
FREQUENCY ALLOCATION A N D  LINEAR PROGRAMMING 

Martin Hellebrandt I ,  Frank Lambrecht 2 ,  Rudolf Mathar 
Thomas Niessen ', Rainer Starke 

'Aachen University of Technology, D-52056 Aachen, Germany 
2Mannesmann Mobilfunk GmbH, D-40543 Dusseldorf, Germany 

Abstract The present paper deals with optimal fixed 
channel assignment for large real-world cellular radio net- 
works. Examples are taken from data of the DZnetwork, 
operated by Mannesmann Mobilfunk (MMO) in Ger- 
many. Because of the huge size of the problems an 
exact optimal solution is presently out of reach. We 
present a heuristic iterative approach which performs ex- 
tremely well, and significantly outperforms channel de- 
signs presently used by network operators. The basic in- 
gredients of our approach are 1. fast and well established 
simple heuristics as initial assignments, 2. splitting the 
whole problem into smaller subproblems which can be 
optimized efficiently by solving a binary linear program 
(BLP), and repeating this process iteratively, 3. past- 
processing the resulting near-optimal design t o  avoid un- 
desirable properties. A lot of detailed problems must be 
solved, such as a powerful preprocessing of constraints 
for the BLPs, and a carefull selection of the subproblems 
in 2. In summary, a very flexible tool is derived, also 
capable of taking into account external constraints from 
practical requirements. 

I. INTRODUCTION 

In GSM-systems frequency allocation is performed off- 
line. Usually, the allocation is based on estimates 
of the traffic density and the propagation conditions 
[3 ,  81. Based on the Erlang per cell values of the busy 
hour traffic, for every cell the smallest number of fre- 
quencies is computed such that the blocking probabil- 
ity is below a certain threshold, usually 1-2%. From 
certain propagation models, the interference probabil- 
ity between each pair of cells is obtained. These values 
can be used to derive the compatibility matrix. Once 
this is done, the problem of allocating frequencies to 
cells is a purely combinatorial, for practical instances 
large scale optimization problem. 

In [4] a restricted model is considered, where inter- 
ference depends on a certain distance condition and 
only co-channel interferences can occur. It is shown 
that under these hypotheses the frequency allocation 
problem can be formulated as an integer linear pro- 
gram. However, this description cannot be carried over 
to the general case. Moreover, in most cases the algo- 

rithm presented in [4] is of no practical use. 
The aim of this paper is to describe methods that 

have been deployed recently for frequency allocation 
within the D2-network in Germany, operated by Man- 
nesmann Mobilfunk (MMO). We start with introduc- 
ing the frequency allocation problem as a binary linear 
program (BLP). 

Although integer and binary linear programs are 
well investigated, formulating frequency allocation as 
a BLP is only a minor step towards a solution, since 
there is no algorithm performing globally well on dif- 
ferent types of BLPs. Usually, a problem adapted pre- 
processing is inevitable. The BLP used in this paper 
contains a set of constraints typical for the so-called 
node-packing problem (a classical combinatorial opti- 
mization problem from graph theory). There are sev- 
eral suggestions for its preprocessing in the literature. 
Amazingly, it turns out that a relatively simple pro- 
cedure, namely maximum clique substitution, yields 
excellent results (see section 3 ) .  

In section 4, additional restrictions arising in prac- 
tice are described. Moreover, we show how each kind 
of restriction can be formulated by adding certain con- 
straints to the binary linear programs. However, be- 
cause of their enormous size, an exact solution of these 
programs is completely out of reach. This problem is 
tackled in section 5 by approximating the optimal so- 
lution stepwise. At each step of our procedure a small 
binary linear sub-program is solved. Each of these 
small programs has the same structure as the whole 
problem, and hence can be treated by the methods 
described in sections 3 and 4. 

Finally, in section 6 we report on numerical appli- 
cations and compare our results with frequency alloca- 
tion designs formerly used by Mannesmann Mobilfunk. 

11. FREQUENCY ALLOCATION 

Let Z denote a cellular network consisting of n cells 
21,. . . ,Z,. The aim is to allocate N frequencies 
1 , 2 , .  . . , N to the cells of the network such that cer- 
tain constraints are satisfied. These constraints are 
described by a symmetric compatibility matrix C = 
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(cij)i,j=l,,, ,n and a requirement vector r = ( r i ) i = ~ . . , ~ ,  
both consisting of non-negative integer entries. The 
meaning of C and r are as follows. Frequencies k and 
1 can be allocated to cells Zi and Zj simultaneously, 
only if Ik - 11 2 ci j ,  or i = j and IC = 1. The values 
~i describe the demand of cell Zi, i.e., the number of 
frequencies to be assigned to cell Zi. 

A frequency allocation design is described by a 0-1 
matrix x = (xik)Ecl, where xik = I if and only if fre- 
quency k is assigned to cell Zi. Therefore, a solution 
of a frequency allocation problem (FAP) consisting of 
Z ,  C and r is a matrix X = ( X i k ) ~ ~ l  such that 

C x i k  = ri for every i = 1,. . . , N .  
k = l  

111. LINEAR PROGRAMMING 

A binary linear program consists of a linear objective 
function which is to be maximized with respect to a set 
of linear inequalities and equalities, where the values 
of all variables are restricted to 0 and 1. 

Let X = (xik);cl be a 0-1 matrix. By (l), X is 
an admissible frequency allocation if and only if 

Xik + xjz 5 1 for all ( i ,  k) # ( j ,  I?), lk - 11 < cij .  (3) 

If in addition X satisfies (2), then X is a solution of the 
FAP. However, (2) makes the problem complicated, 
since it is not trivially feasible. Hence we will replace 
this restriction by related inequalities and add an ob- 
jective function as follows. 

BLP: Maximize the objective function 

n N  

f(x) = xik 
i=l k=l 

such that 

x ~ ~ ~ { O , 1 } f o r a l l i = 1 ,  . . . ,  n, k = l ,  . . . ,  N ,  (4) 
Xik: + xjl 5 1 for all (i, k) # ( j , l ) ,  Ik - 11 < cij, ( 5 )  

N 
Xik 5 Ti  for all i = 1,. . . , n. (6) 

k = l  

A solution X = (Zik):Cl of the FAP corresponds to  
a solution of the BLP with f(X) = Cy=l vi, and vice 
versa. In this respect, the BLP is equivalent to the 
FAP. If the FAP has no solution, the BLP can still be 
solved and the value of the objective function satisfies 
f < ri. This provides useful information, since 

~i - f is the minimum number of unsatisfied re- 
quirements over all admissible frequency allocations. 
A key advantage of the BLP is that it is always triv- 
ially feasible, that is, xik = 0 for all i = 1,. . , ,n, 
k = 1,. . . , N  is admissible with respect to (4), ( 5 ) ,  
and (6). 

The above BLP is still an unfavorable starting 
point for codes solving integer linear programs. Such 
codes usually apply branch-and-bound, where in each 
step a (relaxed) linear program is solved. This can be 
briefly described as follows. First, the integral con- 
straints are relaxed, which means that (4) is replaced 
bY 

0 5 x& 5 1 for all i = 1 , .  . . ,n, k = 1 , .  . . , N ,  (7) 

and the resulting linear program is solved. If an inte- 
gral solution is found, then we are done. Otherwise, 
certain variables are fixed to admissible integral values, 
and the (partially) relaxed linear program is solved. 
Once an integral solution is obtained, the value of the 
objective function can be used to cut off parts of the 
branching tree in forthcoming steps. 

To improve the upper bounds in the branching tree, 
a preprocessing step is ususally applied to the con- 
straints of the integer linear program (see, e.g., [7]). 
In the following we present a technique which yields a 
significant speed-up of computation time for the FAP 
related BLP. First, some graph theoretical notation is 
introduced. 

A graph G = (V, E )  consists of a finite set of nodes 
V and a set of edges E g {(u,v)Iu,v E V,U # v}. 
Every set U E V defines a subgraph H = (U, E') of G, 
where E' = E f l  {(U, v)Iu, v E U, U # U } .  H is called 
the induced subgraph of U in G. An induced subgraph 
is called a clique of G, if every pair of distinct nodes 
is joined by an edge. A clique is called maximal, if it 
is not properly contained in another clique. 

A node-packing problem is a binary linear pro- 
gram such that the constraints are all of the form 
zi + x3 5 1, i # j .  These constraints can be de- 
scribed by a graph G = (V, E ) ,  where V is the set of 
variables, say V = {XI ,... , zp} ,  and (xi,xj) E E if 
and only if 2% + x j  5 1 is a constraint. In the objec- 
tive function f = E:='=, cixi of a node-packing problem 
each e; may be seen as weight of node 2,. Hence, a so- 
lution of the node-packing problem corresponds to a 
set of pairwise non-adjacent nodes with maximum cu- 
mulative weight. It is well-known (see, e.g., [a]) that 
node-packing is NP-hard. 

The cliques of the graph G are of great importance 
for the node-packing problem, since at most one node 
of each clique can belong to a set of pairwise non- 
adjacent nodes. In other words, if U & V induces a 
clique in G, then C z l E U u  5 1 is a valid inequality of 
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the node-packing problem. If IUI 2 3, then adding 
this inequality to the constraints of the node-packing 
problem cuts off non-integral, extrema1 points of the 
polyhedron of the relaxed linear problem. Obviously, 
this method is most efficient if U is a maximal clique. 
Hence, it is desirable to  know the node sets of all max- 
imal cliques of G. However, it is easy to see that the 
number of these sets can grow exponentially in IVI 
and therefore cannot be computed efficiently. Conse- 
quently, a suitable selection of maximal cliques is of 
great importance. 

Let us return to the above BLP. The constraints ( 5 )  
describe a node-packing problem on a graph G with 
node set V = {x , k  I i = l , . .  . ,n ,  IC = 1 ,... , N } .  
An equivalent set of constraints is obtained as follows. 
By means of a greedy algorithm sets U I ,  . . . , U, 5 V 
are determined such that each Vi induces a maximal 
clique in G, and each edge of G is contained in at least 
one of these cliques. Thereafter, ( 5 )  is replaced by 

x,k 5 1 for all 1 = 1,. . . , q .  ( 8 )  

This maximum clique substitution yields an equivalent 
set of constraints. (8) contains only valid inequalities 
for the BLP, and hence we can add these inequalities to  
(5) without changing the set of feasible points. More- 
over, all inequalities from (5) can be removed, since 
each of them is implied by an inequality from (8) con- 
taining the corresponding edge of G. 

Z , k E U I  

IV. ADDITIONAL RESTRICTIONS 

Certain additional constraints must be taken into ac- 
count for real-world instances. First of all, if network 
providers use the same spectrum, frequencies must be 
negotiated in advance for interfering cells. Hence, cells 
may have lists of prescribed and forbidden frequencies. 

If frequency IC is prescribed, or banned, in cell Zi, 
the additional constraint  xi]^ = 1, or xik = 0, respec- 
tively, is used in the BLP. The version of the BLP that 
includes all constraints resulting from prescribed and 
forbidden frequencies will be call extended BLP. 

Obviously, at least one frequency must be assigned 
to each cell of the network. Since the requirements ri 
are strictly positive, no additional condition is neces- 
sary whenever the FAP is solvable. Otherwise, a solu- 
tion of the BLP will not necessarily assign at least one 
frequency to every cell. To achieve this, the following 
constraints are near at hand. 

N C xik 2 1 for all i = 1,. . . , n. (9) 

However, the above constraints prevent the BLP from 
being trivially feasible. It may even become infeasible. 

IC=l 

To avoid this problem, new binary variables y1, . . . , yn 
are introduced and the constraints 

y i  E (0, l} for all j = 1,. . . ,n, and (10) 

are added. The meaning of the new variables is as 
follows. In a solution of the binary linear program, 
y i  = 0 will indicate that no frequency is allocated to 
cell Zi. We aim at maximizing the objective function 
$*, given by 

n n N 

where the penalty value p is a positive integer. By us- 
ing the objective function f * we accept a degradation 
of at most p allocated frequencies for every addition- 
ally covered cell. 

V. HANDLING OF LARGE INSTANCES 

In spite of the fact that modern integer programming 
codes are very powerful tools for solving combinatorial 
optimization problems, instances with several thou- 
sands of variables often exceed the scope of such codes. 
The size of the binary linear programs resulting from 
data of real-world networks provided as examples by 
Mannesmann Mobilfunk (30.000-70.000 variables) is 
out of reach of the code we use. Therefore, we replaced 
the solution of the extended BLP by an iterated proce- 
dure, where at each stage an embedded much smaller 
binary linear program is solved. 

Assume that an admissible frequency allocation 
X = (z,k)$, is found. Then (xzk)$!l is a feasi- 
ble point of the constraints of the extended BLP. If 
all requirements are satisfied, then we are done. Oth- 
erwise, we select a subset of cells Z' of moderate size 
and try to find a better frequency allocation within 
this group. For this purpose the extended BLP is first 
formulated for the sub-network given by Z' .  To ensure 
that a frequency allocation for Z' will be compatible 
with the frequency allocation at the remaining cells, 
the list of forbidden frequencies for each cell in Z' is 
changed accordingly. Thereafter, the resulting binary 
linear program is solved. Let (xLk)Fzz EZ,,k=l  denote 
the solution. Then (xzk):itl defined by 
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is also an admissible frequency allocation for 2. More- 
over, the new value of the objective function f *  obvi- 
ously satisfies f *  2 f .  If now all requirements are 
fulfilled, we are done. Otherwise, the same procedure 
is repeated with a new set of cells Z’ ,  until certain 
stopping criteria apply. 

There are some interesting approaches to speed up 
computation time. First of all, not every binary lin- 
ear subprogram must be solved. If for instance it 
turns out that the current BLP is intractable, then 
a different subnetwork Z’ can be chosen. We used 
time limits to declare a subproblem intractable and 
switch to the next. Moreover, the values of the objec- 
tive functions of the (relaxed) linear programs that 
are solved during the branch-and-bound algorithm 
are also of reat value. If one of these is less than 

EkEl x 2 k  + 1, then no improvement can be 
expected in the remaining part of the branching tree. 
In particular, if this happens with the first linear pro- 
gram, the actual procedure is stopped and a new set 
Z‘ will be chosen. 

Much care must be taken with the selection of the 
set Z’ .  The basic idea resembles multidimensional 
scaling 161. Given pairwise dissimilarities between n 
objects, the aim of multidimensional scaling is to de- 
termine a configuration of n points in a Euclidean 
space such that the interpoint distances fit the given 
dissimilarities best. 

The positive entries of the compatibility matrix 
C = ( ~ ~ ~ ) ~ , ~ = l , .  ,n are transformed to quantities which 
are roughly related to the geometrical distance be- 
tween individual base stations by setting 6, = U / C , ~ .  

Closely neighboring cells will have a small ~ 5 % ~ )  while 
large d,, indicate that the cells are well separated. a 
is an appropriate scaling factor. 

In practice, only integer values 0,1,2 and 3 occur 
in the compatibility matrix C ,  where cy = 0 is inter- 
preted as missing distance information. Finding an ap- 
proximate location of base stations in the plane reads 
as to 

5 

2 
min ~ ( a , .  . . ,zn) = (110, - z311 - 6”) (12) 

c,j >o 

over all 2 1 , .  . , , zn E R2. For real-world problem sizes 
this is an extremely difficult problem. Because of the 
huge number of local minima in (12) it is very unlikely 
that gradient based methods will find the global min- 
imum. 

We apply a special type of two-phase simulated 
annealing to the above problem. (For general infor- 
mation on simulated annealing, see [l].) The results 
are amazingly accurate. For an example with n = 1181 
cells and 17342 positive entries in C the algorithm was 

stopped at H = 12.369. The average error per data 
point dij is 7.13. 

The final coordinates 21,. . . , zn represent the in- 
terference pattern quite accurately in a geometrical 
form. These points are used for further processing in 
the algorithm which generates new candidates for the 
sub-BLP. In the following description we identify zi 
and the corresponding cell Zi. 

1. Select a random cell xi. 

2. Choose a radius T and include in Z’ all cells xj 
satisfying lIzi --zjIl 5 r. Select r such that a cer- 
tain number L of included cells is not exceeded. 
L is determined by the maximum acceptable size 
of the sub-BLP. 

The resulting cells and the updated lists of forbid- 
den frequencies are now passed to the corresponding 
BLP. Each request for a new candidate Z’ from the 
main routine initiates the above steps 1. and 2. to be 
executed. Observe that the geometric configuration 
(01,. . . , 2,) needs to be calculated only once in ad- 
vance. 

VI. COMPUTATIONAL RESULTS 

The techniques of the preceding sections were applied 
to  10 frequency assignment instances with data pro- 
vided by Mannesmann Mobilfunk GmbH, Germany. 
First, an admissible initial allocation was determined 
by a fast graph coloring heuristic. Thereafter, suc- 
cessive improvements were found by iteratively solv- 
ing subproblems, until no unsatisfied requirements re- 
mained or no further improvement could be found. 

It turned out that some instances (namely 3,4,10) 
could be solved by the initial heuristic within a few 
seconds. All other problems demanded for a consider- 
able amount of computation time, varying from some 
minutes to several hours. Subproblems of up to  1800 
variables had to be solved. This corresponds to a size 
of 80 to 100 cells depending on the number of external 
constraints passed to the sub-BLP. 

The results of our channel allocation strategy used 
on test data in comparison to the former algorithm in 
use at Mannesmann Mobilfunk are depicted in table 
1. In all but the most trivial cases BLP could signifi- 
cantly improve the frequency allocation. In particular, 
for every instance a channel allocation could be calcu- 
lated that assigns at least one frequency to every cell, 
whereas the former D2-algorithm left three cells uncov- 
ered in problem 2. Furthermore, the overall blocking 
probability B2 of this network could be decreased by 
more than 50%, where Bz is defined by 

B2 = ( 2 P % )  -le Pi& (Pz) .  
i=l i=l 
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problem 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

cells 

558 
597 
782 
921 
1181 
927 
517 
836 
68 1 
755 

__ 

former MMO algorithm 
uncovered unsatisfied 

0 19 
3 160 
0 0 
0 0 
0 1 
0 124 
0 45 
0 3 
0 19 
0 0 

cells requirements 

BLP method 
uncovered unsatisfied 

0 8 
0 111 
0 0 
0 0 
0 0 
0 72 
0 23 
0 3 
0 12 
0 0 

cells requirements 

Table 1: Results of the BLP method compared to the former algorithm used by MMO. 

Here l?,(x) = (E,”=, $)-’$ denotes the first Er- 
lang formula, pi is the offered load in cell Zi, and 
ni = Cy=lzij is the number of channels allocated 
to cell Zi. 

Further analysis [5] of certain test data showed that 
an average gain of capacity of 2.6% by the BLP method 
reduces the blocking rate by 30%. 

VII. CONCLUSIONS 

Fixed channel assignment (FCA) can be seen as a com- 
binatorial optimization problem. However, because of 
the enormous size of present cellular radio networks 
an exact solution is completely out of reach. In order 
to provide near optimal feasible solutions for network 
management purposes, in this paper we suggest to for- 
mulate the channel assignment problem as a binary lin- 
ear program (BLP). A feasible initial solution is deter- 
mined by a fast and simple heuristic. We then iterate 
to choose successively subnets and optimize the corre- 
sponding sufficiently small BLP, until certain stopping 
criteria are satisfied. Finally, the number of cells with 
no channel so far is minimized by modifying the ob- 
jective function. An appropriate selection procedure of 
subnets, and preprocessing of the corresponding BLPs 
are further important steps, which are satisfactorily 
solved. 

The computational results presented in section 6 
show that our approach yields a powerful and flexible 
software tool for automatic channel allocation. Chan- 
nel designs derived by this tool significantly outper- 
form allocations formerly in use. 
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