PN (IPN). We propose a decision-aided adaptive gradi-
ent descent (DAAGD) algorithm for learning the IPN’s arc weights
from (noisy) data of measured markings based on the mean squared
error (MSE) criterion. A case where the discrete transitions’ firing
instants are given and a second case with no such prior knowledge
are distinguished.

This paper is structured as follows: In Section 2, we present
the system model and the problem definition. On the basis of the
state space formulation from Section 3, a standard gradient descent
approach is established in Section 4. A learning scheme for more
general cases is developed by introducing the DAAGD algorithm in
Section 5. Simulations of an exemplary HPN model are carried out
and presented in Section 6. Finally, Section 7 concludes the paper.

2. SYSTEM MODEL

The considered HPN model is depicted in Fig. 1. It consists of
three separate parts, a stochastic Petri net (SPN), a continuous Petri
net (CPN) and the IPN representing the interaction between both
parts. We denote the total number of SPN places and transitions
as PS and T, respectively, SPN places as p?, . . ., pf;s and SPN
transitions as Tis e ,Tffs. For CPN and IPN (only transitions), an
analogous notation holds using the superscripts C and Z instead of
S. The two subnets (SPN and CPN) are ordinary as known from
the literature, e.g., [16], whereas the IPN consists of transitions only.
While these are fully connected to all places in the two subnets in
general, essentially most of the connections have a weight equal to
zero.

To simplify the considerations, we assume the IPN to be pure,
i.e., no place in the HPN is both an input and output place for an
IPN transition (no self-loops). Furthermore, we assume that only
one discrete transition can fire per time instant. This is equivalent to
having a sufficiently high sampling rate.



Fig. 1. System model of the HPN under consideration

2.1. Problem Definition

The task is to find the unknown IPN transition arc weights based on
measured markings of all places over time for some realization of the
HPN. We assume that both subnets are known, i.e., their topology
and the transitions’ kinetics and rates are given.

3. STATE SPACE FORMULATION OF AN HPN

In this section, we first show how to discretize an HPN and then
formulate a state space representation of the discretized HPN.

3.1. Discretization of the Hybrid Petri Net

In a CPN, the marking m of a discrete place p¢ can be described by
the ordinary differential equation (ODE)

m(pc) =Z Postc(pc,Tc) . V(Tc) ,Z Prec(pC,Tc) . I/(Tc)
€erc TCere

= > wp, - w(r°), (1)

TCeT¢

with the CPN’s output and input applications Post® and Pre®, the
CPN transition arc weights wﬁT = Post®(p,7) — Pre€(p,7) =

. . . . C C
[ACLW as the entries of the incidence matrix A€ € RF *T,

the firing rate function V(TC) and the set of all continuous transi-
tions TC [16]. Writing (1) into vector notation yields m¢ = A€ .
V¢, where m¢ = {m(pf),...,m(pf)c)]T € RP and v° =
(), ..., v(15e)] " € R”°. To describe the HPN using a state
equation, we can discretize the CPN by converting the ODE into
discrete time steps. When doing so, we have to consider the discrete

step size At in the instantaneous firing speeds v€ = At - . Thus,
with the set of discrete time instants K = {1,2,..., K} we obtain
m{,, =m{ +A°.v{, keK

3.2. State Equation of the Hybrid Petri Net

For the stochastic transitions in the SPN and IPN, the next step is
not deterministic. For a determinized inspection (considering an ar-
bitrary but fixed network realization) we introduce the control vector
u [17]. Each element represents one transition of the HPN, thus u =
[u(), . u(rss), ulrS), . u(rle ), u(rl), - . ulrEe)] "
ug(7) € {0,1} specifies whether transition 7 fires at time instant
k. As this fully describes the change between two time instants, the
instantaneous firing speeds of the stochastic transitions v and v
can be set to 1 V k, respectively. For completeness, we state that
the definition of v§ remains unchanged while u{ = 1 V& since the
CPN’s transitions fire continuously.
To extend the notation to the whole HPN, we define
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and u analogously to v as well as the notation A(’,Yk = diag(vyy).
Using the control vector notation to extend m$ 41 accordingly yields
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In case that the time instants of the firings are unknown, we
have to adopt a different point of view. Calculating the true value
of the next marking is not possible as we deal with a random pro-
cess. However, the time until the next firing of an enabled stochas-
tic transition is a random variable with exponential distribution [16]
and we can therefore evaluate the probability that a transition fires
before the next time instant. Consequently, we could adapt the nota-
tion and incorporate these probabilities in the speed vectors v and
v whereas the definition of v§ remained unchanged. Meanwhile,
uk(7) € {0, 1} would specify whether the transition 7 is enabled at
time instant k for both stochastic and continuous transitions.

Using the stated changes in the variable definitions, the proba-
bilistic state equation takes the same form as its determinized coun-
terpart (2). It is crucial to mention that in this case, however, not
only the incidence matrix A% but also the IPN’s speed and control
vectors depend on the weights.

4. ADAPTIVE LEARNING APPROACH

In this section, we propose an adaptive learning approach to find
the IPN arc weights which are contained in A7 [18]. We assume
to have access to the markings’ measurements influenced by the ad-
ditive white Gaussian noise (AWGN) i, ~ N(0, X), n, € R”,
k € Kaccording to my = my + 7.

4.1. Formulation of an Objective Function

When estimating the weights, we aim to minimize the difference be-
tween the measured markings m and the model prediction 1. In the
literature, a common way of achieving this is via gradient-based and



least-squares approaches [8]. As the objective function, we therefore
consider the MSE which is defined as

K
1 —
MSE = — E MSE 3
K £ ks ( )

where we employ the instantaneous MSE estimate that equals the
MSE observed at time instant k

— 1 . _ . ~
MSEj = - (thy — my)" - (g — my), “)
with the model prediction
fy, = w1+ A% ATS u AL AT cui (9)

similar to the expression in (2) and Af_l as the estimate of AT at
time instant k — 1.

4.2. Determinized Hybrid Petri Net Approach

To apply an adaptive learning approach, we calculate the instanta-
neous gradient of the objective function

IQE 2 ~ ~ z T z
Vaz MSE. = 5 (i, — my) - (uk—l) RN ()
We can therefore update the weights’ estimates according to
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D
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where the convergence factor of the adaptive algorithm is y = p’- %.

The intuitive interpretation of the result is as follows. If there is
no IPN firing, the weights do not affect this time instant and are thus
not updated. This is incorporated by the multiplication with the con-
trol vector uZ. However, if there is an IPN firing, the prediction for
the next step is distorted exactly by the weights’ error. Thus, we up-
date the weights’ estimates by the difference between the prediction
and the observed marking, i.e., (1 — My).

4.3. Probabilistic Hybrid Petri Net Approach

The drawback of the approach presented above is the requirement
to know the control vector at all instants of time. We could think
about deriving a similar approach using the probabilistic state equa-
tion which does not require this knowledge. Since the IPN’s speed
and control vectors depend on the weights in that case, the gradient
takes a different form than in (6). Additionally, calculating these vec-
tors involves the unit step function # which is non-smooth. A smooth
approximation of 6 can be deployed but as we will see in Section 6,
the approach using approximations is not successful. That is why
the need for a new learning technique arises.

5. DECISION-AIDED ADAPTIVE GRADIENT DESCENT

One of the major insights of Section 4 is the fact that learning only
occurs when an IPN transition fires because their effect can only then
be observed which is why these instants are crucial to any learning
approach. This inspires a new algorithm that is capable of learning
the weights without prior knowledge, i.e., given knowledge of the
IPN firing times. The key idea is to estimate the control vector, i.e.,
to detect the firing of discrete transitions from the measured data
samples at every time instant instead of taking it as given. Subse-
quently, the gradient descent approach is applied.

5.1. Maximum Likelihood Estimation of Firings

. . . ~ D
At every time instant k we find an estimate 4, € U = {0,1}7

of the control vector with the number of discrete transitions 77 =
78 + 1% given the observed markings mj and my_; using the
maximum likelihood estimator (MLE)
ST Pr (| ST
0,7, = argmax Pr (my|mye_1,u;;
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where we use the notations Amy_1 = Mg — Mp_1 — Ar’hg,l,
- 0 < AS
Ami—1 = |: AC } vAS,H 'Ug_1 andAf’_Il = {"’0’”3 %—1 }
as well as 6%, = [(ﬁf,l)T (ﬁf,l)T]T. The well-known distri-
bution of the AWGN is used for the transformations in (8).

5.2. Event-Triggered Firing Detection

The MLE in (8) essentially depends on a good estimate of the inci-
dence matrix. While AS is given, the structure of the IPN is initially
unknown and only discovered during the process. Hence, the MLE
allows a learning approach that works generally but requires assis-
tance at specific time instants, i.e., the instants where a previously
undiscovered IPN transition fires.

To resolve this, an approach resembling event-triggered control
can be deployed. With event-triggered control, actuator values are
updated only when a triggering condition is satisfied instead of peri-
odically [19]. Here, a new IPN transition will be initialized at each
triggering time. These time instants are determined by monitoring a
triggering condition that is fulfilled when the prediction’s MSE ex-
ceeds some threshold MSEqy,, i.e.,

T (hy — my) > P - MSEy,, 9)

with the prediction rhy = my_1 + Ak_l - Ay, _, - Gr_1, where

(thy, — my)

v and v are setto 1, iy and @iF are computed together according
to (8) while v§ is the vector of instantaneous firing speeds and uy =
1 as usual. The rationale is that if an undiscovered IPN transition
fires, the MLE cannot detect it and the prediction error is expected
to be particularly large.

5.3. Proposed DAAGD Algorithm

The previously introduced tools are incorporated in the following al-
gorithm. We initialize the number of IPN transitions 7% to be zero
and start iterating through the time instants k¥ € K calculating the
MLE of the control vector for each k. If the triggering condition (9)
is met, T'7 is increased by one and a new IPN transition is initialized.
This is done by a learning step according to the standard gradient de-
scent approach from (7) with o = 1, the reason being that this is the
best possible estimate maximizing the MLE’s chances of recogniz-
ing the transition upon its next firing. In case of no triggering, a
normal learning step is performed. A pseudo-code of the DAAGD
algorithm can be found in Algorithm 1.



Algorithm 1 Decision-Aided Adaptive Gradient Descent
T +0

1:

2: forall k € K do

3: Calculate maximum likelihood estimate Gi;—1 using (8)
4.  Estimate next marking hy, = my_1 + Ak,1 Ay, cOp—1
5. if Error>Threshold according to (9) then

6: TT T 4+1

7 Initialize new IPN transition using (7) with ¢ =1

8. else

9: Perform learning step using (7)

10  end if

11: end for
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Fig. 2. A (simplified) HPN model of a gene regulatory network of
a circadian clock mechanism from [1]. Originally with the dashed
arrows, the modification replaces these by the parts marked in blue.

6. SIMULATION RESULTS

To validate the DAAGD algorithm and to put it into context, we
adopt a (simplified) model of a gene regulatory network of a circa-
dian clock mechanism from [1] depicted in Fig. 2. It can be separated
into a continuous and a stochastic part interconnected by stochastic
transitions. Thus, the considered system model shown in Fig. 1 is
capable of representing this network in general. However, it makes
use of read arcs contradicting the restriction of a pure IPN from Sec-
tion 2. Based on the property that all impure PNs can be converted
into pure PNs [16], we propose a modification of the network that
leaves the model behavior unchanged while moving the read arc con-
nected transitions from the IPN into the respective subnets where the
restriction does not apply (see Fig. 2).

To verify and compare the different approaches, we carried out
numerical simulations of 100 realizations of the exemplary HPN
model from Fig. 2 and applied the standard gradient descent ap-
proach with full knowledge (GDFK), imperfect knowledge (GDIK)
and no knowledge (GDNK) of the firing times as well as the DAAGD
algorithm to estimate the arc weights. Note that the GDNK uses the
probabilistic state equation. Fig. 3 shows the resulting MSE of the
learning schemes. We chose a convergence factor of 1 = 0.3 and
a bit error rate of uggr = 10~ for the imperfect prior knowledge.
The respective noise powers and threshold values are given in the
captions. To achieve the depicted figures, at each time instant the
resulting curves were averaged over all transitions according to

MSE;, =

ot (RERY), (10)
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Fig. 3. MSE for the learning schemes under different parameters.

with Ry = Af — AZ and subsequently the average over all realiza-
tions was computed. Special care has to be taken when the DAAGD
algorithm’s number of detected IPN transitions T, is incorrect, i.e.,
szet #* T, In this case, we compare each detected transition 7qet to
the transition that truly fired in the initialization time instant of Tqet.
If there was no firing, we compare it to 0. It is worth noting that the
starting point of the curves in Fig. 3 is the MSE at initialization. Be-
fore averaging, the curves are synchronized for all transitions such
that k = 0 always corresponds to the time instant of the respective
transition’s first firing, which allows comparison of different realiza-
tions. Furthermore, in order to make it a fair comparison, the stan-
dard gradient descent approaches are modified to use ¢+ = 1 in the
first learning step of each transition just like the DAAGD algorithm.

We can observe that the GDNK fails to provide any informa-
tion about the weights and even increases the error while the GDFK
yields errors in the order of magnitude of 1072 to 10~%. When only
imperfect knowledge is present, we can see similar learning behavior
at a higher error level. It is clear that the DAAGD algorithm yields
the same estimates as the GDFK if the MLE identifies all control
vectors correctly. This is confirmed in Fig. 3a, where their perfor-
mance is almost the same. For an increased noise level, MSE;};, has
to be adapted to ensure that T'Z., will be correct. Fig. 3b shows that
in this case the learning rate is slower because the IPN transitions are
not necessarily detected immediately at the first firing, however, the
MSE still converges to the same level as for the GDFK.

7. CONCLUSION

We have derived an adaptive gradient descent approach for learning
parameters of an HPN model based on a state space description of
the HPN. Aided by a decision mechanism, the DAAGD algorithm
allows learning of parameters in HPNs where no knowledge about
the firing times is available. Simulations showed that the approaches
are capable of identifying parameters in a gene regulatory network.
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