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Abstract

Neural networks have been shown to be vul-
nerable against minor adversarial perturba-
tions of their inputs, especially for high di-
mensional data under `∞ attacks. To com-
bat this problem, techniques like adversarial
training have been employed to obtain mod-
els that are robust on the training set. How-
ever, the robustness of such models against
adversarial perturbations may not generalize
to unseen data. To study how robustness
generalizes, recent works assume that the in-
puts have bounded `2-norm in order to bound
the adversarial risk for `∞ attacks with no
explicit dimension dependence. In this work,
we focus on `∞ attacks with `∞ bounded in-
puts and prove margin-based bounds. Specif-
ically, we use a compression-based approach
that relies on efficiently compressing the set
of tunable parameters without distorting the
adversarial risk. To achieve this, we apply
the concept of effective sparsity and effec-
tive joint sparsity on the weight matrices of
neural networks. This leads to bounds with
no explicit dependence on the input dimen-
sion, neither on the number of classes. Our
results show that neural networks with ap-
proximately sparse weight matrices not only
enjoy enhanced robustness but also better
generalization. Finally, empirical simulations
show that the notion of effective joint sparsity
plays a significant role in generalizing robust-
ness to `∞ attacks1.

1The implementations used in this work are available at
github.com/ebalda/adversarial-risk-bounds
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1 Introduction

In recent years, neural networks have been shown to
be particularly vulnerable to maliciously designed per-
turbations of their inputs. Such perturbed inputs are
known as adversarial examples and they are often only
slightly distorted versions of the original inputs. For
example, in image classification, adversarial examples
have been shown to be indistinguishable from the orig-
inal image to the human eye. This phenomena moti-
vated several works aimed at understanding the na-
ture of classifiers, and in particular neural networks,
in the presence of adversarial examples. Initial works
focused on the linearity (and non-linearity) of clas-
sifiers and its implications on the robustness of Deep
Neural Networks (DNNs) against adversarial examples
(Goodfellow et al. 2015; Tanay et al. 2016; Sabour et
al. 2016). Subsequent works shed some light on the na-
ture of adversarial examples by studying the properties
of decision boundaries (A. Fawzi, Moosavi-Dezfooli, et
al. 2016; Tanay et al. 2016; Rozsa, Gunther, et al.
2018; Rozsa, Günther, et al. 2016; Moosavi-Dezfooli
et al. 2018), while others focused on the model ca-
pacity of neural networks in relation to the problem
difficulty (A. Fawzi, O. Fawzi, et al. 2018; Kurakin et
al. 2017; Madry et al. 2018). While these approaches
contributed to understanding the nature of adversarial
examples, they do not consider whether the robustness
of classifiers against adversarial perturbations general-
izes to unseen data.

If a classifier is robust to perturbations of the train-
ing set, can we guarantee that it will also be robust to
perturbations of the test set? This question is not par-
ticularly new. The optimization community has stud-
ied this problem for quite some time. The work of Xu
et al. 2008, studied robust regression in Lasso, while
later work (Xu et al. 2009) obtained results for support
vector machines. Other works considered the general-
ization properties of robust optimization in a distribu-
tional sense (Sinha et al. 2018), that is when adversar-
ial examples are assumed to be samples from the worst
possible distribution within a Wasserstein ball around
the original one. These works provide algorithms for
training various types of classifiers with robustness
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guarantees. Regarding neural networks, for the case
where no adversarial perturbations are present, there
exists an extensive literature on their generalization
properties. Many of these works are based on bound-
ing the Rademacher complexity of the function class
(Bartlett et al. 2017; Golowich et al. 2018; Neyshabur,
Z. Li, et al. 2018; X. Li et al. 2018), while others make
use of the PAC-Bayes framework (Neyshabur, Bho-
janapalli, et al. 2017a; Neyshabur, Bhojanapalli, et al.
2017b; Nagarajan et al. 2019). There are other works
which rely in different techniques, for instance, Arora
et al. 2018 rely on compressing the weights of neural
networks. Despite this knowledge, proving robustness
guarantees for neural networks remained unstudied till
recently. Initial works going into this direction studied
neural networks in artificial scenarios. For instance,
Attias et al. 2018 proved generalization bounds for the
case when the adversary can modify a finite number of
entries per input. Following this approach, Diochnos
et al. 2018 showed that the number of flipped bits re-
quired to fool almost all inputs is less than O(

√
n),

for the case when the input is binary and uniformly
distributed. As similar subsequent result (Mahlouji-
far et al. 2019) for binary inputs, proved the existence
of polynomial-time attacks that find adversarial exam-
ples of Hamming distance O(

√
n). Concurrently, the

work of Schmidt et al. 2018 showed that the amount of
data necessary to classify n-dimensional Gaussian data
grows by a factor of

√
n in the presence of an adversary.

However, Cullina et al. 2018 showed that the Vapnik-
Chervonenkis (VC)-dimension of linear classifiers does
not increase in the adversarial setting. Additionally,
they derived generalization guarantees for binary lin-
ear classifiers. Moreover, Montasser et al. 2019 showed
that VC-classes are learnable in the adversarial setting,
but only if one refrains from using standard empirical
risk minimization approaches. Later works considered
more general scenarios. Using a PAC-Bayes approach,
Farnia et al. 2019 proved a generalization bound for
neural networks under `2 attacks. However, deriving
bounds for attacks with bounded `∞-norm (instead of
`2-norm) is of particular interest, since most successful
attacks in computer vision are of this type. In addi-
tion, such attacks tend to be more effective for scenar-
ios where the input dimension is large, thus deriving
generalization bounds without explicit dimension de-
pendence is promising.

Now, let us overview recent works addressing the prob-
lem of proving generalization bounds for neural net-
works in the adversarial setting, where the attacker
has bounded `∞ perturbations. Since these works are
closely related to this work, we discuss them in more
detail in the following list.

• Yin et al. 2019 bounded the Rademacher complex-

ity for linear classifiers and neural networks in the
adversarial setting. This lead to explicit bounds
on the notion of adversarial risk for the linear clas-
sifier as well as neural networks. Nevertheless,
such bound applied only to neural networks with
one hidden layer and ReLU activations.

• Concurrent work from Khim et al. 2019 proved
bounds on a surrogate of the adversarial test er-
ror. In that work, the authors use the so-called
tree transform on the function class to derive their
results. Under the assumption that the original
inputs have `2 bounded norm, the authors proved
generalization bounds with no explicit dimension
dependence in the binary classification setting.
Yet, the authors extend this to k-class classifica-
tion by incurring an additional factor k on their
bound.

• Later work from Tu et al. 2018 formulated gener-
alization in the adversarial setting as a minimax
problem. Their proposed framework is more gen-
eral than previous ones in the sense that it can be
applied to support vector machines and principal
component analysis, as well as neural networks.
Nonetheless, for neural networks this approach
yielded a generalization bound with explicit di-
mension dependence.

One common assumption shared by these works is that
the inputs come from a distribution with bounded `2-
norm, which is a weaker notion than assuming `∞
bounded inputs.

1.1 Our Contributions

In this work, we study the problem of bounding the
generalization error of multi-layer neural networks un-
der `∞ attacks, where we assume that the original in-
puts have `∞ bounded norm. Using a compression ap-
proach, we obtain bounds with no explicit dependence
on the input dimension or the number of classes. We
summarize our contributions as follows.

• We prove generalization bounds in the presence
of adversarial perturbations of bounded `∞-norm
under the assumption that the input distribution
has bounded `∞-norm as well. This is an improve-
ment with respect to recent works where the input
is assumed to be `2 bounded.

• We extend the compression approach from (Arora
et al. 2018) by incorporating the notion of effec-
tive sparsity. Using this technique we prove that
the capacity of neural networks, under adversarial
perturbations, is bounded by the effective sparsity
and effective joint sparsity of its weight matrices.
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This result has no explicit dimension dependence,
neither it depends on the number of classes. We
show that approximately sparse weights not only
improve robustness against `∞ bounded adversar-
ial perturbations, but also provide better general-
ization as well.

• We corroborate our result with experiments on
the MNIST and CIFAR-10 datasets, where the
bound correlates with adversarial risk. We ob-
serve that adversarial training significantly de-
creases the bound, while standard training does
not. Similarly, adversarial training seems to de-
crease both, effective sparsity and effective joint
sparsity, as predicted by our result. Moreover, in
these experiments, effective joint sparsity appears
to be the dominant quantity in our bound. This
shows the importance of effective joint sparsity for
achieving generalization in the adversarial setting,
a relation that was not discovered so far.

1.2 Notation

The notation Bnp,ε is used to refer to an n-dimensional
`p ball of size ε, that is the set Bnp,ε = {x ∈ Rn : ‖x‖p ≤
ε}. We use the compact notation Õ(n) := O(n logn)
to ignore logarithmic factors.

2 Problem Setup

We start with the standard margin-based statistical
learning framework. To that end, let X be the feature
space, Y the label space, and D : X × Y → [0, 1] a
probability measure. In this work, it is assumed that
all instances x ∈ X have `∞-norm bounded by 1, that
is X ⊆ Bn∞,1 ⊂ Rn. Without loss of generality, let
the label space be Y = {1, 2, . . . , |Y|}. Using these no-
tions, a classifier is defined through its so called score
function f : Rn → R|Y| such that the predicted la-
bel is argmaxj∈Y fj(·), where fj(·) is the j-th entry of
f(·). Moreover, given an instance (x, y) ∈ X × Y, the
classification margin is defined as

`(f ; x, y) = fy(x)−max
j 6=y

fj(x) .

In this manner, a positive margin implies correct clas-
sification. Then, for any distribution D the expected
margin loss with margin γ ≥ 0 is defined as

Lγ(f) = P(x,y)∼D [`(f ; x, y) ≤ γ] .

We study the case where an adversary is present. This
adversary has access to the input x and is allowed to
add a perturbation η with `∞-norm bounded by some
ε ≥ 0 (i.e., η ∈ Bnp,ε) such that the classification mar-
gin is as small as possible. This perturbed input x +η

is usually known as an adversarial example. Further-
more, let us define the margin under adversarial per-
turbations as

`ε(f ; x, y) = inf
η∈Bn∞,ε

`(f ; x + η, y) .

This leads to the definition of adversarial margin loss,
that is

Lεγ(f) = P(x,y)∼D [`ε(f ; x, y) ≤ γ] .

Let S = {(x1, y1), . . . , (xm, ym)} be the training
set composed of m instances drawn independently
from D. Using these instances we define L̂εγ(f) =
1
m

∑m
i=1 1(`ε(f ;xi,yi)≤γ) as the empirical estimate of

Lεγ(f), where 1(·) denotes the indicator function. Note
that Lε0(f) and L̂ε0(f) are the expected and training er-
ror under adversarial perturbations, respectively.

For many classifiers, such as deep neural networks,
the score function f belongs to a complicated func-
tion class F , which usually has more sample com-
plexity than the size of the training set. Even with-
out the presence of an adversary, it is challenging to
bound the generalization error, given by the difference
L0(f)− L̂γ(f), of such function classes. The key idea
behind the compression framework presented in (Arora
et al. 2018) is to show that there exists a finite func-
tion class G with low sample complexity and a map-
ping that assigns a function g ∈ G to every f ∈ F
such that the empirical loss is not severely degraded.
This trick allows us to bound the generalization er-
ror using the sample complexity of G instead of F . A
drawback of this method is that we are only able to
bound L0(g) − L̂γ(f) instead of the original general-
ization error. Nevertheless, as the authors mentioned
in (Arora et al. 2018), a similar issue is present as well
in standard PAC-Bayes bounds, where the bound is
on a noisy version of f . Moreover, the authors discuss
some possible ways to solve this issue, but these ap-
proaches were left for future work. In this paper, we
leverage such a compression framework by extending
it to the case when an adversary is present. Our goal
is to bound the generalization error under the pres-
ence of an adversary. We start by introducing some
formal definitions and theorems, similar to the ones
in (Arora et al. 2018). All proofs are deferred to the
supplementary material.
Definition 2.1 ((γ, ε,S)-compressible). Given a set
of parameter configurations A, let GA = {gA|A ∈ A}
be a set of parametrized functions gA. We say that the
score function f ∈ F is (γ, ε,S)-compressible through
GA if

∀x ∈ S, y ∈ Y : |`ε(f ; x, y)− `ε(gA; x, y)| ≤ γ .
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Theorem 2.2. Given the finite sets A and GA =
{gA|A ∈ A}, if f is (γ, ε,S)-compressible via GA then
there exists an A ∈ A such that with high probability

Lε0(gA) ≤ L̂εγ(f) +O
(√

log |A|
m

)
.

Corollary 2.2.1. In the same setting of Theorem 2.2,
if f is compressible only for a fraction 1 − δ of the
training sample, then with high probability

Lε0(gA) ≤ L̂εγ(f) +O
(√

log |A|
m

)
+ δ .

This main definition and following theorems are trivial
extensions of the ones used in (Arora et al. 2018) to
the adversarial setting. However, even for the linear
classifier, the main technique used in that work for
compressing f cannot be applied to the setup of this
paper without incurring into explicit dimensionality
dependencies in the resulting bounds. This will be
explained in detail in the next section.

3 Main Results

In this section we introduce our main results. We start
with linear classifiers on binary classification and move
forward to multi-class neural networks.

3.1 Linear Classifier

We start with a linear classifier for binary labels.
Assume that x ∈ Bn∞,1, y ∈ {1, 2} and let w =
(w1, . . . , wn)> be a vector of weights of a linear classi-
fier. Then, the score function of the linear classifier is
given by

fw(x) =
(

0
〈w,x〉

)
.

This simplifies the margin to `(f ; x, y) = (2y −
3) 〈w,x〉, which leads to

`ε(fw; x, y) = (2y − 3)(〈w,x〉 − ε ‖w‖1) .

Note that (2y − 3) ∈ {−1,+1}. The weight vector
w ∈ Rn of this classifier, with margin γ, can be com-
pressed into another ŵ such that both classifiers make
the same predictions with reasonable probability (as
we will see in Lemma 3.2). Given δ ∈ (0, 1], the com-
pressed classifier ŵ is constructed entry-wise in the
following definition.
Definition 3.1 (CompressVector(γ,w)). Given w ∈
Bn1,1, δ ∈ (0, 1], γ > 0 and ε > 0, let us define the
random mapping CompressVector(γ, ·) which outputs
ŵ = (ŵ1, . . . , ŵn)> = CompressVector(γ,w) as fol-
lows

ŵi = ziwi/pi

with

zi ∼ Bern(pi) and pi = |wi|
δγ2 (1 + ε)2 ,

where Bern(pi) denotes the Bernoulli distribution with
probability pi.

The following lemma shows that such classifier ŵ out-
puts the same prediction as w, with probability 1− δ,
and has only O

(
(logn)(1 + ε2)/δγ2) non-zero entries

with high probability.
Lemma 3.2. Given w ∈ Bn1,1, δ ∈ (0, 1], γ > 0 and
ε > 0. If ŵ = CompressVector(γ,w) then for any
x ∈ Bn∞,1, y ∈ Y it holds

Pŵ

[∣∣`ε(fw; x, y)− `ε(fŵ; x, y)
∣∣ ≥ γ] ≤ δ ,

and the number of non-zero entries in ŵ is less than
O((logn)(1 + ε)2/δγ2) with high probability.

By discretizing ŵ, we obtain a compression setup that
maps w into a discrete set but fails with probability δ.
To that end, we handle discretization by clipping and
then rounding in the following lemma.
Lemma 3.3. Let us define

• w′ component-wise as w′i = wi1(|wi|≥ γ
4n(1+ε)

),
• w̃ = CompressVector(γ/2,w′),

• ŵ is obtained by rounding each entry of w̃ to the
nearest multiple of γ

2n(1+ε) .

Then, for all x ∈ Bn∞,1 and y ∈ Y we have that

Pŵ

[∣∣`ε(fw; x, y)− `ε(fŵ; x, y)
∣∣ ≥ γ] ≤ δ .

Therefore, we can apply Corollary 2.2.1 and choose
δ =

(
(1 + ε)2/γ2m

)1/3, which yields a generalization
bound of order Õ

(
((1 + ε)2/γ2m)1/3) as shown in the

following theorem.
Theorem 3.4. With high probability

Lε0(fŵ) ≤ L̂εγ(fw) + Õ
((

(1 + ε)2

γ2m

)1/3)
,

where Õ(·) ignores logarithmic factors.

This approach is fairly similar to the original one in
the work of Arora et al. 2018, but the pi values are
chosen differently in order to deal with the new term
ε ‖w‖1 that appears in the margin’s expression.

This result provides a dimension-free bound2. How-
ever, that bound scales withm1/3 instead of

√
m, since

2Except for logarithmic terms.



Emilio Rafael Balda, Niklas Koep, Arash Behboodi, Rudolf Mathar

the compression approach fails with probability δ. To
tackle this issue, Arora et al. 2018 proposed a compres-
sion algorithm based on random projections. In their
setup, this technique works due to a famous corollary
of the Johnson-Lindenstrauss lemma that shows that
we can construct random projections which preserve
the inner product 〈w,x〉. In addition, since the Eu-
clidean inner product can be induced by the `2-norm,
the `2-norm of w is preserved as well. However, in
this setup we would need a random projection that
preserves ‖w‖1 and 〈w,x〉 at the same time, which
seems unattainable unless additional assumptions are
made. Therefore, we propose to assume an effective
sparsity bound on w, which is defined as follows.
Definition 3.5 (Effective s-sparsity). A vector w ∈
Rn is effectively s-sparse, with s ∈ [1, n], if

‖w‖1/2 ≤ s ‖w‖1 .

Note that all s-sparse vectors3 are effectively s-sparse
as well, but not vice-versa. Assuming that w is effec-
tively sparse allows us to compress it by simply setting
its lowest entries to zero. The following lemma pro-
vides a tight bound on the error, in the `1 sense, that
is caused by this process.
Lemma 3.6 ((Foucart et al. 2013): Theorem 2.5).
For any w ∈ Rn the following inequalities hold:

inf {‖w− z‖1 : z is s-sparse} ≤ 1
4s ‖w‖1/2 ,

inf {‖w− z‖∞ : z is s-sparse} ≤ 1
s
‖w‖1 .

In both cases, the infimum is attained when z is an s-
sparse vector whose non-zero entries are the s-largest
absolute entries of w.

For any effectively s-sparse classifier w with margin γ,
this lemma allows us to compress it into a vector ŵ,
with only O(s(1 + ε)/γ) non-zero entries, such that
both classifiers assign the same label to any input.
This is carried out by the following lemma.
Lemma 3.7. Given an effectively s-sparse vector w ∈
Bn1,1, let us define w′ ∈ Bn1,1 as the s-sparse vector
whose non-zero entries are the s-largest absolute en-
tries of w. In addition, the vector ŵ is obtained by
rounding each entry of w′ to the nearest multiple of
γ/s(1 + ε). If we choose s = s(1 + ε)/2γ then

∀x ∈ Bn∞,1, y ∈ Y :
∣∣`ε(fw; x, y)− `ε(fŵ; x, y)

∣∣ ≤ γ .
Since this compression approach does not fail, we can
discretize ŵ and apply Theorem 2.2. This allows to
prove the following generalization bound for the linear
classifier in the presence of an adversary.

3A vector with no more than s non-zero entries is said
to be s-sparse.

Theorem 3.8. Let w be any linear classifier with
‖w‖1/2 / ‖w‖1 ≤ s, and margin γ > 0 on the train-
ing set S. Then, if |S| = m, with high probability the
adversarial risk is bounded by

Lε0(fŵ) ≤ L̂εγ(fw) + Õ
(√

(1 + ε)s
γm

)
,

where Õ(·) ignores logarithmic factors.

This result provides a bound with no explicit dimen-
sion dependence. Moreover, we observe that the pres-
ence of an adversary only increases the sample com-
plexity by a factor (1 + ε). Note that, for dense w’s
like w = 1, the dimension dependence is hidden inside
s. However, it has been observed that the dynamics of
adversarial training lead to sparsity structures in the
weights of linear classifiers and neural networks (Far-
nia et al. 2019; Guo et al. 2018; Madry et al. 2018;
Wang et al. 2018). Our experimental findings, in Sec-
tion 4, align with those results.

3.2 Neural Networks

Due to the `∞-norm bound on the perturbation η, in
this work the mixed (1,∞)-norm of the weight matri-
ces plays a central role. As an example, let us consider
a linear classifier in multi-class classification, that is
f(x) = W>x. Then, a perturbation η can perturb
any entry of the vector of score functions (i.e., f(x))
at most

sup
‖η‖∞≤1

‖W>η‖∞ = ‖W ‖1,∞ .

The last equality comes from the properties of oper-
ator norms, see (Tropp 2004) for more details. Simi-
lar statements can be made for the layers of a neural
network with 1-Lipschitz activation functions. Let us
start by defining a d-layered fully connected neural
network as

xi := φ(W i>xi−1) , ∀i = 1, 2, . . . , d , (1)

where φ is a 1-Lipschitz activation function applied
entry-wise, x0 := x and f(x) := xd. Following the
steps of Section 3.1, we now impose some conditions on
W that allow us to efficiently compress it into another
matrix Ŵ which belongs to a potentially small set.
To that end, let us start by introducing the notion of
effective joint sparsity.
Definition 3.9 (Effective joint sparsity). A matrix
W ∈ Rn1×n2 is effectively joint s-sparse, with s ∈
[1, n2], if

‖W ‖1,1 ≤ s ‖W ‖1,∞ .
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Any matrix with s non-zero columns is effectively
joint s-sparse as well. Note that, given a matrix
W = (w1, . . . ,wn), its effectively joint sparsity can
be written as a the effective sparsity the vector
(‖w1‖1 , . . . , ‖wn‖1)>. A consequence of Lemma 3.6 is
that we can compress effectively joint-sparse matrices
by setting to zero their columns with lowest `1-norm.
For example, assume that W ∈ Rn1×n2 is an effec-
tive joint s-sparse matrix and that Ŵ is constructed
by setting to zero all columns of W except for its s
largest in the `1 sense. Then, by Lemma 3.6, we can
bound the ‖·‖1,∞ error as∥∥∥W − Ŵ

∥∥∥
1,∞
≤ 1
s
‖W ‖1,1 ≤

s

s
‖W ‖1,∞ .

The resulting compressed matrix Ŵ would have only
s non-zero columns instead of the original n2. How-
ever, every column has potentially n1 non-zero values.
Therefore, in order to compressW further, we assume
that each one of its columns has bounded effective
sparsity as well. In summary, effective joint sparsity
allows us to reduce the number of non-zero columns in
a matrix, while effective sparsity of the columns allows
us to reduce the number of non-zero elements that each
of those columns may have. Finally, discretization is
handled using a standard covering number argument.
Putting all together into the following compression al-
gorithm (Algorithm 1) allows us to map W into a
discrete set while keeping the ‖·‖1,∞ error bounded.

By construction, using this algorithm guarantees that
the error is bounded, as stated in the following lemma.
Lemma 3.10. LetW be an effectively joint s2-sparse
matrix with effectively s1-sparse columns, such that
‖W ‖1,∞ ≤ 1. If Ŵ = MatrixCompress (W , γ), then∥∥∥W − Ŵ

∥∥∥
1,∞
≤ γ ,

where Ŵ belongs to a discrete set C such that log |C| ≤
Õ
(
‖W ‖2

1,∞ s1s2/γ
2
)
.

From this lemma, we can see that the set of possible
compressed matrices has reasonable size. Moreover,
approximately sparse matrices can be compressed effi-
ciently. This result leads us to the main contribution
of this paper, which is stated in the following theorem.
Theorem 3.11. Assume x ∈ Bn∞,1. Let fW be a d-
layer neural network with ReLU activations, and effec-
tively joint sj2-sparse weight matrices with effectively
sj1-sparse columns for j = 1, . . . , d. Let us assume that
the network is rebalanced so that

∥∥W 1∥∥
1,∞ = · · · =∥∥∥W d

∥∥∥
1,∞

= 1. Then, given γ > 0 and ε < γ/4, there
exists a finite function set G composed of the func-
tions f

Ŵ
such that for any fW the adversarial risk is

Algorithm 1 MatrixCompress (·, γ)
Require: γ > 0 and W ∈ Rn1×n2 with ‖W ‖1,∞ =
1, effectively s1-sparse columns and is effectively
joint s2-sparse
Ensure: ∥∥∥W − Ŵ

∥∥∥
1,∞
≤ γ ,

where Ŵ belongs to a discrete set C such that
log |C| ≤ Õ

(
‖W ‖2

1,∞ s1s2/γ
2
)

Choose s1 = 3 ‖W ‖1,∞ s1/4γ and s2 =
3 ‖W ‖1,∞ s2/γ

Let W ∈ Rn1×n2 be obtained by setting to zero the
columns ofW except for the s2 columns with largest
`1 norm
Let W̃ ∈ Rn1×n2 be constructed by keeping the s1
largest values of every column of W and setting to
zero the other entries
Let W be the set all possible W̃
Let C be the covering set of W such that ∀W̃ ∈
W,∃Ŵ ∈ C :

∥∥∥W̃ − Ŵ
∥∥∥

1,∞
≤ γ/3

Let Ŵ ∈ C be the closest matrix in the ‖·‖1,∞ sense
to W̃
Return: Ŵ

bounded as

Lε0(f
Ŵ

) ≤ L̂εγ(fW )

+ Õ


√√√√√ d

m

(
1 + γ/2− ε
γ/2− 2ε

)2
 d∑
j=1

√
sj1s

j
2

2


with high probability.

This result proves a bound with no explicit dimen-
sion dependence, which is also independent from the
number of classes. On the other hand, there seems
to be an unavoidable dependence with

√
d. Yet, this

dependence is also present in the bounds for multi-
layer neural networks, derived in related works (Khim
et al. 2019; Tu et al. 2018). The rebalancing in Theo-
rem 3.11 simplifies the proof by getting rid of the term∏d
j=1 ‖W

j‖1,∞, which appears in other works such as
(Khim et al. 2019). Note that, for ReLU networks,
rebalancing does not affect the labels that fW assigns
to the inputs. However, by the definition of `ε and Lεγ ,
in practice, γ cannot be larger than 2

∏d
j=1 ‖W

j‖1,∞.
Then, the requirement ε < γ/4, in the setup of The-
orem 3.11, limits the use of this result to ε < 0.5,
or less for neural networks with smaller classification
margins. Nonetheless, considering that x ∈ Bn∞,1, this
requirement may not be extremely restrictive, since
ε = 0.5 is a rather high value. Despite this shortcom-
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Table 1: Comparison of the result in Theorem 3.11 with existing bounds for d-layered neural networks and
‖η‖∞ ≤ ε. We assume ReLU activations and rebalance the networks such that the bounds are simplified. The
input x ∈ Rn is assumed to belong to one of k classes and γ is the classification margin. The term λ+

f > 0
depends on m but may not vanish as m increases, while the term Λε vanishes if ε = 0. For the precise definition
of these two terms refer to (Tu et al. 2018).

Rebalancing Generalization Bound

Khim et al. 2019 ‖x‖2 ≤ R
∥∥W j

∥∥
1,∞ = 1 Õ

(√
d
mk

2(Rmaxj
∥∥W j

∥∥
F + ε)2

)
Tu et al. 2018 ‖x‖2 ≤ R

∥∥W j
∥∥

2 = 1 Õ

λ+
f ε+

√
R2

m

(
n2
(∑d

j=1

√∥∥W j
∥∥

F

)2
+ Λε

)2


ours ‖x‖∞ ≤ 1
∥∥W j

∥∥
1,∞ = 1 Õ

(√
d
m

(
1+γ−ε
γ−2ε

)2 (∑d
j=1

√∥∥W j
∥∥

1/2,∞

∥∥W j
∥∥

1,1

)2
)

ing, Theorem 3.11 improves existing bounds in other
aspects, as shown in Table 1. For instance, we observe
that Theorem 3.11 improves existing works from re-
quiring ‖x‖2 ≤ R to ‖x‖∞ ≤ 1. Note that, in general,
knowing that ‖x‖1 ≤ 1 only allows to bound R by

√
n,

which would add an explicit dimension dependence on
existing results. Moreover, our result does not depend
on the number of classes as the work from Khim et al.
2019, nor it contains terms that do not vanish with
m or an explicit dimension dependence (as Tu et al.
2018).

4 Experiments

We conduct a experiment to corroborate our findings.
To that end, we train a fully connected neural network
of 3 layers with ReLU activations on the MNIST and
CIFAR-10 datasets. After preprocessing, the inputs
are 1024-dimensional vectors with `∞-norm bounded
by one. We split training into two phases to distin-
guish between bounds that correlate with adversarial
error and ones that correlate with standard error. Im-
plementation details are deferred to the supplementary
material.

In Figure 1(a), the network is first trained, on the
MNIST dataset, without using adversarial examples.
Then, after 50% of the training time, we start intro-
ducing adversarial examples to the training set. The
same procedure is done in Figure 1(b) for the CIFAR-
10 dataset, but adversarial examples are introduced
after 33% of the training time. We observe that the
adversarial error remains unchanged until adversar-
ial training starts, this behavior correlates well with
our result. Interestingly, classic (not adversarial) risk
bounds (Bartlett et al. 2017; Neyshabur, Bhojanapalli,
et al. 2017a) decrease significantly with adversarial
training. This agrees with the intuition, from The-
orem 3.11, that the effective sparsity induced by ad-
versarial training improves generalization. Addition-

ally, we compute the effective sparsity and effective
joint sparsity of the weight matrices. In Figure 2, we
see how these quantities correlate well with the ad-
versarial risk as well. Interestingly, the effective joint
sparsity of the weight matrices dominates our general-
ization bound, a property that was overlooked so far
in this context. Overall, these findings show that in-
ducing sparsity structures on the weight matrices does
not only provide robustness, but also improves gener-
alization of neural networks.

5 Conclusion

We have established adversarial risk bounds for DNNs
under `∞ attacks. Our result has improved existing
generalization bounds in terms of dependencies with
the number of classes, the input dimension, and the
norm of the inputs. This generalization bound has
shown that effective sparsity does not only improve ro-
bustness, but results in better generalization of DNNs.
As a result, this theoretical finding encourages the use
of adversarial examples to improve the generalization
capabilities of classifiers, even for applications where
robustness to perturbations is not a major concern.

While it was already observed by Madry et al. 2018
that adversarial training leads to sparse weights, our
empirical simulations found the notion of effective joint
sparsity to be specially relevant for providing gener-
alization guarantees under adversarial perturbations.
This connection has not been discovered so far in ex-
isting works. As consequence, building regularization
or optimization schemes based on this notion of joint
sparsity seems to be a promising alternative for ob-
taining robust models, without adversarial training.
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Figure 1: Test error (i.e., 1 − accuracy) and rescaled generalization bounds during standard and adversarial
training. For aesthetic reasons, these bounds are normalized to be between 0 and 2. Adversarial training
improves our bound significantly, while standard training does not.
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Figure 2: Experiment on the MNIST dataset. Effective sparsity and effective joint sparsity of the weight matrices,
at every layer, of a vanilla neural network. These quantities tend to improve with adversarial training.
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