
Delay Minimization Offloading for Interdependent
Tasks in Energy-Aware Cooperative MEC Networks

Yao Zhu, Yulin Hu∗, and Anke Schmeink
ISEK Research Group, RWTH Aachen University, 52062 Aachen, Germany.

Email: zhu|hu|schmeink@ti.rwth-aachen.de

Abstract—The partial offloading technologies in the cooper-
ative mobile edge computing (MEC) networks are considered
as promising solutions to enable the emerging latency-sensitive
and compute-intensive applications. In this paper, we characterize
the performance model of an energy-aware MEC networks with
multiple servers cooperatively computing a set of interdependent
tasks. To minimize the total delay of the whole process of the set
of tasks, an optimal offloading design is provided under given
energy constraints. In particular, we provide an optimal solution
to the offloading problem, which makes a 3-dimensional decision
(matrix) representing at which time instant to offload which task
to which server. Via simulation, we investigate the performance of
the proposed design for the tasks with different interdependency
structures. In particular, the impacts of the number of MEC
servers, CPU frequencies and in the proposed algorithm on the
system performance are studied. In addition, the tradeoff between
the delay performance and computation complexity is addressed.

Keywords—Edge computing, delay minimization, interdepen-
dent tasks, offloading

I. INTRODUCTION

Recent advancements in Internet-of-Things (IoT) have en-
abled many computation-intensive and latency-critical applica-
tions [1], such as image/environment recognition in augmented
reality (AR), autonomous driving, unmanned aerial vehicle
and industrial automation. However, IoT devices are usually
resource-constrained due to their small physical size, i.e., lack
of computation power and energy supply [2] to finish these
computation-intensive tasks within a critical time deadline. The
mobile cloud computing (MCC) has emerged as a potential
solution to enhance the computing capability for IoT appli-
cations by offloading IoT devices’ computation tasks to the
centralized cloud server with both sufficient computing and
storage capabilities [3]. However, as the centralized cloud in
the MCC servers are far apart from the users in the perspective
of both geography and logic, offloading to the MCC server
costs considerable latency, i.e., being not able to guarantee the
latency requirements of latency-critical IoT applications.

Recently, mobile edge computing (MEC) [4], [5] has
been considered as a promising solution addressing both the
above computation and latency issues. In particular, instead of
offloading tasks to the centralized servers, the IoT devices in
a MEC network are able to offload their tasks to the nearby
MEC servers, e.g., small-cellular base stations and WiFi access
points, deployed at the edge of networks, which significantly
reduces the transmission delay in comparison to MCC. On
the other hand, unlike the mega data center in the MCC, the
servers in MEC are usually with relatively limited computa-
tional capability. In particular, when having multiple compute-
intensive tasks, a single MEC server is unlikely able to finish

*Y. Hu is the corresponding author.

them timely by its own computational capability. Observing
this, cooperative offloading mechanisms [6]–[8], [10] have
been proposed to balance the computing tasks among MEC
servers, which enhance the computation capability and reduce
the latency for the applications. For instance, the work in [6]
proposed a three-node cooperation scheme in a computation
and communication scenario by jointly optimizing the task
partition and power allocation in a time-slotted fashion. The
authors in [8] exploited a peer-to-peer cooperative computing
to optimize the workloads on the servers. Furthermore, they
developed a Lyapunov optimization based online algorithm and
an autonomous peer offloading scheme. The work in [7] pro-
vided a resource allocation scheme among the virtual machines
to minimize the overall power consumption and formulated it
as a mixed integer linear problem. To tackle the new challenges
in ultra-reliable low-latency communications [9], the authors
in [10] designed a framework to partition a task into sub-
tasks and offload them to multiple MEC servers by taking
both latency and reliability into account. It is evident that
the above data-partial offloading algorithms reduce the latency
of the IoT applications and improve the energy efficiency of
the network. However, applying such data-partial offloading
algorithms requires the condition that data in a task set is bite-
wise independent and can be arbitrarily divided into different
tasks, which is not true in most practical systems due to the
software and hardware constraints [4]. For example, in a video
navigation application [12], the final results depend on the
results of the graphics, video processing and face detection. In
other words, the interdependency among the tasks are needed
to be considered in MEC offloading designs.

Nevertheless, the interdependency of tasks has been inves-
tigated in [11] in MCC scenarios, following which a heuristic
offloading scheme was proposed to minimize the comple-
tion delay. Moreover, considering also the interdependency
of tasks, the authors in [13] studied the energy-efficient dy-
namic offloading in MCC by jointly optimizing the offloading
decisions, power allocation and frequency control. However,
these results are conducted under a MCC scenario, while
an optimal design addressing the offloading with cooperative
servers in a MEC network is missing. Note that a MEC
network has the following difference in comparison to a MCC
network: i. Each server in the MEC network has its own
power consumption limit and computing frequency limits. ii.
The capabilities for supporting parallel task execution are
different, i.e., an extremely larger number of tasks can be
computed in parallel in the MCC server, which is definitely
not true for a MEC server. iii. The cost of the communication
between the MEC servers is significantly larger than the cost
of exchanging data between virtual machines in the centralized
data center of MCC, which makes in the MEC network
the communication delay contributes to the total delay in a

1 J-12 J

(a) series structure

1

J-1

J

3

2

(b) parallel structure

1

2

j

j+1

i+1

j+i

i+j

J

(c) general structure

Fig. 1. Typical structures of DAGs.

significantly different way than the MCC network. Hence, it
is essential to characterize the performance of a MEC network
supporting interdependent tasks and to provide an optimal
offloading design for such network to minimize the delay of
applications.

In this paper, we consider a MEC network with multi-
ple servers supporting a compute-intensive application with
interdependent tasks. We aim at minimizing the delay of the
application by making the optimal offloading decisions, i.e.,
deciding which task should be offloaded to which server at
what time, while taking into account the total energy constraint
and the individual energy constraint at each server.

II. SYSTEM MODEL

We consider a cooperative MEC network with K + 1
nodes, including an IoT device and K MEC servers. The IoT
device collects local information, which is a set of compute-
intensive data tasks, and requests the processing/computing
results for the further actions. The device is assumed to be
unable to compute these tasks locally while all the tasks
need to be offloaded to the K MEC servers and computed
there. Therefore, the set of nodes involved in the offloading
process, including the device and K servers, is given by
K , {1, ...,K + 1} with K + 1 elements, where the first
element represents the device and the rest elements indicate
the K servers.

We call by a service period the total time length for offload-
ing, computing all the tasks and transmitting the result back
to the device. In each service period, a set of J tasks denoted
by J , {1, ..., J}, are generated from the device, which are
assumed to be interdependent, i.e., the computed result of one
task is required to be known before processing another task.
In addition, each task is assumed as the smallest independent
computing data unit, i.e., can not be further divided and
computed separately. This interdependency relationship among
tasks can be described as a directed acyclic graph (DAG) [11].
We denote by G = (J , E) the DAG where E is the set of edges
and given by

E =


0 e12 e13 . . . e1J

0 0 e23 . . . e2J

...
...

...
. . .

...
0 0 0 . . . e(J−1)J

0 0 0 . . . 0

 , (1)

in which, eij ∈ {0, 1} where eij = 1 (eij = 0) indicates
the execution of the j-th task (not) requires the results of
the i-th task.When eij = 1, the i-th task is called by the

predecessor of j-th task and in the other way round, the j-
th task is called by the successor of the i-th task. Note that
in a DAG, the interdependency of the tasks follows an acyclic
positive direction. Hence, eij = 0 holds if i ≥ j.

The tasks are different and may require different com-
puting workloads. We denote by ci the required workloads
for computing the i-th task and by di the data size of the
computed results. In the k-th server, we assume that there
are nk homogeneous virtual machines (VM) available for the
incoming tasks, while each VM has computation power fk. We
assume that all the MEC servers are connected with a local area
network and able to communicate to each other through wired
link, while the offloading from the device to MEC servers and
the downloading of the computed result of the set of tasks
from a server to the device are via wireless link. Note that
the offloading node set includes K + 1 nodes, where the first
element is the device. Following this node index structure, we
denote by Pk the transmit power of the k-th node, i.e., P1

is the transmit power of the device. For transmission links of
task offloading and result downloading, the bandwidth is the
same as B. For the wireless transmission from the l-th node
to the k-th node, where l, k ∈ K, we denote the channel gain
of the link by Hl,k and the corresponding noise power by
σ2
l,k. Specially, Hk,k indicates the channel gain to it self, i.e.,
Hk,k =∞.

Note that the interdependency among tasks is a key concern
in our work. In particular, different interdependency relation-
ships correspond to different DAG structures. As examples, we
provide in Fig 1 three typical structures of DAGs [11], which
are considered in our simulations in Section V. These DAG
structures are (a) Serial structure: Each task has one and only
one successor beside the last task while each task has also only
one predecessor except the first task, i.e., ej(j+1) =1,∀j 6= J .
(b) Parallel structure: The first task is the predecessor of all
other tasks except the last task which is the successor of all
other tasks except the first task, i.e., e1(j+1) = 1,∀j 6= J−1
and e(j+1)1,∀j 6= J−1. (c) General structure: It can be de-
composed into multiple sub-DAGs with either serial structure
or parallel structure. Without loss of generality, we merge the
task offloading and result downloading processes between the
device and servers into the application by considering the local
data as the output of first task and the results of the application
as the input of the last task, respectively. Therefore, the 1-st
task and J-th task are considered as ”virtual” tasks with empty
workloads c1 =cJ =0. As a result, the CDGs satisfy following
properties [12]: i) Each task except the first task should have at
least one predecessor; ii) Each task except the last task should
have at least one successor; iii) all of the tasks should have
at least one direct or indirect path from the first task; iv) each

task has at least one direct/indirect path to the last task.

III. PERFORMANCE CHARACTERIZATION

In this section, we study the system behavior of the consid-
ered MEC network supporting interdependent tasks offloaded
from the device. We first model the decision matrix of the
offloading process, following which the transmission delay, the
computation delay, energy consumption are characterized.

A. Offloading Decision Matrix Modeling

Existing works in [13] and [14] for the offloading in MCC
network propose to model the decision of the offloading by
a classical 2-dimensional binary decision matrix, based on
which the offloading problem is NP-hard and cannot be solved
optimally. Observing this, for considered MEC network we
propose to model the offloading decision as a 3-D time-
decision matrix. We will show in Section IV that based this
3-D decision model, the offloading problem can be optimally
solved. We denote this 3-D decision matrix by X, in which
the element xj,k,t ∈ {0, 1} indicates whether the j-th task
is completed by the k-th node at the end of time slot t ∈
{0, .., TJ,max}, where TJ,max is the completion delay constraint
of the application.

Based on X, the computation indicator matrix can be
obtained, which indicates (based on the offloading decision)
each task will be computed at which node. We denote the
computation indicator matrix by A with elements aj,k

aj,k =
∑

t
xj,k,t, (2)

where j ∈ J and k ∈ K. In fact, aj,k = 1 indicates the j-th
task will be computed in the k-th node. To avoid the waste of
computation resource, we assume that each task is computed
only in one server and only computed once. We formulate this
execution constraint as follows∑

t

∑
k
xj,k,t =

∑
k
aj,k = 1, (3)

Denote by tj the completion time duration for the j-th task.
Hence, we have

tj =
∑

k

∑
t
txj,k,t. (4)

B. Communication throughput and delay

The communications occur in our system either between
the device and the servers via wireless channels, or between
servers themselves via wired link. We denote Rl,k the rate of
the transmission from the l-th and the k-th node.

At the beginning of each service period, the tasks are
offloaded from the device to a node k, the transmission rate is
given by

R1,k = B log2

(
1 +

P1H1,k

σ2
k

)
, (5)

where k ∈ {2, · · ·K + 1}, i.e., the k-th node is a server.
Similarly, the transmission rate for the results downloading
from the l-th node, i.e., l ∈ {2, · · ·K + 1}, to the device as

Rl,1 = B log2

(
1 +

PlHl,1

σ2
1

)
. (6)

In addition, the transmission rate between nodes l and k
is denoted by Rl,k where l, k ∈ {2, · · ·K + 1} and l 6= k. In

other words, Rl,k represents the transmission rate between two
MEC server via the wired link. We assume the transmission
rates between different servers are the same. Specially, we
define Rl,k = ∞, for l = k, to maintain the consistence of
the notations.

When the i-th task is the predecessor of the j-th task and
they are computed at different servers, transmission occurs. In
particular, node l sends the result of the i-th task to node k > 1
and k 6= l which will compute the j-th task. The delay of the
above transmission is given by

tri,l,j,k = ei,jaj,kai,l
di
Rl,k

. (7)

Note that the above tri,l,j,k actually has a quadratic expression
due to the fact that it contains the multiplication between aj,k
and ai,l, which results a relatively higher complexity in the
offloading design than a linear objective function. In fact,
the multiplication of two binary variables is mathematically
equal to an AND operation. Hence, the expression (7) can be
linearized by introducing variables βi,l,j,k ∈ {0, 1}, tri,l,j,k,
reads as

tri,l,j,k = ei,jβi,l,j,k
di
Rl,k

, (8)

where βi,l,j,k satisfies

βi,l,j,k ≥ aj,k, (9a)
βi,l,j,k ≥ ai,l, (9b)
βi,l,j,k ≥ 0, (9c)

βi,l,j,k ≤ aj,k − (1− ai,l). (9d)

C. Computation delay

Note that the server (k-th node) is unable to start computing
the j-th task unless all the required results from depended
previous tasks are transmitted to it. Hence, denote by Tj the
ready time (point) [13] for starting computing the j-th task at
the k-th node, i.e., at the time point Tj after the beginning
of the service period, j-th task is started to be computed.
In other words, Tj implies the maximal time for all results
of the predecessors for the j-task uploaded to k-th server. In
this paper, we neglect the I/O processing time between VMs
in the same server, as it is relatively small compared to the
computation time and transmission time. Therefore, the ready
time for the j-th task is given by

Tj = max
i<j

ei,j(ti +
∑

k

∑
l
tri,l,j,k) (10)

Therefore, the completion time of the j-th server can not
be earlier than the summation of computation time and the
ready time, i.e.,

tj ≥ Tj + tcj . (11)

Note that each server follows a ”first come, first served”
principle, i.e., new arrived task in an occupied server must wait
in the queue till all previous buffered tasks are computed. We
assume all VMs in each server share a global queue to maintain
the global load balancing in the physical CPU cores [16]. In
particular, at node k > 1, the total executed tasks in any
computation period tcj should not exceed the maximal available

number of VMs nk. The set of constraints are expressed by∑
j

t̄∑
t=s

xj,k,t ≤ nk, (12)

for different starting time point s ∈ {1, 1 + ∆s, 1 +
2∆s · · · , TJ,max}. In addition, t̄ = min{s + tcj − 1, TJ,max}
with TJ,max being the delay tolerance of the application. The
constraints of (12) actually describe a set of windows with
the size of t̄ and J , while in each window the sum of element
values should be limited by nk. ∆s is actually the time distance
between two adjoin windows, represents the resolution for the
checking. The benefit of such check window constraints is to
monitor the current execution stats of the k-th server without
introducing the iteration of decision element xj,k,t.

After the ready time, a task is computed. The computation
time of the j-th task in the k-th node (k ∈ {2, · · ·K + 1}) is
given by

tcj =
∑
k

aj,k
cj
fk
, (13)

D. Energy consumption

The energy consumption at each node contains two parts
with respects to transmission and computation. In particular,
the transmission energy at the k-th node is consumed for trans-
mitting the results of the predecessors to the corresponding
server of the successors

Er
k =

∑
j

∑
i<j

∑
l
tril,jkPk. (14)

On the other hand, the energy consumption for the computation
is proportional to the workload ci and the square of CPU-
cycles frequency f2

k . For the k-th node, the energy consump-
tion is given by [17]:

Ec
k =

∑
j
ajkκcjf

2
k , (15)

where κ is a constant related to the hardware architecture.

Hence, the energy consumption of for k-th server is

Ek =Er
k+Ec

k =
∑
j

ajk

κcjf2
k +
∑
i>j

∑
l

eji
djail
Rkl

Pk

. (16)

The total energy consumption is then the summation of energy
consumption of all servers, given by

EO =
∑
k

Ek =
∑
j

∑
k

ajk

κcjf2
k +
∑
i≤j

∑
l

eij
diail
Rlk

Pk

. (17)

IV. OPTIMAL OFFLOADING

In this paper, we aim at an optimal offloading strategy fol-
lowing which the optimal offloading decision (matrix) is made
such that the completion delay (equivalently the length of the
service period) of the set of tasks is minimized while fulfilling
the given energy constraints. This delay minimization problem
is formulated in (18), where t̄ = min{s+ tcj − 1, TJ,max}. In
particular, (18b) is the energy constraints for the k-th node,
which implies the available resource of the node may differ
from each other not only in terms of the CPU-cycles frequency
and VMs but also in terms of the energy. (18c) is the overall

energy constraint in the whole service period. Constraint (18d)
guarantees that the whole service period should satisfy the
delay tolerance. To ensure the uploading of the local data from
the device to the servers and the downloading of the results
from the servers to the device, the decisions of the first and
last task is formulated as constraint (18h). As discussed in
previous sections, the constraint of completion time for current
j-th task and the constraint of available VMs in the k-th server
are formulated as (18f) and (18g), respectively.

minimize
x

tJ (18a)

subject to Ek ≤ Ek,max, ∀k ∈ K, (18b)
EO ≤ EO,max, (18c)
tj ≤ TJ,max, (18d)
Tj + tcj ≤ tj , ∀j ∈ J , (18e)∑

k
aj,k = 1, ∀k ∈ K, (18f)∑

j

∑t̄

t=s
xj,k,t≤nk,∀k ∈ K, (18g)

a1,1 = aJ,1 = 1, (18h)
(9a), (9b), (9c) and (9d)

Clearly, the optimization problem (18) is linear integer
problem, which is NP-complete with the computation com-
plexity of O(2JKTJ,max). Fortunately, we can reduce the
complexity with the help of one-time-execution policy from
O(2JKTJ,max) to O(JKTJ,max). It can be solved with opti-
mization solvers, i.e., Gurobi∗.

V. SIMULATION

In this section, we evaluate the system performance nu-
merically under various system setups. We consider topology
of the MEC network as a circle area with radius r = 10m,
where the servers K=9 are homogeneously distributed while
the device is located in the centre of the area. We assume
the channel bandwidth for the wireless transmission B=50
Mhz with 2.1Ghz carrier frequency. Considering the practical
environment, we adopt a path-loss model in [15], given by
PL = 17.0 + 40.0 log10(r). Furthermore, we set the transmit
power of the device P1 = 10dBm, the transmit power of
servers to Pk = 32dBm, k ∈ {2, 3, · · ·K + 1} and the noise
power to σ2 = −174dBm/Hz. For the wired link among
servers, we set the transmission rate to Rlk = 100Mbps,
l, k ∈ {2, 3, · · ·K + 1} and l 6= k. The CPU-cycle frequency
of servers are set to fk = 3.2GHz uniformly and the available
VM nk = 1. In addition, following [?] we set κ = 10−11

for the energy consumption . Moreover, we set total number
of the tasks in the application J = 10, the data size of the
results for each task dj = 10Mb, ∀j 6= J , and the required
workloads cj = 100Mb, ∀j 6= {1, J}. As the device only
uploads the local data and downloads the final results, the first
and the last task requires no computation, i.e., c0 = cJ = 0.
Finally, in our simulation, we consider three different DAG
structures as showed in Fig. 1, which are a series structure,
a parallel structure and a branch structure. In particular, the

∗Gurobi is a commercial optimization solver for linear programming.
Available: http://www.gurobi.com.

1 2 3 4 5 6 7 8 9

K

150

200

250

300

350

400

450

t J

[m
s
]

branch DAG with J=10

branch DAG with J=6

parallel DAG with J=10

parallel DAG with J=6

serial DAG with J=10

serial DAG with J=6

Fig. 2. The completion delay tJ versus the number of servers K under
variant DAG setups.

branch structure we considered is a symmetric binary tree
graph [11], which is a spacial case of the general structure
in Fig. 1-(c), where each task is interdependent with only two
successor tasks.

We start with Fig. 2 to compare the performance of three
structures of DAG while varying the number of the servers K.
To show the influences of the number of the tasks in the
application, we evaluate the case with J = 10 and the case
with J = 6, which is equal to the half of the computation
tasks in the branch DAG with J = 10. Clearly with only
one server, the completion delay tj is the same under all
structures. In addition, the completion delays of the serial DAG
tasks are constant in M as for serial DAGs tasks can not
be computed in parallel. On the other hand, the completion
delay of a set of parallel DAG task is significantly reduced
by increasing K, when K is small. On the other hand, when
the K is relatively large, the delay cannot be further reduced
by purely increasing the server number K. In this case, the
system already provide sufficient number of servers, while
the bottleneck is the computation capability of the server
which computes multiple tasks that can not been offloaded
to other nodes due to dependency and transmission time issue.
Moreover, the delay performance of the branch DAG tasks
is in between of the serial DAG and the parallel DAG tasks,
i.e., it reduces first and then is constant in K. This is because
that a branch DAG structure carries both the features of the
other two structure, i.e., it has several layers (like the series
structure) while the tasks in each layer can be computed in
parallel (which is similar to the parallel structure). Therefore,
in comparison to the parallel DAG tasks, the branch DAG
requires less servers to minimize the total service period
(completion delay).

Subsequently, we investigate the effect of the CPU-
frequency on the completion delay in Fig. 3. As expected,
increasing the CPU frequency improves the system perfor-
mance regardless of the structures of DAGs. On the other
hand, this improvement by increasing the server computing
capability becomes small in the higher frequency range, where
the bottleneck of reducing the completion delay becomes the
transmission delays among nodes. Among these three DAF
structures, increasing the server computing capability is more
beneficial for serials DAGs and is relatively less beneficial

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

f [GHz]

200

300

400

500

600

700

800

t J

[m
s
]

branch DAG

parallel DAG

serial DAG

Fig. 3. The completion delay tJ versus the CPU frequency f under variant
DAG setups with J = 10 and K = 4.

for parallel DAGs. Note that the maximal CPU frequency
is limited due to the energy consumption and the hardware
constraints. Under such case, for parallel and branch DAG
tasks, increasing also the number of servers is a more efficient
and practical approach rather than purely increasing the CPU
frequency of current servers.

Note that each server in the MEC network likely has
different energy consumption in a server period, which is
different from the centralized server in MCC. Therefore, in
Fig. 4, we specifically show the maximum energy consumption
over all servers, i.e., Emax = maxk{Ek}, when different
number of servers are deployed the MEC network. The results
are consistent with Fig. 2 that Emax remains the same for
the serial DAG due to the one-climb policy [17]: the optimal
execution with the serial DAG only migrates once between
two servers if ever. Emax for both the branch and the parallel
DAGs decreases as K increases. Moreover, the parallel tasks
costs more energy than the rest two DAG tasks when K = 1.
Note that for K = 1, the process for tasks with different
DAG structures are actually the same, thus spending the same
amount of energy for the computation. On the other hand,

1 2 3 4 5 6 7

K

0

20

40

60

80

100

120

140

160

180

E
m

a
x
 [

m
J
]

branch DAG

parallel DAG

serial DAG

Fig. 4. The maximal energy consumption among the available servers
Emaxversus the number of servers K under variant DAG setups with J=10.

0 5 10 15 20 25

s
 [ms]

150

200

250

300

350

400

450

500

550

600
t J

[m

s
]

10
2

10
3

10
4

10
5

c
o

m
p

le
x
it
y

branch DAG

parallel DAG

serial DAG

complexity

Fig. 5. The completion delay tJ versus the resolution ∆s comparing the
computation complexity of the system under variant DAG setups.

for the parallel DAG task, it requires the server to transmit
all the results of each task back to the device, costing a
relatively higher communication energy consumption. As a
result, the total energy consumption for the parallel DAG
tasks are higher than the energy consumption for the serial or
branch DAG tasks. As K increases, the energy consumption
for communication starts to be split into different servers, Emax

is reduced for the both branch or parallel tasks.
Recall that to satisfy the computation capability limits at

each server, a set of window check constraints are introduced
in (12), where the number of these constraints are decided by
the resolution ∆s. In particular, when ∆s = 1, the proposed
offloading solution is definitely globally optimal, while ∆s = 1
introduces TJ,max

∆s
= TJ,max constraints resulting in a relatively

high complexity. On the other hand, if we set ∆s too large,
it causes waste of computation resource and introduces idle
delay, as each task is only possible to be computed at the
time points s + w∆sw = 0, 1, ..., even though the server is
ready a bit before one these time points. In other words, ∆s

actually introduces a tradeoff between the completion delay
and the computation complexity. We investigate this tradeoff
in Fig. 5, where we set J = 10 and K = 4. It should be
pointed out that we only provide one computation complexity
curve, as the complexities for different DAG structure are the
same, i.e., the same tasks are computed. It is consistent with
our above discussion that the complexity reduces significantly
by increasing ∆s. Meanwhile, the delay performance becomes
worse. More interestingly, the serial DAG tasks are most
sensitive to the resolution, i.e., relatively high complexity
should be spend for such tasks. At the same time, a high
∆s, corresponding to a relatively low complexity, is acceptable
for the parallel DAG tasks, as it provides a competitive delay
performance.

VI. CONCLUSION

In this paper, we studied a MEC network with multiple
servers, where servers cooperatively computing interdependent
tasks from a user device. After characterizing the energy
consumption and the total completion delay, including the
communication delay and computation delay, an offloading
problem is modeled, which minimizes the completion delay

under the energy constraints. To tackle the completion time
of each task in each server, we introduced a 3-dimensional
decision matrix, so that the optimization problem can be cast
as a linear integer programming problem, thus be globally
optimally solved. Via the numerical simulation, we investi-
gated the impact of the available servers, CPU frequency on
the system performance. In addition, the tradeoff between
the delay performance and computation complexity has been
addressed.

REFERENCES

[1] J. Lin, et al.”A Survey on Internet of Things: Architecture, Enabling
Technologies, Security and Privacy, and Applications,” in IEEE Internet
of Things Journal, vol. 4, no. 5, pp. 1125-1142, Oct. 2017.

[2] Z. Chu, F. Zhou, Z. Zhu, R. Q. Hu and P. Xiao, ”Wireless Powered
device Networks for Internet of Things: Maximum Throughput and
Optimal Power Allocation,” in IEEE Internet of Things Journal, vol.
5, no. 1, pp. 310-321, Feb. 2018.

[3] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Netw. Appl., vol. 18, no. 1,
pp.129–140, Feb. 2013.

[4] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, ”A Survey
on Mobile Edge Computing: The Communication Perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322-2358,
Fourthquarter 2017.

[5] T. Yang, Y. Hu, M. C. Gursoy, A. Schmeink and R. Mathar, ”Deep
Reinforcement Learning based Resource Allocation in Low Latency
Edge Computing Networks,” in Proc. IEEE ISWCS 2018, Lisbon, 2018,
pp. 1-5.

[6] X. Cao, F. Wang, J. Xu, R. Zhang and S. Cui, ”Joint computation
and communication cooperation for mobile edge computing,” in Proc.
WiOpt, Shanghai, 2018, pp. 1-6.

[7] A. Zamani, S. Shojaee, R. Mathar, A. Schmeink, ”Package Assignment
and Processing Resource Allocation for Virtual Machines in C-RAN,”
in Proc. IEEE 29th Annual International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC 2018), Bologna,
Sep, 2018, pp. 1-5.

[8] L. Chen, S. Zhou, and J. Xu. ”Computation Peer Offloading for
Energy-Constrained Mobile Edge Computing in Small-Cell Networks,”
in IEEE/ACM Trans. Netw. vol. 26, no. 4, pp. 1619-1632, Aug, 2018.

[9] Y. Hu, M. C. Gursoy and A. Schmeink, ”Relaying-Enabled Ultra-
Reliable Low-Latency Communications in 5G,” IEEE Network, vol. 32,
no. 2, pp. 62-68, March-April 2018.

[10] J. Liu and Q. Zhang, ”Offloading Schemes in Mobile Edge Computing
for Ultra-Reliable Low Latency Communications,” IEEE Access, vol.
6, pp. 12825-12837, 2018.

[11] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks for
computation-intensive applications in mobile cloud computing,” in Proc.
IEEE INFOCOM WKSHPS, Toronto, Canada, Apr. 2014, pp. 352–357.

[12] S. E. Mahmoodi, R. N. Uma, and K. P. Subbalakshmi, “Optimal joint
scheduling and cloud offloading for mobile applications,” IEEE Trans.
Cloud Comput., vol. PP, no. 99, pp. 1–13, 2016.

[13] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,” in Proc.
IEEE Int. Conf. Comput. Commun. (INFOCOM), San Francisco, CA,
Apr. 2016, pp. 1–9.

[14] T. Q. Dinh, J. Tang, Q. D. La and T. Q. S. Quek, ”Offloading in Mobile
Edge Computing: Task Allocation and Computational Frequency Scal-
ing,” IEEE Trans. on Commun., vol. 65, no. 8, pp. 3571-3584, Aug.
2017.

[15] Y. Corre, J. Stephan and Y. Lostanlen, ”Indoor-to-outdoor path-loss
models for femtocell predictions,” in Proc. IEEE PIMRC Toronto, ON,
2011, pp. 824-828.

[16] S. Xi et al., ”Real-time multi-core virtual machine scheduling in
Xen,” in Proc. 2014 International Conference on Embedded Software
(EMSOFT), Jaypee Greens, 2014, pp. 1-10.

[17] W. Zhang, Y. Wen and D. O. Wu, ”Collaborative Task Execution in
Mobile Cloud Computing Under a Stochastic Wireless Channel,” in
IEEE Trans. on Wireless Commun., vol. 14, no. 1, pp. 81-93, Jan. 2015.

