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Non-Asymptotic Bounds on the Performance of
Dual Methods for Resource Allocation Problems

Simon Görtzen and Anke Schmeink, Member, IEEE

Abstract—In this paper, dual methods based on Lagrangian
relaxation for multiuser multicarrier resource allocation prob-
lems are analyzed. Their application to non-convex resource
allocation problems is based on results guaranteeing asymptotic
optimality as the number of subcarriers tends to infinity. This
work analyzes the workings and performance of dual methods
for resource allocation problems with concave rate functions
and a finite number of subcarriers. The core results are the
convexity of resource allocation problems with subcarrier sharing
and an upper bound on the number of subcarriers being shared.
Based on these results, absolute and relative performance bounds
are presented for dual methods when applied to the resource
allocation problem without subcarrier sharing. The exemplary
problems considered in this work are sum rate maximization
with global and individual power budgets and sum power
minimization with global and individual rate demands.

Index Terms—Resource allocation, adaptive modulation, or-
thogonal frequency division multiple access (OFDMA), duality
theory, convex optimization, combinatorial optimization.

I. INTRODUCTION

MULTICARRIER communication systems are systems
in which the available spectrum is separated into or-

thogonal communication channels, or subcarriers. A central
entity is tasked to allocate the available subcarriers and
power to users, which constitutes a mixed integer-continuous
multicarrier resource allocation problem (RAP). This class
of RAPs has been widely studied, with the assignment of
non-interfering subcarriers in orthogonal frequency division
multiple access (OFDMA) systems constituting a prominent
practical example and research topic. Broadening the defini-
tion, any communication system that allows for the orthogonal
division and assignment of resources across one or more
dimensions encounters problems of resource allocation.

In a multicarrier system serving a single user, the optimal
solution is given by classical bit-loading [1]. For the multiuser
case, subcarriers have to be uniquely allocated to users,
complicating the combinatorial optimization problem. The
objective of this problem is to maximize an objective function
which depends on the users’ data rates and power consumption
per subcarrier. This maximization problem has to be solved
under one or more constraints regarding power consumption
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and/or data rate requirements. In [2], dual methods for non-
convex multicarrier RAPs are introduced for concave as well
as for non-differentiable, “discrete” rate functions. The foun-
dation for these methods is given by previous advances in
optimization theory [3], [4]. Since then, various authors have
investigated different RAPs based on the arguments presented
in [2]. While the main research focus is on concave rate func-
tions [5]–[8], discrete utility functions are also analyzed [9]–
[12], often in addition to the concave case. This list is not
meant to be exhaustive but shows that dual methods are the
state of the art to solve multicarrier RAPs. In [13], RAPs with
discrete rate functions are analyzed and performance bounds
for dual methods are provided for three exemplary problems.
In addition to providing an absolute bound for RAPs with
a finite number of subcarriers, these bounds formally prove
that the relative performance reaches tends towards 100%
for a growing number of subcarriers. This paper generalizes
the results of [13] to multicarrier RAPs with concave utility
functions. Consequently, the problems in this work are mixed
integer-continuous rather than linear integer programs, which
necessitates a broader range of mathematical tools.

Dual methods are a powerful tool to solve arbitrary RAPs.
Their good performance is being attributed to the fact that the
RAP satisfies a so-called time-sharing condition as the number
of subcarriers N goes to infinity. As shown in [2], problems
that satisfy this condition have zero duality gap. Thus, dual
methods can be applied to obtain an asymptotically optimal
solution to the original problem.

Practice has shown that dual methods perform very well
for systems with a comparably small number of subcarriers.
Exemplary numerical computations in [5] also support the idea
that satisfactory performance of dual methods does not rely
on large N . However, to the best of the authors’ knowledge,
the non-asymptotic case has not been formally analyzed
regarding questions of duality gap, convexity, and optimality.
The main purpose of this work is to offer a new perspective
on dual methods for RAPs which allows for such an analysis.
Consequently, the arguments of [2] and subsequent research
are cast in a new light. Focusing on arbitrary, but finite N not
only simplifies the analysis, but allows us to freely combine
well-known results from convex, linear and integer linear
optimization theory to obtain results applicable to practical
systems. Last but not least, the presented approach shows that
while the results of [3], [4] on the duality gap of non-convex
optimization problems are valuable in general, they are not
necessary for the case of multiuser multicarrier RAPs.

The primary contribution of this work is to increase the
understanding of dual methods and their performance with re-
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spect to resource allocation problems. The problems appearing
in this paper are meant to serve as blueprints for the problems
encountered in practical systems. We formally prove that
the dual solution has a near-discrete structure and calculate
absolute and relative performance bounds, which simplifies
the implementation of dual methods with respect to numerical
precision and algorithm termination. We furthermore show that
the performance of a dual method strongly depends on the
rounding method used to obtain a discrete solution, which is
an often overlooked step of high practical importance.

The paper is organized as follows. Section II covers the
system model and notation. Also included is a detailed de-
scription of the section structure of Section III and Section IV.
In Section III, the sum rate maximization problem with a
global power budget and the sum power minimization problem
with a global rate demand are analyzed. Section IV covers the
sum rate maximization problem with individual power budgets
and the sum power minimization problem with individual
rate demands. Each of the aforementioned sections includes
a performance evaluation of dual methods for the respective
problems. Section V concludes the paper.

II. PRELIMINARIES

We consider a wireless communication system with K
users and N orthogonal subcarriers, in which each subcarrier
can only be used by at most one user. Let pk,n denote
the transmit power spent for user k on subcarrier n. Then,
user k’s data rate on subcarrier n is given as rk,n(pk,n)
for a rate utility function rk,n : R+ → R+ incorporating
channel gain information and other factors. The classical
example of a concave rate function given channel gain gk,n
is rk,n(pk,n) = log2 (1 + gk,npk,n), which is based on the
Shannon bound [14]. With the appropriate scaling factors,
this function becomes a good approximation of a multitude of
practical modulation and coding schemes (MCSs) which cor-
respond to discontinuous rate functions [15]. For the purpose
of this work, we assume all rate functions to be continuous
but not necessarily differentiable. Furthermore, we assume the
following properties to hold for all k and n:

1) rk,n is concave as a function of pk,n,
2) rk,n(0) = 0,
3) lim

t→∞rk,n(t)/t = 0.

The Shannon rate formula above satisfies all of these prop-
erties, as do most variations based on scaling factors. Note
that the term lim

t→∞rk,n(t)/t in 3) denotes the slope of the

line passing through rk,n(0) = 0 and rk,n(t) as t approaches
infinity. For linear functions, it coincides with their slope, and
it is 0 for bounded functions. Any rate function is easily
modified to satisfy 3) as the achievable rates of practical
systems are always bounded.

In this paper, we analyze four resource allocation problems
which are formally introduced in the following sections. They
are the sum rate maximization problem (SRMP), the sum
rate maximization problem with individual budgets (SRMPI),
the sum power minimization problem (SPMP), and the
sum power minimization problem with individual demands
(SPMPI). Refer to Table I for an overview. For problems
with individual requirements, K constraints govern the power

TABLE I
AN OVERVIEW OF THE FOUR PROBLEMS ANALYZED IN THIS PAPER.

Section Problem Objective Constraint Set Type Size
III-A SRMP sum rate max. global power budget 1
III-B SPMP sum power min. global rate demand 1
IV-A SRMPI sum rate max. individual power budgets K
IV-B SPMPI sum power min. individual rate demands K

budget or rate demand of each user. For problems with a global
requirement, a single constraint ensures that the sum power or
sum rate of all users satisfies a given bound. Section III covers
resource allocation under a global constraint. This includes an
analysis of the SRMP in full detail, followed by an analysis
of the SPMP. The section concludes with a joint performance
evaluation for both problems. Section IV covers the problem
of resource allocation under user-individual constraints. The
analysis of the SRMPI and the SPMPI is presented in this
section, followed again by a performance evaluation.

For ease of reference and comparison, the analysis of each
RAP in the aforementioned sections is structured in the same
way. Note that analogous proofs in the analysis of later
sections are omitted to avoid repetition. We provide a short
overview of this structure in the following list:

1) Formulation – a multiple-choice knapsack-based
problem formulation of the RAP with continuous
power variables {pk,n}k,n and binary allocation vari-
ables {xk,n}k,n is introduced.

2) Relaxation – the binary condition of the allocation
variables is relaxed to obtain an RAP with subcarrier
sharing.

3) Convexity – the convexity of the relaxed problem is
shown.

4) Duality – the concurrent dual problem of the above
problems is introduced.

5) Performance – a bound on the number of nonbinary
components in solutions to the relaxed problem is pre-
sented, and it is shown how to obtain feasible roundings1

and performance guarantees based on this bound.

The novelty of the presented approach lies in the formu-
lation used to describe the RAPs. It is inspired by so-called
multiple-choice knapsack problems in integer linear program-
ming [16]. Different from formulations that restrict users’
power levels to nonconvex domains, the unique subcarrier
usage constraint is made explicit by introducing additional
binary variables that govern which subcarriers are assigned
to which user. Doing so results in a nonconvex problem
formulation with nonconvex constraint set of size 1 in the case
of a global constraint, and size K in the case of individual
constraints. Throughout this paper, modified and transformed
problems related to each of the four original RAPs appear.
Denoting the original RAP by (P), which we assume to be
feasible, they are introduced in the following summary:

As an RAP with a fixed and finite number of subcarriers (as
opposed to N → ∞), problem (P) does not satisfy the time-
sharing property of [2]. Linearly relaxing the integer subcarrier
allocation constraint yields (P-S), which corresponds to a
system with subcarrier sharing. By definition, (P-S) satisfies

1This formal approach fails in the case of the SPMPI. Refer to Section IV-C
for details.



3432 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 6, JUNE 2014

the time-sharing property. Thus, it is known from [2] that
there is zero duality gap between (P-S) and its dual problem,
denoted (P-D). In this paper, we show how to obtain equivalent
convex formulations, denoted (P-C), for each of the linear
relaxations (P-S) of the examined RAPs. This extends the
work of [2] as zero duality gap then follows from checking
for a constraint qualification like Slater’s condition.

With the performance analysis described in 5), this paper
further contributes to the question of whether dual methods
for RAPs can be considered optimal. We present a bound for
the number of nonbinary components that occur in solutions
to (P-S), which can be transformed into solutions to the dual
problem (P-D), and vice versa. By showing that feasible points
of (P) can be obtained from these solutions, it is possible
to give a performance guarantee for dual methods. To the
best of the authors’ knowledge, this is the first performance
analysis which does not depend on the asymptotic arguments
that provide the basis for the optimality claims of [2].

Notation

We introduce shorthand notation for a few recurring for-
mulas. For a rate function rk,n, we define the conjugate func-
tions r∗k,n(λ) = suppk,n

{rk,n(pk,n)− λpk,n} and r◦k,n(λ) =
infpk,n

{pk,n − λrk,n(pk,n)}. See Fig. 1 for a visualization.
Given slope λ, r∗k,n(λ) is the smallest value such that the
line λpk,n + r∗k,n(λ) is greater or equal to rk,n(pk,n) for
all pk,n. For λ > 0, it holds that r◦k,n(λ) = −λr∗(1/λ).

For a set of real-valued variables {xk,n}k,n and a set S,
we define cS = |{(k, n) |xk,n ∈ S}| . The term cS counts the
number of variables with values within the set S.

III. RESOURCE ALLOCATION UNDER A GLOBAL

CONSTRAINT

A. Sum Rate Maximization with a Global Power Budget

Given a global power constraint pmax > 0 and rate
functions rk,n, the SRMP is an optimization problem with
variables {pk,n}k,n and {xk,n}k,n. The binary variable xk,n
has a value of one if user k is using subcarrier n, and a value
of zero otherwise.

(SRMP) maximize
pk,n≥0, xk,n∈{0,1}

K∑
k=1

N∑
n=1

xk,nrk,n(pk,n)

subject to
K∑

k=1

N∑
n=1

xk,npk,n ≤ pmax, (GPB)

K∑
k=1

xk,n = 1, n = 1, . . . , N. (MC)

The above formulation detaches the problem of allocating sub-
carriers and power by modeling each with separate variables.
The global power budget constraint is given by (GPB), and
the multiple-choice constraint (MC) governs unique subcarrier
usage.

One has to take special care when applying duality theory to
nonconvex problems. Among other things, it is not guaranteed
that the dual optimum can be used to obtain a feasible primal
solution. Furthermore, the duality gap, the difference between
primal and dual objectives, is not guaranteed to vanish. For

convex problems, both of these properties hold under mild
conditions.

While (MC) is affine, (SRMP) is not a convex problem.
As is well known, the product of two variables is neither
convex nor concave in general. Thus, the objective of (SRMP)
is not concave and (GPB) is not convex. Furthermore the
binary condition xk,n ∈ {0, 1} is not even continuous. Hence,
a necessary requirement for convexity is a relaxation of the
binary condition. This constitutes the first step of our analysis.

The convex relaxation of the binary condition xk,n ∈ {0, 1}
is given by 0 ≤ xk,n ≤ 1. This relaxation has a sensible and
meaningful interpretation. In the relaxed problem formulation,
instead of unique subcarrier usage, users can share resource
blocks as if modeling a time-sharing system. The nonbinary
factors xk,n appropriately scale both rate output and power
demand. We refer to this relaxed problem as the SRMP with
subcarrier sharing. It can be formulated as follows:

(SRMP-S) maximize
pk,n≥0, xk,n≥0

K∑
k=1

N∑
n=1

xk,nrk,n(pk,n)

subject to (GPB) and (MC).

Note that the constraint xk,n ≤ 1 is redundant given (MC).
The above formulation is still nonconvex due to the noncon-
cave objective and nonconvex (GPB). However, there exists
an equivalent convex formulation.

Proposition 1. There exists an equivalent convex formulation
of (SRMP-S). It is given by

(SRMP-C) maximize
qk,n≥0, xk,n≥0

K∑
k=1

N∑
n=1

xk,nrk,n(qk,n/xk,n)

subject to
K∑

k=1

N∑
n=1

qk,n ≤ pmax and (MC),

in which we define xk,nrk,n(qk,n/xk,n) = 0 for xk,n = 0.
Proof: We prove the convexity of (SRMP-C) by show-

ing that the objective is a sum of concave functions. The
well-known perspective function of r for x > 0 is defined
as f(q, x) = x · r(q/x) [17]. The perspective function of a
concave function is concave. This property persists when con-
tinuously extending f towards the closure of its domain [18].
The continuous extension of f to include x = 0 is given by

f(q, 0) = lim
x→0

x · r
( q
x

)
t= q

x= lim
t→∞

q

t
· r(t) = q · lim

t→∞
r(t)

t
,

which equals 0 for the concave rate functions in this paper
according to property 3) in Section II. Hence, the functions in
the objective are continuously extended (or closed) perspective
functions of rk,n and thus concave. This proves the convexity
of (SRMP-C).

(SRMP-C) is obtained from (SRMP-S) by the substitution
of variable qk,n = xk,npk,n. This substitution is not one-
to-one, but each solution to (SRMP-S) is transformed to a
solution to (SRMP-C) and vice versa, which can be shown as
follows: Let {xk,n, pk,n}k,n denote a solution to (SRMP-S).
Because all occurences of pk,n are multiplied by xk,n in the
objective and constraints of (SRMP-S), we can set pk,n = 0
whenever xk,n = 0 without loss of optimality. As a result,
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Fig. 1. Visualization of r∗k,n(λ) and r◦k,n(λ), respectively. (a) The value of r∗k,n(λ) is the y-intercept of the tangent with slope λ when approaching the
function rk,n from above. (b) The value of r◦k,n(λ) is the x-intercept of the tangent with slope 1/λ when approaching rk,n from above.

the mapping {xk,n, pk,n}k,n → {xk,n, qk,n}k,n is one-to-one.
The inverse mapping is given by the substitution

pk,n =

{
qk,n/xk,n, if xk,n > 0,
0, else.

The above substitutions map solutions of (SRMP-S) to solu-
tions of (SRMP-C) and vice versa. This shows that (SRMP-S)
and (SRMP-C) are equivalent.

Note that the duality gap between RAPs which satisfy the
so-called time-sharing property and their dual problems has
been shown to be zero [2]. Relaxing xk,n ∈ {0, 1} allows
for arbitrary subcarrier sharing and thus yields a problem that
trivially satisfies the time-sharing property. Hence, the results
of [2] imply that (SRMP-S) and its dual have zero duality
gap. By comparison, the above proposition shows that there
exists an equivalent convex formulation (SRMP-C). This is a
stronger result as a duality gap of zero then follows under the
mild condition that one of many constraint qualifications hold.
The convexity of (SRMP-C) and thus (SRMP-S) is going to
prove advantageous in the following analysis and eliminates
the need for the asymptotic arguments of [2].

While the dual problems of equivalent problems do not
have to coincide in general, the dual problems of (SRMP-S)
and (SRMP-C) are identical. Furthermore, strong duality
holds, i.e., there is zero duality gap between the equivalent
primal problems and their dual problem (SRMP-D). We show
the above and state (SRMP-D) in the following proposition.

Proposition 2. The dual problems of (SRMP), (SRMP-S)
and (SRMP-C) coincide. The dual problem is

(SRMP-D) minimize
λ

λpmax +

N∑
n=1

max
k

r∗k,n(λ)

subject to λ ≥ 0.

Problems (SRMP-S) and (SRMP-D) have zero duality gap
and a solution to (SRMP-S) can be obtained from the dual
optimum.

Proof: We prove the last statement first. As shown in
Prop. 1, (SRMP-S) and the convex problem (SRMP-C) are
equivalent. In order to apply Slater’s theorem, Slater’s con-
dition has to hold [17]. Let {qk,n, xk,n}k,n denote a feasible

point of (SRMP-C), the feasibility of which follows from the
feasibility of (SRMP). If

∑K
k=1

∑N
n=1 qk,n < pmax, this point

is an interior point of its domain and Slater’s condition is sat-
isfied. Otherwise, the condition can be satisfied by decreasing
one of the qk,n > 0, which does not affect feasibility. Slater’s
theorem now implies that strong duality holds and a solution
to (SRMP-C), and, equivalently, (SRMP-S), can be obtained
from the dual optimum.

As (SRMP) and (SRMP-S) only differ in their do-
main (xk,n ∈ N0 and xk,n ∈ R+, respectively), their dual
problems coincide. It remains to be shown that the dual prob-
lems of (SRMP-S) and (SRMP-C) coincide. For (SRMP-S), the
dual function is

g(SRMP-S)(λ,μ1, . . . , μN ) = sup
{xk,n, pk,n}

{
K∑

k=1

N∑
n=1

xk,nrk,n(pk,n)

+ λ

(
pmax −

K∑
k=1

N∑
n=1

xk,npk,n

)
+

N∑
n=1

μn

(
1−

K∑
k=1

xk,n

)}

= λpmax +
N∑

n=1

μn +
K∑

k=1

N∑
n=1

sup
xk,n

{
xk,n

·
(
sup
pk,n

{rk,n(pk,n)− λpk,n} − μn

)}

= λpmax +
N∑

n=1

μn +
K∑

k=1

N∑
n=1

sup
xk,n

{
xk,n(r

∗
k,n(λ)− μn)

}
(1)

=

{
λpmax +

∑N
n=1 μn, if μn ≥ r∗k,n(λ) for all k, n,

∞, else.
(2)

Conversely, the dual function of (SRMP-C) is

g(SRMP-C)(λ, μ1, . . . , μN ) = λpmax +

N∑
n=1

μn +

K∑
k=1

N∑
n=1

sup
xk,n

{
sup
qk,n

{xk,n(rk,n(qk,n/xk,n)− μn)− λqk,n}
}
. (3)

Note that for xk,n = 0, the inner supremum in (3)
equals supqk,n

{−λqk,n} = 0. For xk,n > 0, we can apply
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the substitution pk,n = qk,n/xk,n and obtain

sup
qk,n

{xk,n(rk,n(qk,n/xk,n)− μn)− λqk,n}
= sup

pk,n

{xk,n(rk,n(pk,n)− μn)− λxk,npk,n}
= xk,n · sup

pk,n

{rk,n(pk,n)− λpk,n − μn}

= xk,n
(
r∗k,n(λ)− μn

)
. (4)

As the above evaluates to 0 for xk,n = 0, this formulation
holds in both cases. Plugging (4) into (3) yields (1) and we
conclude g(SRMP-S) = g(SRMP-C). As shown in (2), μn ≥ r∗k,n(λ)
has to hold for all k and n to ensure g(SRMP-S) <∞. The mini-
mal and therefore optimal choice is to set μn = maxk r

∗
k,n(λ)

and (SRMP-D) is obtained.

Prop. 1 and Prop. 2 show that a solution to (SRMP-S) can
be obtained from the dual optimum. However, this does not
mean that the output is a feasible point of the original problem.
If this were the case it would not only be feasible, but optimal
for (SRMP), which might be true in special cases, but does
not hold in general.

The performance of a dual method depends on the duality
gap between (SRMP) and (SRMP-C). Prop. 2 shows that the
duality gap is equal to the difference between the optimal
values of the discrete problem (SRMP) and the continuous
problem (SRMP-S). An upper bound for this difference is an
upper bound for the duality gap and thus a bound on the
overall performance of a dual method.

We present and analyze the SPMP in the next subsection
before jointly evaluating the performance of dual methods for
both problems in Section III-C.

B. Sum Power Minimization with a Global Rate Demand

Given a global rate demand rmin > 0, the SPMP can be
formulated as follows:

(SPMP) minimize
pk,n≥0, xk,n∈{0,1}

K∑
k=1

N∑
n=1

xk,npk,n

subject to
K∑

k=1

N∑
n=1

xk,nrk,n(pk,n) ≥ rmin, (GRD)

K∑
k=1

xk,n = 1, n = 1, . . . , N. (MC)

Here, (GRD) denotes the global rate demand constraint. As
before, it is necessary to relax xk,n ∈ {0, 1} to obtain a convex
problem. The SPMP with subcarrier sharing is given by

(SPMP-S) minimize
pk,n≥0, xk,n≥0

K∑
k=1

N∑
n=1

xk,npk,n

subject to (GRD) and (MC).

We obtain the following result:

Proposition 3. The dual problems of (SPMP) and (SPMP-S)
coincide. With r◦k,n(λ) = infpk,n

{pk,n − λrk,n(pk,n)}, the

dual problem is

(SPMP-D) maximize
λ

λrmin +

N∑
n=1

min
k
r◦k,n(λ)

subject to λ ≥ 0.

Problems (SPMP-S) and (SPMP-D) have zero duality gap
and a solution to (SPMP-S) can be obtained from the dual
optimum.

Proof: Applying the transformation qk,n = xk,npk,n
to (SPMP-S) yields an equivalent convex problem, which is
shown analogously to Prop. 1. The dual function for (SPMP-S)
is

g(SPMP-S)(λ, μ1, . . . , μN ) = inf
{xk,n, pk,n}

{
K∑

k=1

N∑
n=1

xk,npk,n

+ λ

(
rmin −

K∑
k=1

N∑
n=1

xk,nrk,n(pk,n)

)

+

N∑
n=1

μn

(
1−

N∑
k=1

xk,n

)}

= λrmin +

N∑
n=1

μn +

K∑
k=1

N∑
n=1

inf
xk,n

{
xk,n

·
(
inf
pk,n

{pk,n − λrk,n(pk,n)} − μn

)}

= λrmin +

N∑
n=1

μn +

K∑
k=1

N∑
n=1

inf
xk,n

{
xk,n

(
r◦k,n(λ)− μn

)}

=

{
λrmin +

∑N
n=1 μn, if μn ≤ r◦k,n(λ) for all k, n,

−∞, else.

To ensure g(SRMPI-S) < ∞, μn ≤ r◦k,n(λ) has to hold for
all k and n. The maximal and thus optimal choice is to
set μn = mink r

◦
k,n(λk) and (SPMP-D) is obtained. We omit

the remaining proof as it is otherwise analogous to the proof
of Prop. 2.

C. Performance under a Global Constraint

As previously mentioned, the convexity of (SRMP-S)
and (SPMP-S) means that the performance gap of a dual
method is given by the difference in objective between the
discrete original problem and its continuous relaxation. In
order to bound this gap, we show that relaxed solutions
can be transformed, or rounded, towards a feasible point of
the original problem. The key to obtaining a bound on the
absolute performance is the fact that the number of nonbinary
components in solutions to (SRMP-S) and (SPMP-S) can be
bounded.

We cite a result for linear optimization problems, or linear
programs (LPs) that is based on the geometry of polyhedra.
As such, it is related to the proof of the Shapley-Folkman
Theorem [19, App. I] and plays a crucial role for LPs in
general and the simplex algorithm [20, Ch. I.2.3] in particular.
After some simplifications and minor notational changes we
obtain from [20]:
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Corollary 1. If an LP of the
form max

x

{
rTx

∣∣Ax = b, x ≥ 0
}

is feasible, it has a

solution with at most rank(A) nonzero components of x.
Proof: This follows from Def. 3.1 and Thm. 3.5 in [20,

Ch. I.2.3].

The above corollary can be applied to bound the num-
ber of nonbinary components in solutions to (SRMP-S)
and (SPMP-S), respectively:

Proposition 4. Let (P-S) denote a feasible instance of ei-
ther (SRMP-S) or (SPMP-S). Then, there exists a solu-
tion {xk,n, pk,n}k,n to (P-S) that satisfies

1) c{1} := |{(k, n) |xk,n = 1}| ≥ N − 1,
2) c(0,1) := |{(k, n) |xk,n ∈ (0, 1)}| ≤ 2.

In other words, there is at most one subcarrier for
which {xk,n}k,n has nonbinary components. Furthermore, the
number of nonbinary components is at most two.

Proof: Let {x̃k,n, pk,n}k,n denote a solution to (P-S).
Fixing the power values to {pk,n}k,n, we obtain a feasible LP
with optimization variables {xk,n}k,n. We denote this LP with
fixed power values by (P-F). Note that each solution {xk,n}k,n
to (P-F) maps to a solution {xk,n, pk,n}k,n to (P-S). To
apply Cor. 1, the one inequality contraint of (P-F) has to
be transformed to an equality constraint. This is achieved by
adding a nonnegative slack variable to the left side of (GPB)
or the right side of (GRD), respectively. As a result, (P-F)
is an LP of the form of Cor. 1 with a constraint matrix A
with N + 1 rows, corresponding to the N multiple-choice
constraints (MC) and (GPB) or (GRD), respectively.

Based on Cor. 1, there exists a solution {xk,n}k,n to (P-F)
satisfying c(0,1] := |{(k, n) |xk,n ∈ (0, 1]}| ≤ rank(A) ≤
N+1, as the rank of A is upper bounded by its row dimension.
Because each subcarrier with nonbinary components has to
include at least two nonbinary xk,n to satisfy (MC), it holds
that 2

(
N − c{1}

) ≤ c(0,1). Together, it follows that

2
(
N − c{1}

) ≤ c(0,1) = c(0,1] − c{1} ≤ N + 1− c{1}. (5)

Subtracting N − c{1} from both sides yields N − c{1} ≤ 1,
which is equivalent to 1) and yields 2) from (5).

The above results can be summarized as follows: Intro-
ducing subcarrier sharing to one of the RAPs with a global
constraint results in a relaxed solution in which at most one
subcarrier is shared between two users. The remaining N − 1
subcarriers are used exclusively by one user. Somewhat coun-
terintuitively, the optimal operating procedure in a system with
full subcarrier sharing is local subcarrier sharing: at most one
subcarrier is shared.

Prop. 4 allows for a quick informal estimate of the expected
relative performance. Allocating a shared subcarrier to one of
the users is going to lead to a minor decrease in rate on a single
subcarrier. This performance loss can be expected to be of a
small degree ρ� 1 compared to the overall data rate provided
by this subcarrier. Looking at the relative performance, there
are N subcarriers which provide data rate. Assuming that there
is no unbalance or bias within the subcarriers, this means that
the relative performance loss is given by ρ/N < 1/N which
is very close to 0 for even a moderate number of subcarriers.

The remainder of this section is devoted to formalizing the
above estimate.

To obtain a formal performance estimate, it is necessary
to derive a feasible point for the original problem from the
solution to the RAP with subcarrier sharing. This is achieved
by assigning the one subcarrier being shared to exactly one
user. In the following, we assume w.l.o.g. that the subcarrier n
is shared between users k = 1 and k = 2.

Let {pk,n, xk,n}k,n be a solution to (SRMP-S) satisfying
the bounds of Prop. 4. In the case that {xk,n}k,n is binary,
this solution is also optimal for (SRMP) because (SRMP-S)
is a relaxation of (SRMP). Otherwise, it has exactly two
nonbinary components which can be rounded to obtain two
feasible points of (SRMP). The roundings are given by the
mappings

(x1,n, p1,n, x2,n, p2,n) �→ (1, x1,np1,n + x2,np2,n, 0, 0) and

(x1,n, p1,n, x2,n, p2,n) �→ (0, 0, 1, x1,np1,n + x2,np2,n),

which is verified by checking that the right hand side satis-
fies (GPB), (MC) and xk,n ∈ {0, 1} for all k and n.

Let {pk,n, xk,n}k,n be a solution to (SPMP-S) satisfying the
bounds of Prop. 4. In the case that {xk,n}k,n is binary, this
solution is optimal for (SPMP) as (SPMP-S) relaxes (SPMP).
Otherwise, it has exactly two nonbinary components which
can be rounded to obtain a feasible point of (SPMP).

Denote by r̃ = x1,nr1,n(p1,n) + x2,nr2,n(p2,n) the rate
obtained on subcarrier n by the optimal shared solution. The
power values for the two possible mappings are given by

ψ1(r̃) := inf {p | r1,n(p) ≥ r̃} and

ψ2(r̃) := inf {p | r2,n(p) ≥ r̃} .
As max{r1,n(p1,n), r2,n(p2,n)} ≥ r̃ holds, at least one of
these terms is finite. Then, the mappings

(x1,n, p1,n, x2,n, p2,n) �→ (1, ψ1(r̃), 0, 0) and

(x1,n, p1,n, x2,n, p2,n) �→ (0, 0, 1, ψ2(r̃))

yield feasible points for ψ1(r̃) < ∞ and ψ2(r̃) < ∞,
respectively.

It has been shown that applying a dual method to (SRMP)
or (SPMP) results in a subcarrier assignment that is unique
except for at most one shared subcarrier. As the goal is
to analyze the performance of dual methods, we ignore the
potential for additional optimization steps to improve on
this approach. Note that the power distribution given by the
above mappings are feasible, but not necessarily optimal for
the corresponding assignment. However, once a subcarrier
assignment is fixed, the optimal power distribution is given
by the well-known waterfilling procedure.

In order to give a performance guarantee, the rate loss/power
increase of the above roundings has to be measured. We
drop the index n of the shared subcarrier for readability and
assume the users to be ordered such that r1(p1) > r2(p1) and
r2(p2) > r1(p2) holds. Define p̃ = x1p1 + x2p2. Then, the
rate loss LSRMP suffered from allocating the shared subcarrier
to the user with the higher rate is given by

LSRMP = x1r1(p1) + x2r2(p2)−max {r1(p̃), r2(p̃)} .
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Fig. 2. Visualization of the absolute performance loss induced by rounding the SRMP. (a) Depicted are the rate functions of both users for p̃ = x1p1+x2p2
in the interval [p1, p2] in which performance is lost due to rounding. (b) Zooming in on p̃ for the exemplary x1 = x2 = 1

2
shows that LSRMP depends

on x1 and x2, whereas L′
SRMP is an independent upper bound.

The term LSRMP depends on the value of x1 and x2 = 1−x1.
A bound that does not depend on x1 is given by the following
worst-case analysis:

L′
SRMP

= max
0≤x1≤1

{x1r1(p1) + x2r2(p2)−max {r1(p̃), r2(p̃)}} (6)

= max
p1≤p̃≤p2

{
λp̃+ r∗k,n(λ)−max {r1(p̃), r2(p̃)}

}
(7)

In (6), x2 = 1 − x1 and p̃ = x1p1 + x2p2 depend on x1.
In (7), the term λp̃ + r∗k,n(λ) describes the linear function
which is tangent to r1 at p1 and to r2 at p2, respectively.
Note that L′

SRMP describes the maximum gap between the
function max{r1, r2} and the convex closure of its graph. This
reinforces that the duality gap is a measure for non-convexity
(or non-concavity in this case). See Fig. 2 for a visualization
of the performance loss bounds LSRMP and L′

SRMP.
As the objective of the SPMP is power minimization,

the performance loss of a rounding has to be measured by
the additional power spent to achieve the same sum rate as
the shared solution. As the shared solution shares both rate
and power between users, the power spent on the shared
solution equals p̃ = x1p1 + x2p2. This value has to be
compared to the power spent on one of the feasible solutions
to (SPMP). An optimal rounding consists of choosing the
subcarrier assignment which requires the least power, given
by the minimum of ψ1(r̃) and ψ2(r̃). The additional power
spent computes to

LSPMP = min{ψ1(r̃), ψ2(r̃)} − x1p1 − x2p2.

Maximizing this term with respect to these sharing factors
constitutes a worst-case analysis:

L′
SPMP = max

0≤x1≤1
{min{ψ1(r̃), ψ2(r̃)} − x1p1 − x2p2} (8)

= max
r1(p1)≤r̃≤r2(p2)

{
min{ψ1(r̃), ψ2(r̃)} − λr̃ − r◦k,n(λ)

}
. (9)

In (8), the term r̃ = x1r1(p1) + x2r2(p2) is a function of x1.
The equivalent formulation (9) shows that the performance

loss is given by the maximum difference between the func-
tion min{ψ1(r̃), ψ2(r̃)} and the coinciding tangent function
given by p = λr̃ + r◦k,n(λ).

See Fig. 3 for a visualization of the performance loss
bounds LSPMP and L′

SPMP. The bound L′
SPMP describes the

maximum gap between the function min{ψ1, ψ2} and the con-
vex closure of its graph. This result resembles that of L′

SRMP.
Note that min{ψ1, ψ2} is the inverse function to max{r1, r2}.
As function inversion corresponds to graph transposition, the
graph of min{ψ1, ψ2} is the transposed graph of max{r1, r2}.
Hence, the performance bound L′

SPMP corresponds to the
horizontal gap between max{r1, r2} and its convex closure.
See Fig. 4 for a direct comparison of the performance bounds
for the SRMP and the SPMP.

We have presented two performance bounds L′
SRMP

and L′
SPMP. However, both of these bounds rely on the in-

formation which subcarrier is shared between which users. In
order to obtain an a-priori performance estimate, we compute
the global maximum value of the above bounds. Define

rn(p) = max
k

rk,n(p) and ψn(r) = inf {p | rn(p) ≥ r} .
Then, the data rate of the convex closure of rn at power
level p is given by the best possible tangential approxima-
tion rconvn (p) = infλ{λp+ r∗n(λ)} and a global upper bound
for L′

SRMP is given by

L′′
SRMP = max

n
sup
p

{rconvn (p)− rn(p)} .

Similiarly, the power level of the convex closure of ψn

at data rate r is given by the best tangential approxima-
tion ψconv

n (r) = supλ {λr + ψ◦
n(λ)}. It follows that

L′′
SPMP = max

n
sup
r

{ψn(r) − ψconv
n (r)}

is an a-priori upper bound for L′
SPMP.

The terms L′′
SRMP and L′′

SPMP are a-priori bounds for the
absolute performance loss suffered when employing a dual
method and rounding. However, there is no closed-form ex-
pression for L′′ and it might not be practical to compute it.
Furthermore, for the purpose of a general analysis, a bound
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Fig. 3. Visualization of the absolute performance loss induced by rounding the SPMP. (a) The values in the interval [p1, p2] in which power is lost due to
rounding can be considered as a function of x1 and x2. (b) Zooming in on the point corresponding to (r̃, p̂) for the exemplary [x1, x2] = [0.6, 0.4] shows
that LSPMP depends on x1 and x2, whereas L′

SPMP is an independent upper bound.
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Fig. 4. Comparison of LSRMP, LSPMP, L′
SRMP, and L′

SPMP. (a) The rate gap LSRMP is measured vertically, while the power difference LSPMP is measured
horizontally. (b) The worst-case bounds L′

SRMP and L′
SPMP are given by the maximum vertical and horizontal gap between max{r1, r2} and its convex

closure, respectively. Both gaps are maximal at r1(p) = r2(p) due to the concavity of the rate functions.

on the relative performance (as opposed to the absolute) is
preferable. For the SRMP, the obtained rate is lower bounded
by P abs

SRMP = r∗SRMP-S − L′′
SRMP. It follows that the relative

performance P rel
SRMP satisfies

P rel
SRMP =

P abs
SRMP

r∗(SRMP)
≥ r∗(SRMP-S) − L′′

SRMP

r∗(SRMP-S)

= 1− L′′
SRMP

r∗(SRMP-S)

= 1− ρSRMP

N
, (10)

in which ρSRMP denotes the ratio between L′′
SRMP and the

average rate per subcarrier, r∗(SRMP-S)/N . From a strictly formal
perspective, ρSRMP can take almost arbitrary values. One can
construct particularly adverse scenarios in which the affected
subcarrier not only loses a large part of its data rate, but
also majorly contributes to the overall objective, leading to
large values of ρSRMP. However, in practice it can be assumed
that a) the subcarrier is affected in a minor way, and that
b) the affected subcarrier is effectively random with regards to
its contribution to the overall objective. Under these assump-
tions, ρSRMP � 1 holds, but even a high value of ρSRMP = 1,
which corresponds to the outage of an average subcarrier,
results in P rel

SRMP ≥ 1 − 1/N , which is close to 100% for
any practical number of subcarriers N .

For the SPMP, the power spent by applying the dual
method above and rounding is upper bounded by P abs

SPMP =
p∗(SPMP-S) + L′′

SPMP. Because the SPMP is a minimization
problem, the relative performance P rel

SPMP describes how much
more power is spent compared to the optimal solution p∗(SPMP).
The closer P rel

SPMP ≥ 1 is to 1, the better the performance. An
upper bound for the relative performance is given by

P rel
SPMP =

P abs
SPMP

p∗(SPMP)
≤ p∗(SPMP-S) + L′′

SPMP

p∗(SPMP-S)

= 1 +
L′′

SPMP

p∗(SPMP-S)
= 1 +

ρSPMP

N
, (11)

in which ρSPMP denotes the ratio between L′′
SPMP and the

average power p∗(SPMP-S)/N spent per subcarrier. This result is
analogous to (10), except that P rel

SPMP is increased by spending
additional power rather than decreased by losing part of the
overall data rate. Under the same practical assumptions as
above it again holds that ρSPMP � 1. A value of ρSPMP = 1
leads to 1 ≤ P rel

SPMP ≤ 1 + 1/N ≈ 100%.
The above bounds (10) and (11) show that the relative

performance loss for both the SRMP and the SPMP is of the
order of 1/N , which tends to 0 as N grows. This is a sensible
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result as at most one subcarrier is affected by the rounding. In
practice, the affected subcarrier can be expected to operate at
an average power and rate and to be only affected minimally
by the rounding, leading to relative performance losses far
below 1/N . Both methods are asymptotically optimal in the
sense that the performance approaches that of the discrete
optimum as the number of subcarriers tends to infinity, but can
be expected to yield great performance for even a moderate
number of subcarriers.

Relative performance in this regime make dual methods a
great choice for RAPs under a global power budget (GBP) or a
global rate demand (GRD). As the above performance analysis
is independent of the global constraint itself, performance in
the same regime can be expected from related RAPs with
a single non-(MC) constraint as well. We analyze the effect
of multiple non-(MC) constraints in the following section, in
which individual power budgets and rate demands create a
constraint set of size K +N .

IV. RESOURCE ALLOCATION UNDER INDIVIDUAL

CONSTRAINTS

A. Sum Rate Maximization with Individual Power Budgets

We extend the results of Section III-A to the case of
individual power budgets. Given power constraints pmax

k > 0
for k = 1, . . . ,K , the SRMPI can be formulated as follows:

(SRMPI) maximize
pk,n≥0, xk,n∈{0,1}

K∑
k=1

N∑
n=1

xk,nrk,n(pk,n)

subject to
N∑

n=1

xk,npk,n ≤ pmax
k , k = 1, . . . ,K, (IPB)

K∑
k=1

xk,n = 1, n = 1, . . . , N. (MC)

In the above problem, the global power budget constraint (PB)
has been replaced by K individual power budgets (IPB).
The SRMPI with subcarrier sharing is obtained by relax-
ing xk,n ∈ {0, 1}:

(SRMPI-S) maximize
pk,n≥0, xk,n≥0

K∑
k=1

N∑
n=1

xk,nrk,n(pk,n)

subject to (IPB) and (MC).

Proposition 5. The dual problems of (SRMPI) and (SRMPI-S)
coincide. The dual problem is

(SRMPI-D) minimize
λ1,...,λK

K∑
k=1

λkp
max
k +

N∑
n=1

max
k

r∗k,n(λk)

subject to λk ≥ 0, k = 1, . . . ,K.

Problems (SRMPI-S) and (SRMPI-D) have zero duality gap
and a solution to (SRMPI-S) can be obtained from the dual
optimum.

Proof: Applying the transformation qk,n = xk,npk,n
to (SRMPI-S) results in an equivalent convex problem. We
omit the remaining proof as it is an extension of the proof of
Prop. 2.

We present and analyze the SPMPI in the next subsection
before jointly evaluating the performance of dual methods for
both problems in Section IV-C.

B. Sum Power Minimization with Individual Rate Demands

In this section, we extend the results of Section III-B to
the case of individual rate demands. Given rate demands rmin

k

for k = 1, . . . ,K , the SPMPI can be formulated as follows:

(SPMPI) minimize
pk,n≥0,xk,n∈{0,1}

K∑
k=1

N∑
n=1

xk,npk,n

subject to
N∑

n=1

xk,nrk,n(pk,n) ≥ rmin
k , k = 1, . . . ,K, (IRD)

K∑
k=1

xk,n = 1, n = 1, . . . , N. (MC)

The SPMPI with subcarrier sharing is obtained by relax-
ing xk,n ∈ {0, 1}:

(SPMPI-S) minimize
pk,n≥0,xk,n≥0

K∑
k=1

N∑
n=1

xk,npk,n

subject to (IRD) and (MC).

Proposition 6. The dual problems of (SPMPI) and (SPMPI-S)
coincide. The dual problem is

(SPMPI-D) maximize
λ1,...,λK

K∑
k=1

λkr
min
k +

N∑
n=1

min
k
r◦k,n(λk)

subject to λk ≥ 0, k = 1, . . . ,K.

Problems (SPMPI-S) and (SPMPI-D) have zero duality gap
and a solution to (SPMPI-S) can be obtained from the dual
optimum.

Proof: Applying the transformation qk,n = xk,npk,n to
(SPMPI-S) yields an equivalent convex problem. We omit the
proof as it is an extension of the proof of Prop. 3.

C. Performance under Individual Constraints

The convexity of (SRMPI-S) and (SPMPI-S) means that a
bound on the performance gap of a dual method is given by
the difference in objective between a relaxed solution and a
rounded feasible point of the original problem. As before, the
number of nonbinary components in solutions to (SRMPI-S)
and (SPMPI-S), respectively, is key. In the previous section,
the number of shared subcarriers was upper bounded by 1.
With K individual constraints, we obtain the following result:

Proposition 7. Let (P-S) denote a feasible instance of ei-
ther (SRMPI-S) or (SPMPI-S). Then, there exists a solu-
tion {xk,n, pk,n}k,n to (P-S) that satisfies

1) c{1} ≥ N −K ,
2) c(0,1) ≤ K +N − c{1} ≤ 2K .

In other words, there are at most K subcarriers for
which {xk,n}k,n has nonbinary components. Furthermore, the
total number of nonbinary components does not exceed 2K .

Proof: Fixing power values {pk,n}k,n for (P-S) results in
an LP of the form of Cor. 1, which has K (IPB) or (GRD)
constraints and N (MC) constraints. Thus, there exists a
solution to (P-S) with {xk,n}k,n such that c(0,1] ≤ K + N .
It follows that

2
(
N − c{1}

) ≤ c(0,1) = c(0,1] − c{1} ≤ K +N − c{1} (12)
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and subtracting N−c{1} from both sides yields N−c{1} ≤ K ,
which is equivalent to 1) and yields 2) from (12).

Just as Prop. 4 in the previous section, Prop. 7 shows that
there is a direct correspondence between the number of non-
(MC) constraints and the number of shared subcarriers in a
solution to (P-S). Introducing subcarrier sharing to one of
the RAPs with K individual constraints results in a relaxed
solution in which at most K subcarriers are shared between
users.

As before, the goal of this section is to show that the relative
performance loss is of the order of K/N because rounding
occurs on K out of N subcarriers. In practice, the performance
losses on each subcarrier can be expected to be relatively small
compared to the overall rate obtained/power spent on each
subcarrier, leading to even better relative performance.

In the previous section, the constraints of (SRMP)
and (SPMP) were interchangeable. However, as it turns out,
there is a major difference between the individual power
budgets (IPB) and the individual rate demands (IRD). While
each user can always save power to satisfy (IPB), there
might not be sufficient resources to jointly satisfy (IRD). This
means that from a formal perspective, feasibility and thus
performance of dual methods for the (SPMPI) can not be
guaranteed. We expand on this negative result before analyzing
the performance of the (SRMPI) in detail.

Let {pk,n, xk,n} be a solution to (SPMPI-S) satisfying the
bounds of Prop. 7. As before, a binary set {xk,n}k,n means
that this solution is also optimal for (SPMPI). Otherwise, there
are up to K shared subcarriers and up to 2K possible sub-
carrier assignments obtainable through rounding. In practice,
most or all of these assignments should yield feasible results
once the well-known waterfilling procedure is applied to the
final allocation.

However, the nature of the individual rate demands (IRD)
of the SPMPI means that there can be subcarrier assignments
which make it impossible to guarantee the existence of a
feasible rounding. In theory, roundings can lead to single users
being left without a sufficient number of subcarriers to satisfy
their rate demands rmin

k , k = 1, . . . ,K .
This is because allocating a shared subcarrier to only one

user necessarily reduces the data rate of at least one other user.
As the optimal solution to (SPMPI-S) satisfies all rate demands
with equality, this makes the rounded solution infeasible for
this user. There are two ways to compensate this effect: The
first way is to allocate another shared subcarrier to the user,
but that potentially causes another user to drop below their
rate demand. Depending on the total number of subcarriers
available, the number of users and subcarriers shared, it might
not be possible to satisfy all rate demands this way.

The second way to compensate for lost data rate of a user
is to increase the power spent on their remaining subcarriers.
However, even under the assumption that there is a sufficient
number of subcarriers for each user, the presented approach
offers no way to bound the amount of power that is required
to adjust for the rate loss introduced through rounding. This
is why the existence of a feasible rounding for the SPMPI can
not be formally guaranteed.

In practice, the rate decrease from losing a previously

shared subcarrier is counterbalanced by two factors. First,
the user might be assigned additional subcarriers. Second, a
small increase in power on each subcarrier according to the
waterfilling procedure yields the most power-efficient way to
generate data rate, even if slightly more expensive than the
optimal shared solution to (SPMPI-S). There might, however,
be severe differences in performance between the available
roundings, which again shows the danger of interpreting the
results of a dual method as a unique solution to the primal
problem.

It still holds that an SPMPI system with full subcarrier
sharing converges to a system with unique subcarrier usage in
the sense that the ratio of shared subcarriers is K/N , which
tends to 0 as N grows. As the error introduced by rounding
only negatively affects the shared subcarriers, the relative error
is of the order of K/N as well, with the actual value being
much lower as the subcarriers are still being utilized after
reallocation. Under the assumption that efficiently finding a
feasible rounding is always possible in a practical system with
a sufficient number of subcarriers, dual methods for the SPMPI
are as performant and asymptotically optimal as those for the
SRMPI, which are covered next.

Let {pk,n, xk,n}k,n be a solution to (SRMPI-S) satisfying
the bounds of Prop. 7. In the case that {xk,n}k,n is binary,
this solution is optimal for (SRMPI) because (SRMPI-S)
relaxes (SRMPI). Otherwise, the nonbinary components can be
rounded to obtain feasible points for (SRMPI). For each shared
subcarrier n, let j denote one of the users with xj,n ∈ (0, 1).
Then, a feasible rounding is given by

(xk,n, pk,n) �→
{

(1, xk,npk,n), if k = j,
(0, 0), else.

For user j, the amount of power spent on subcarrier n remains
the same. All the other users do not spend any power on
subcarrier n, which means that the (IPB) constraints are
satisfied. Different from Section III-A, the rounding above
does not make full use of all the power budgets pmax

k for
each user. However, it shows that all assignments of previously
shared subcarriers to one user each are feasible. Once an
assignment is fixed, optimal operating points {pk,n}k,n can
be found by the well-known waterfilling procedure.

To bound the performance, we start by analyzing a single
shared subcarrier n. To simplify notation, we drop the sub-
carrier index n in the following power-rate formulas. Let J
denote the set of users sharing the subcarrier. An upper bound
for the performance loss is given by assigning the subcarrier
to the user with the highest data rate. Define

F :=

{∑
k∈J

xkrk(pk)−max
k∈J

{rk(xkpk)}
∣∣∣∣∣
∑
k∈J

xk = 1

}
.

Then, the upper bound is given by LSRMPI = supF , which
describes the maximum difference between the convex com-
bination of the rate values rk(pk) and the rate obtainable by a
single user. Note that xkrk(pk) ≤ rk(xkpk) holds due to the
concavity of the rate functions. Define

G :=

{∑
k∈J

xkrk(pk)−max
k∈J

{xkrk(pk)}
∣∣∣∣∣
∑
k∈J

xk = 1

}
.
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Fig. 5. Visualization of the bounds on the absolute performance loss induced by rounding the SRMPI in the case that two users share a subcarrier. (a) Upper
bound LSRMPI = supF . (b) Simplified upper bound L′

SRMPI = supG.

Then, a weaker but simpler bound is given by L′
SRMPI =

supG. Fig. 5 shows the above bounds for J = {1, 2}.
The advantage of L′

SRMPI is that finding the supremum is
equivalent to solving an LP. Evaluating the Karush-Kuhn-
Tucker conditions of this LP shows that the optimum is
achieved when xkrk(pk) = xjrj(pj) for all k and j, which
translates to

xk =
1

rk(pk)
· 1∑

j∈J
1

rj(pj)

for all k ∈ J and

L′
SRMPI =

|J | − 1∑J
j=1

1
rj(pj)

.

Let J := |J |. Then, the above term can be bounded by

L′
SRMPI ≤

J − 1

J · 1
maxk∈J {rk(pk)}

=
J − 1

J
·max
k∈J

{rk(pk)} ,

which will provide the basis for the following performance
analysis. Note that (J − 1)/J is monotonically increasing
and takes values between 1/2 and (K − 1)/K . Thus, the
performance guarantee is better the fewer users share a single
subcarrier. However, there is a trade-off as the number of
subcarriers being shared and the number of users sharing them
is related as shown in Prop. 7.

Let S denote the number of shared subcarriers and assume
that the subcarriers are ordered such that n = 1, . . . , S are the
shared subcarriers. According to Prop. 7, the amount of shared
subcarriers S = N − c{1} satisfies S ≤ K . Furthermore, the
number of users sharing subcarriers is upper bounded by K+
S. Let Jn denote the set of users sharing subcarrier n =
1, . . . , S. With Jn := |Jn|, the performance loss sums up to

S∑
n=1

Jn − 1

Jn
max
k∈Jn

{rk,n(pk,n)}

≤ max
1≤n≤S, k∈Jn

{rk,n(pk,n)}
S∑

n=1

Jn − 1

Jn
.

For a worst-case analysis, the term
∑S

n=1(Jn − 1)/Jn has to
be maximized under the condition

∑S
n=1 Jn = S + K . The

optimal choice is to distribute users between shared subcarriers

as evenly as possible. Setting Jn = (S +K)/S is optimal
if Jn takes integer values, but also yields an upper bound for
the problem for non-integer Jn. Thus, it holds that

S∑
n=1

Jn − 1

Jn
≤ S ·

K
S

S+K
S

=
SK

S +K
≤ K2

2K
=
K

2
.

It follows that the performance loss for the overall problem is
bounded by

L′′
SRMPI =

K

2
· max
1≤n≤S, k∈Jn

{rk,n(pk,n)} , (13)

which is also obtained when analyzing the special case of S =
K and Jn = 2 for n = 1, . . . , S. Note that the maximization
in (13) is performed over the shared subcarriers and all users
sharing those subcarriers, with pk,n given by the output of the
dual method. However, it also serves as an a-priori bound in
the sense that the absolute performance loss is of the order of a
single subcarrier usage times K/2. With similar arguments as
in Section III-A, this allows to bound the relative performance
by

P rel
SRMPI ≥

r∗(SRMPI-S) − L′′
SRMPI

r∗(SRMPI-S)

= 1− L′′
SRMPI

r∗(SRMPI-S)
= 1− ρSRMPI ·K

2N
,

in which ρSRMPI denotes the ratio be-
tween max1≤n≤S, k∈Jn rk,n(pk,n) and the average rate
per subcarrier, r∗(SRMPI-S)/N . As before, ρSRMPI can take
almost arbitrary values in theory, but it is reasonable to
assume ρSRMPI ≤ 2 to hold in practice. It then follows
that P rel

SRMPI ≥ 1−K/N , which is a weaker bound as for the
SRMP for two reasons. Primarily, the SRMPI has up to K
subcarriers being shared as opposed to one in the SRMP
case. Furthermore, the bound L′′

SRMPI is relatively weak due to
combining multiple worst-case bounds. However, it still holds
that P rel

SRMPI tends towards 100% as N grows. Furthermore,
the number of users K in a practical system can be expected
to be significantly lower than the number of subcarriers.
That said, solving the SRMPI with dual methods can still
be expected to yield relative performance close to 100%
for systems with a moderate number of subcarriers and is
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asymptotically optimal as the number of subcarriers tends to
infinity.

V. CONCLUSION

This work shows that applying dual methods is equivalent
to solving a linearly-relaxed, ”timeshared” formulation of
the RAP. It is shown that the relaxed RAPs are convex.
This result constitutes a missing piece in the search for
optimality arguments regarding dual methods. An immediate
consequence of the above is that the duality gap encountered
with dual methods is equal to the error introduced when
rounding a timeshared solution towards a solution with unique
subcarrier usage, making it feasible for the original problem.
This work shows that the number of subcarriers being shared
in a fully timeshared solution is bounded by the number of
constraints governing (individual or global) power budgets and
rate demands.

This result is then applied to obtain feasible roundings
based on the output of dual methods. Further analysis of the
problem leads to absolute and relative performance guaran-
tees. Under mild conditions regarding balanced, nondegener-
ate subcarrier usage, the relative error is formally bounded
by 1/N and K/N , respectively. This paper covers four RAPs:
The SRMP with a global power budget, the SRMP with indi-
vidual power budgets, the SPMP with a global rate demand,
and the SRMP with individual rate demands. By formally
combining results from several areas of optimization theory,
it serves as a blueprint for obtaining similar results for related
problems in resource allocation and beyond.
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