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Abstract—Deep learning based on Artificial Neural Networks
(ANNs) has achieved great successes over the last years. However,
gaining insight into the fundamentals and explaining their
functionality is an open research area of high interest. In this
paper, we use an information theoretic approach to reveal typical
learning patterns of ANNs. For this purpose the training samples,
the true labels, and the estimated labels are considered as
random variables. Then, the mutual information and conditional
entropy between these variables are studied. We show that the
learning process of ANNs consists of essentially two phases.
First, the network learns mostly about the input samples without
significant improvement in the accuracy, thereafter the correct
class allocation becomes more pronounced. This is based on
investigating the conditional entropy of the estimated class label
given the true one in the course of training. We next derive
bounds on the conditional entropy as a function of the error
probability, which provide interesting insights into the learning
behavior of ANNs. Theoretical investigations are accompanied
by extensive numerical studies on an artificial data set as well
as the MNIST and CIFAR benchmark data using the widely
known networks LeNet-5 and DenseNet. Amazingly, in all cases
the bounds are nearly attained in later stages of the training
phase, which allows for an analytical measure of the training
status of an ANN.

Index Terms—Neural networks, Fano’s inequality, machine
learning

I. INTRODUCTION

Multi-layer ANNs and deep learning algorithms have
achieved amazing success in a variety of tasks, which were
previously deemed to be notoriously difficult. To name a
few among many, we mention large scale pattern recognition
[1], speech analysis [2] and reinforcement learning as in the
AlphaGo challenge [3]. Ignited by their success in practical
tasks, many attempts have been made during recent years
to develop a satisfactory theory for learning of ANNs and
in particular for the effectiveness of gradient-based back-
propagation training.

Among many existing works, the information bottleneck
approach of [4] sparked researchers’ interest in information
theoretic quantities to explain learning of ANNs. Based on
the information bottleneck method [5], multi-layer ANNs were
considered as a Markov chain of random variables representing
the input, the output and the hidden layers. The mutual
information between the hidden layers, the input and the
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output are studied during training and it is shown that they
reside close to the information bottleneck curve. Additionally
it is observed that a compression phase happens at later stages
of training for deep neural networks with a sigmoid activation
function. This work gave rise to an ongoing discussion about
the claims of the paper [6], [7]. Despite these discussions,
it seems that the asymptotic behavior of mutual information
for the hidden layers is correctly described by an information
theoretic method.

Applying information theoretic methods for learning ex-
tends to recent works where the generalization error of
learning algorithms is studied. The framework was initially
introduced in [8] to deal with the selection bias of learning
algorithms. In that work, it is shown that the generalization
error can be upper bounded by the mutual information between
the training dataset and the output of the learning algorithm.
The framework was extended later in [9], and further in [10]
to provide a more tight upper bound using generic chaining
techniques.

In the present paper, we adopt an information theoretic
view to understand the learning process in ANNs. The main
metrics to assess the learning progress will be information
theoretic quantities like mutual information and conditional
entropy. In particular, we investigate how much information
about the training samples and true labels is contained in the
output of the ANN during the training process. One interesting
conclusion can be drawn from observing the information
content of the output labels. The learning of ANNs appears to
progress in two distinct phases. In the early stage of training,
the output labels obtain mostly information about the training
samples and they learn about the true labels mainly in later
stages of training. This finding suggests that the learning is
divided into a predominantly non-discriminative stage where
the output learns mostly about the input samples, followed by
a predominantly discriminative stage in which the true labels
are learned.

Moreover, from Fano’s inequality we derive an upper bound
on the conditional entropy of the estimated labels given the
true ones in terms of the error probability. If the learning
process is set up properly, then we observe experimentally
that the conditional entropy approaches the upper bound in
later stages of the learning process.

The paper is organized as follows. In Section II, the in-
formation theoretic framework for learning is introduced. The



relation between the expected error of a learning algorithm
and conditional entropy is discussed in Section III. Extensive
numerical experiments are conducted in Section IV. Besides
a Fully Connected Neural Network (FCNN) on an artificial
dataset, we apply widely known ANNs, namely LeNet-5 and
DenseNet to the benchmark data MNIST and CIFAR, in order
to verify our hypotheses on learning behavior.

A. Notation

Vectors are denoted by bold characters x,y and matrices
by capitals A,B. Random variables and vectors are denoted
by X,Y and bold symbols X,Y respectively.

II. INFORMATION THEORETIC LEARNING

Before setting up the formulation of the learning problem,
we introduce some well known concepts from information
theory. The central notion of information theory is entropy. For
a discrete random variable1 X supported by some countable
set X , the Shannon entropy of X is denoted by H(X) and it
is given by

H(X) = −
∑
x∈X

P(x) logP(x) = E(log
1

P(X)
),

where P(x) is the probability mass function. One can equally
define the conditional entropy H(X|Y ) for two discrete ran-
dom variables X and Y as

H(X|Y ) = E(log
1

P(X|Y )
).

The mutual information between X and Y is given by

I(X;Y ) = H(X)−H(X|Y ).

The operational meaning of these notions will be interpreted
in the next section.

A. A Model for Learning of Artificial Neural Networks

Once the number of layers, neurons and the choice of non-
linearities are fixed, ANNs can be characterized by the set of
weights (W1, . . . ,WL) and biases (b1, . . . ,bL). At layer l,
the input-output relation is given by

Tl = σl(WlTl−1 + bl),

where σl(·) is the so called activation function at layer l. The
output y is generated by feeding forward input x ∈ Rp through
the layers. This relation is simply denoted by y = gθ(x)
with θ ∈ Θ including all design parameters, i.e., weights
and biases. We consider classification networks in this work
with input given as a vector x ∈ Rp and output label
y ∈ {0, . . . ,K − 1}.

We assume that future input to an ANN gθ(·) is modeled
by a random variable X ∈ Rp with corresponding class label
Y ∈ {0, . . . ,K−1}. Y may be function of X as Y = g(X) or
may be subject to additional random effects. The distribution
of X is normally unknown and because of the large state space
barely estimable. For a fixed parameter θ, the decision of an

1Throughout the paper, random variables are assumed to be discrete.

Fig. 1. Multi-layer neural networks with the correct label Y and the
approximate label Ŷ

ANN about the class label of the input X is given by Ŷ =
gθ(X), a random variable itself. Of course it may happen that
Ŷ 6= Y .

In the training phase of a classification network a large
sample of n independent observations

S = {(x1, y1), . . . , (xn, yn)}

is drawn from (X, Y ) as a realization of i.i.d. random variables
(xi, yi), i = 1, . . . , n with the same distribution as (X, Y ).

Within the framework of statistical learning theory [11],
[12], the pairs (x, y) belong to the instance space Z =
Rp × {0, . . . ,K − 1}. The hypothesis space H is defined for
ANNs as the set of functions {gθ : θ ∈ Θ} that can be used
for classification and are parameterized by θ. The goal is to
determine θ such that the training error is minimized and a
good generalization holds. The following

R̂(gθ) =
1

n

n∑
i=1

1(gθ(xi) 6= yi) =
1

n

n∑
i=1

1(ŷi 6= yi),

is called empirical risk in statistical learning theory. The goal
of training is to minimize the empirical risk by determining

θ∗ = arg min
θ∈Θ

R̂(gθ).

The Empirical Risk Minimization (ERM) does not require any
assumption about the distribution of the instance space. There
are two errors that are particularly important in learning, the
expected error and the generalization error. The expected error
of an ANN is defined as

R(gθ) = P(gθ(X) 6= Y ) = P(Ŷ 6= Y ).

This is also called the risk of gθ. When the trained ANN
is tested by random inputs, the risk measures how well the
network performs on the unseen data. It might happen that
the trained network overfits, that is, there is a certain function
in the hypothesis space that gives a very low training error but
a high risks. To account for this issue, the generalization error
of gθ should be considered, which is defined as the difference
between the empirical risk and the expected error, namely

gen(gθ) = |R(gθ)− R̂(gθ)|.



The generalization error controls the difference between the
expected error and the training error. A well trained ANN
yields simultaneously a small generalization error and small
expected error. If the training set S is randomly generated,
the individual losses 1(Ŷi 6= Yi) are i.i.d. Bernoulli random
variables and therefore the generalization error can be studied
by controlling the deviation of the empirical risk R̂(gθ) from
its expectation which is the expected error R(gθ) = E(R̂(gθ)).

The study of the generalization error is a central topic
in statistical learning theory and there are many works on
bounding the generalization error in a probabilistic way as
a function of the number of samples n and certain measures
of complexity of the hypothesis space H, such as the Vapnik-
Chervonenkis (VC) dimension. In this work we focus mostly
on the expected error and we refer the interested readers
to the classic references [11]–[13]. It is worth mentioning
recent works where the generalization error is bounded using
the mutual information I(S;W ) between the training set S
considered as a random sample and a random variable W on
the hypothesis space H [9], [10], [14].

In this work we analyze the learning process of ANNs
by the information theoretic concept of mutual information
between the true and estimated class label I(Y ; Ŷ ). Mutual
information measures the amount of information that random
variables contain about each other. It describes the reduction in
the uncertainty of one random variable due to the knowledge
of the other. Hence, successful training of ANNs should result
in maximizing I(Y ; Ŷ ). We start to develop the corresponding
analytical framework. Since Ŷ = gθ(X) with a deterministic
function gθ it holds that

H(Ŷ |X) = H(gθ(X)|X) = 0.

Hence, the mutual information I(Y ; Ŷ ) can be written as

I(Y ; Ŷ ) = H(Ŷ )−H(Ŷ |Y )−H(Ŷ |X)

= I(X; Ŷ )−H(Ŷ |Y ).
(1)

When training an ANN one should observe with the course
of training epochs that the difference I(X; Ŷ ) − H(Ŷ |Y ) is
maximized by
• enlarging I(X; Ŷ ), the mutual information between input

and estimated label, and
• decreasing H(Ŷ |Y ), the conditional entropy of the esti-

mated label given the true label.
After training, the former has to be large, the latter, inter-

preted as the conditional uncertainty, has to be small in order
to maximize the difference.

We will observe how these quantities evolve during the
learning phase of ANNs. For this purpose I(X; Ŷ ) and
H(Ŷ |Y ) will be estimated during the training phase. The
estimation of information theoretic quantities will be discussed
later. To anticipate an extremely interesting observation, in
the training phase of the network first I(X; Ŷ ) and H(Ŷ |Y )
in (1) are rapidly increased in concert so that I(Y ; Ŷ ) in
(1) stays close to zero. In later phases I(X; Ŷ ) increases
only slowly while H(Ŷ |Y ) drops rapidly to a value close to

zero. This behavior is typical all investigated examples and
will be interpreted later. In the next section, we characterize
the relation between the expected error R(gθ) and other
information theoretic quantities.

III. BOUNDS ON THE EXPECTED ERROR

In this section, we investigate the relation between infor-
mation theoretic quantities in (1) and the expected error of
ANNs. There is no one-to-one correspondence as as may
be seen from the following example. If the output Ŷ of
an ANN is a permuted version of the correct labels Y , the
conditional entropy is zero, despite a bad training error. There
are many works connecting the expected error P(Y 6= Ŷ ) to
the conditional entropy H(Y |Ŷ ), for instance see [15]–[17]
and references therein. We start with the following result.

Proposition 1. For a neural network gθ, let Ŷ = gθ(X) be
the output and Y ∈ {0, . . . ,K − 1} the corresponding class
label. The conditional entropy is upper bounded by a function
of the expected error as

max{H(Y |Ŷ ), H(Ŷ |Y )} ≤ Ψ(R(gθ)), (2)

where the function Ψ(·) is defined as

Ψ(x) = x log(K − 1) + hb(x), x ∈ [0, 1]

with hb(x) = −x log(x)−(1−x) log(1−x) the binary entropy
function.

Proof. Follows from Fano’s inequality [18, Lemma 3.8].

This establishes formally that a small expected error implies
a small conditional entropy. The function Ψ(·) is strictly
increasing for x ∈ [0, 1 − 1

K ] and strictly decreasing other-
wise. Fano’s inequality is widely used in machine learning
to provide an implicit lower bound on the expected error
(for instance see [14] and references therein). In the context
of ANNs, Proposition 1 implies that the conditional entropy
H(Ŷ |Y ) cannot exceed Ψ(R(gθ)). In Section IV, we will
demonstrate experimentally that the points (R(gθ), H(Ŷ |Y ))
come very close to the curve (x,Ψ(x)) in later stages of the
training process.

The case that the true labels are deterministically given by
X is described by Y = g(X) for some function g. There
is zero error if gθ approximates g perfectly. Inequality (2)
implies that in this case H(Ŷ |Y ) = 0. In the remainder of this
section we suppose that the class labels are not a deterministic
function of the input X but that random errors may occur.
This corresponds to the case that the expert, who allocates
labels to input samples in the training set, makes mistakes from
time to time. The following model describes the situation. Let
Ỹ = g(X) be the true class label and

Y = (Ỹ +B) mod K, (3)

where B is an independent random variable taking values in
{0, . . . ,K − 1}. Proposition 1 provides a way to find a lower
bound on the minimum expected error.



Proposition 2. Consider the random variables (X, Y ) where
Y ∈ {0, . . . ,K − 1} is a corrupted version of true labels
Ỹ = g(X) according to (3). Then, the expected error R(gθ)
is lower bounded by

Φ(H(B)) ≤ R(gθ),

where Φ : [0, logK] → [0, 1 − 1
K ] is the inverse function of

Ψ(x) on [0, 1− 1
K ].

Proof. For independent noise B, we have

H(Y |Ŷ ) ≥ H(Y |Ŷ , Ỹ ) = H(B|Ŷ , Ỹ ) = H(B).

From Proposition 1 it follows that H(B) ≤ Ψ(R(gθ)).
Applying Φ(x), x ∈ [0, 1− 1

K ], completes the proof.

As a special case we consider that the noise B is governed
by the following distribution with parameter p ∈ [0, 1− 1

K ]:

P(B = i) =

{
1− p, i = 0
p

K−1 , i ∈ {1, . . . ,K − 1} . (4)

By distribution (4) the correct class label occurs with prob-
ability 1 − p, and any of the K − 1 labels occurs with
the same probability p

K−1 . The entropy of B is given by
hb(p)+p log(K−1) = Ψ(p). Therefore, Proposition 2 implies

R(gθ) ≥ Φ(Ψ(p)) = p.

Proposition 2 provides a lower bound on the expected error.
Nevertheless, as we discussed above, minimizing the expected
error of a learning algorithm amounts to maximizing the mu-
tual information I(Y ; Ŷ ). The following theorem formalizes
this intuition when the ANN is successfully trained for the
noise model in (4).

Theorem 1. Consider the system model of Proposition 2 with
uniformly distributed true labels Ỹ and the noise model (4). If
an ANN achieves the minimum expected error, i.e., R(gθ) = p
then the following holds

I(X; Ŷ ) = H(Ŷ ) = logK (5)

H(Ŷ |Y ) = Ψ(p) . (6)

I(Y ; Ŷ ) = logK −Ψ(p) (7)

Proof. The proof of Proposition 2 shows that

H(Y |Ŷ ) ≥ H(Y |Ŷ , Ỹ ) = H(B). (8)

On the other hand, since R(gθ) = p, from Proposition 1 we
have H(Y |Ŷ ) ≤ Ψ(p). Therefore H(Y |Ŷ ) = Ψ(p). Since
the random variable Ỹ corresponding to the true labels is uni-
formly distributed over {0, 1, . . . ,K−1}, the entropy H(Ỹ ) is
equal to logK. Hence, equality (7) follows, namely the mutual
information I(Y ; Ŷ ) writes as I(Y ; Ŷ ) = logK − Ψ(p). We
proof the other two equalities using the following lemma.

Lemma 1. If R(gθ) = p for the noise model (4) with p <
1− 1

K , it holds that

P(Ŷ = Ỹ ) = 1.

Proof. Note that P(Ŷ 6= Y ) = R(gθ) and let δ , P(Ŷ = Ỹ ).
For notational convenience we introduce Ỹ⊕i to denote (Ỹ+i)
mod K. Using the fact that the noise B is independent of other
random variables, we have

1− p = P(Ŷ = Y )

=

K−1∑
i=0

P(Ŷ = Y, Ŷ = Ỹ , B = i) + P(Ŷ = Y, Ŷ 6= Ỹ , B = i)

= P(Ŷ = Ỹ , B = 0) +

K−1∑
i=1

P(Ŷ = Y, Ŷ 6= Ỹ , B = i)

= P (B = 0)δ +

K−1∑
i=1

P(Ŷ = Ỹ ⊕ i, B = i)

= P (B = 0)δ +
p

K − 1

K−1∑
i=1

P(B = i)

= (1− p)δ +
p

K − 1
(1− δ).

Since p 6= 1− 1
K , we have δ = 1, i.e., P(Ŷ = Ỹ ) = 1.

The previous lemma implies that H(Ŷ ) = H(Ỹ ) = logK
and therefore (5) is proven. Finally, (6) follows from the other
two equalities.

The above propositions provide a way to lower bound the
best expected error by the conditional entropy. Interestingly,
our empirical studies show that these bounds are sharp, par-
ticularly Theorem 1 precisely predicts the mutual information
and the conditional entropy for a successful training.

IV. EXPERIMENTS

In this section, we empirically study the behavior of in-
formation theoretic quantities I(X; Ŷ ), I(Y ; Ŷ ) and H(Ŷ |Y )
during the training for different datasets and ANNs. The
first issue is to properly estimate these quantities. Since
I(X; Ŷ ) = H(Ŷ ), it is sufficient to obtain a good estimation
of the joint distribution of (Ŷ , Y ) ∈ {0, . . . ,K − 1}2 in
order to approximate the mutual information and conditional
entropies. A naive estimator directly computes the entropy
from the empirical distribution of N independent observations
of (Ŷ , Y ). It is shown in [19] that the approximation error
incurred by this method is of order K2/N . Hence, this
approach yields a good approximation if N � K2. This holds
particularly for our experiments where the number of classes
does not exceed 10 while the number of test examples are
much larger than 102. We use this method to estimate the
information theoretic quantities. When the number of classes
K is large, one can consider other methods such as [20], [21].

A. Experiment Setup

For our experiments, we use the following three datasets:
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Fig. 2. Information theoretic quantities during the learning process for scenario 1.
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Fig. 3. Information theoretic quantities during the learning process for
CIFAR-10 in scenario 1. These values are computed by averaging over 5
independent realizations of DenseNet.

• Spirals: The spirals dataset consists of two-dimensional
points belonging to one of three spirals shown in Figure
4. This corresponds to (X, Ỹ ) generated by

X =

(
√
a+ b) cos

(
2πa+ 2π

3 Ỹ
)

(
√
a+ b) sin

(
2πa+ 2π

3 Ỹ
) ,

where a ∈ [0, 1], b ∈ [0, 0.1] and Ỹ ∈ {0, 1, 2}
are independent uniformly distributed random variables.
Moreover, this dataset is divided into a training set of
50 000 samples and a test set of 2 000.

• MNIST: This is a well known dataset for handwritten
digit recognition [22]. It consists of 55 000 training im-
ages and 10 000 test images.

• CIFAR-10: This dataset consists of tiny RGB images
belonging to 10 categories [23]. It contains 50 000 images
for training and 10 000 for testing.
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Fig. 4. Multi-class spiral classification dataset with 3 classes, represented
using different colors.

A fully connected ANN with four hidden layers of five neurons
each, referred to as FCNN, is trained on the spirals dataset.
For the MNIST dataset LeNet-5 [24] is used. To train these
networks we let the learning rate γ ∈ R start at a given
γmax ∈ R and then decay by 40% per epoch until reaching
some given minimum learning rate γmin < γmax, that is
γ = max{γmax0.6bepochc, γmin}. For the CIFAR-10 dataset we
train a 100 layer DenseNet architecture as done in [25], but
we stop the training after 10 epochs instead of the original
300 used by the authors. We train FCNN and LeNet-5 using
various hidden layer activation functions, learning rates, and
mini-batch sizes. The different configurations used for these
experiments are summarized in Table I.



TABLE I
SIMULATION PARAMETERS

Dataset Activation Batch Size γmax γmin Test Acc.
tanh 128 10−1 10−2 99.7%

Spirals sigmoid 128 10−1 10−5 99.6%
ReLU 700 10−1 10−5 97.8%
tanh 128 10−2 10−2 97.1%

MNIST sigmoid 128 10−2 10−4 96.3%
ReLU 128 10−2 10−4 99.1%

CIFAR-10 ReLU 64 10−1 10−1 80.2%

B. Experiment Results

Based on the above setup, the ANNs are trained to learn the
noisy labels from the data. The true labels are corrupted by
independent additive noise as in (3) with the noise distribution
given in (4). We distinguish following scenarios:
• Scenario 1 (noiseless labels): This scenario corresponds

to the case where p = 0. In other words, the best expected
error is given by R(gθ) = 0.

• Scenario 2 (noisy labels): This is the general setting
where p ∈ (0, 1− 1

K ], thus R(gθ) ≥ p.
We are interested in studying the behavior of ANNs as they
learn classification tasks to perfection. More precisely, we
are only interested in studying those ANNs that managed to
achieve the best performance during the training. For FCNN
and LeNet-5 we only consider ANNs that achieved less than
0.05+p error on their corresponding test set, and assume that
they are correctly trained. For CIFAR-10, where Denset is only
trained for 10 epochs instead of 300, we assume that ANNs
with less than 0.2 + p test error are well trained. In Figure 2
the average behavior over 100 independent realizations of cor-
rectly trained ANNs during their learning process, for Scenario
1, is depicted. In these figures, a similar trend can be observed
regarding the evolution of the information theoretic quantities
during training. Regardless of the non-linearity and the dataset
used, we observe that the learning process consists of two
phases. The first phase occurs at the beginning of learning,
where I(X; Ŷ ) increases even at the expense of increasing
H(Ŷ |Y ). A possible explanation of this phenomenon is that,
at the beginning of training it is more important to improve
the information flow between X and Ŷ than learning about the
labels. In other words, learning about the input distribution is
more important at early stages of the learning process. Note
that learning about the distribution of X may be done in
an unsupervised manner since the labels Y are not needed
for this task. This behavior continues until a certain value
of I(X; Ŷ ) is reached, from that point onward the second
phase starts. In the spirals dataset the first learning phase
ends around I(X; Ŷ ) ≈ 1.25 for all used activation functions.
The same behavior holds true for the MNIST and CIFAR-10
(see Figure 3) datasets, where the second phase of learning
starts at I(X; Ŷ ) ≈ 3. From this result we may conjecture
the existence of a fundamental relation between the prediction
task and a typical value of I(X; Ŷ ) where the second learning
phase starts, which seems to be nearly independent of the
ANNs architecture. As said, the second phase of learning starts

when I(X; Ŷ ) is large enough. Then, minimizing H(Ŷ |Y )
plays a more significant role than maximizing I(X; Ŷ ). This
phase can be intuitively seen as the discriminative phase of
training, where ANNs learn to master the prediction task.
The behavior of I(X; Ŷ ), I(Y ; Ŷ ) and H(Ŷ |Y ) during the
learning process appears to be independent of the particular
activation function. Hence, in Scenario 2 we focus on tanh
for the spirals dataset, ReLU for the MNIST dataset, and
assume that similar results hold for other activation functions.
In Figure 5, the trajectory of information theoretic quantities
is observed when the probability p is changed in (4). We first
see that I(Y ; Ŷ ) and H(Ŷ |Y ) approach their corresponding
bounds given in (7) and (6) as the training goes on. This
supports the assumption that the models considered have in
fact learned correctly since the expected error achieves the
lower bound given by Fano’s inequality. Note that regardless of
p, the mutual information I(X; Ŷ ) approaches its maximum,
i.e., I(X; Ŷ ) = logK in all experiments as it was predicted in
(5). The first phase of learning ends at the value of I(X; Ŷ )
where H(Ŷ |Y ) reaches its maximum. This value of I(X; Ŷ )
where the first phase ends seems to increase with p in all
simulations. This supports the idea that the channel between
X and Ŷ should be good enough, that is I(X; Ŷ ) should be
above some threshold value before assigning the labels to data.
As the labels get more noisy, we need a better channel between
X and Ŷ in order to learn correctly. Proposition 1 gives an
upper bound on H(Ŷ |Y ) in terms of the expected error R(gθ),
thus a lower bound on I(Ŷ ;Y ). We assume that the test
error is a good estimate of R(gθ), thus we use it to compute
these bounds. Figure 6 shows that the pair (R(gθ), H(Ŷ |Y ))
approaches the dashed curve (x,Ψ(x)) for correctly trained
ANNs and various values of p in Scenario 2. The result
suggests that if ANNs are properly trained and the expected
error R(gθ) tends to p, the values of H(Ŷ |Y ) and I(Ŷ ;Y )
approach their corresponding bounds given in Proposition
1. When DenseNet is used for classification of the CIFAR
dataset, after only 10 epochs the pair (R(gθ), H(Ŷ |Y )) starts
to approach the curve even though the error is still far from the
lower bound p. This is an indication that the model is learning
correctly. Note that the model eventually reaches less than
6% test error after 300 epochs [25]. These experiments show
that observing the trajectory of conditional entropy H(Ŷ |Y ),
mutual information I(Ŷ ;Y ) and expected error R(gθ) can
serve as a method for verifying the correct learning of ANNs.
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Fig. 6. Information theoretic quantities during the learning process for scenario 2. The black dashed lines depict the bounds obtained in Proposition 1. Various
marker shapes are used to distinguish between experiments with different values of p.


