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Channel Assignment in Cellular Radio Networks 
Rudolf Mathar and Jiirgen Mattfeldt 

Abstruct- We investigate algorithms based on simulated an- 
nealing to solve the channel assignment problem for cellular 
radio networks. The blocking probability of a network is chosen 
as the optimization criterion. In order to check the quality of 
the solutions obtained by simulated annealing, we examine some 
special types of networks which allow an effective calculation 
of optimal solutions by tailored algorithms. Our investigations 
show that simulated annealing is a very powerful tool for solving 
channel assignment problems. 

I. INTRODUCTION 

H A " E L  assignment is one of the most important C problems in the design of cellular radio networks. Since 
the number of cells of forthcoming networks will rapidly 
increase, this problem will be of even greater importance in 
the future [6]. From a mathematical point of view, the channel 
assignment problem (CAP) can be described as a combina- 
torial optimization problem with constraints. Many different 
benefit functions and constraints are worth considering, and 
consequently a broad spectrum of models can be found in the 
literature. Strictly speaking, there is not a channel assignment 
problem, but a whole class of channel assignment problems. 
Hale [12] gives a classification of some important channel 
assignment problems. 

Most previous investigations concerning the CAP were 
based on graph theoretic or heuristic approaches [2], [3], 
[7]-[9]. Graph theoretic methods are near at hand since the 
channel assignment problem can be considered as a gener- 
alization of the vertex coloring problem. By an appropriate 
reduction, this shows that CAP is NP-hard [22]. Moreover, our 
Lemma 1 shows that there does not exist an efficient algorithm 
which determines a solution half as good as the optimal one 
in polynomial time, provided P # N P .  

The graph theoretic approach has several disadvantages 
in applicability and flexibility (cf. [4], [16] for a detailed 
discussion). This is why recently some other methods have 
been examined. Investigations based on neural networks [ 161 
yield excellent results in special cases, but under certain 
conditions, principally only suboptimal solutions can be found 

In this paper, we examine a quite satisfactory approach 
based on simulated annealing (SA). This method has been 
applied independently by Duque-Anton et al. [4], [5], but they 
use a completely different model and different neighborhood 
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relations. We briefly mention the main differences in Section 
IV. Our model to tackle the channel assignment problem is 
presented in detail in Section 11. 

Using simulated annealing to solve an NP-hard problem 
is linked to the question of how to control the quality of the 
obtained solutions. In general, it is impossible to solve this task 
in an effective manner. In Section 111 we develop polynomial 
time algorithms for certain types of networks. Readers more 
interested in the application of simulated annealing as a general 
tool for optimizing cellular networks may skip the proofs 
of optimality of the corresponding algorithms and continue 
with Section IV. This section is self-contained and provides 
a complete description of the SA-algorithm. In Section V we 
compare the solutions obtained by simulated annealing with 
the optimal ones in special cases. This comparison proves SA 
is a powerful tool in optimizing cellular radio networks. 

11. FORMULATION OF THE CHANNEL ASSIGNMENT PROBLEM 

We first introduce some standard definitions from graph 
theory. A simple graph G is an ordered pair (V, E )  with a finite 
set of vertices V and edges E c V ( 2 )  = { e  c Vllel = a } .  
A set W c V is called independent if W(2) n E = O.C = 
{ W1, . . . , Wn} is called a covering of G, if all sets Wi c V 
are independent, and UTZl Wi = V holds. If additionally 
Wi n Wj = 0 for all i # j ,  then C is called a coloring of 
G. N(G) = min{ 1F11F is a coloring of G} is defined as the 
chromatic number of G. A graph G with chromatic number 
k is called k -colorable. 

In what follows, we consider a cellular network 2 consisting 
of z cells 21,. . . , 2, (cf. [18], [19]). Our aim is to allocate 
N channels to the individual cells of the network such that 
certain constraints are satisfied. The constraints are described 
by an interference graph Gz  = (V, E )  with 

V = { Z 1 ; . . . , Z z } ,  and 
E = { { Zi! Z j }  linterference between &and Zjis possible}. 

For the applications, this graph can be constructed either from 
measurements or from theoretical models of the propagation of 
electromagnetic waves. Let A = ( ~ i j ) : ; ~ Z = ~  be the adjacency 
matrix of G z ;  i.e., aij = 1 iff { Z i , Z j }  E E ,  and uij = 0 
otherwise. 

Definition I :  A matrix MN = (mij)$Ll E { O , l } " x N  is 
called an N-channel design, if each column of MN induces an 
independent set in Gz,  i.e. the sets Wj = { Zi lmij = 1, i = 
1,. . . , z }  are independent in GZ for all j = 1; . . . , N .  

m;j = 1 means that the j th  channel is allocated to cell Zi, 
while m,j = 0 excludes channel j for cell 2;. The number ai 
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of channels available for cell 2, using pattern M2v is given by 

Observe that we consider only co-channel interferences. Nev- 
ertheless, our algorithms can be extended to the more general 
case of adjacent channel interferences. 

Dejnition 2: A channel design MN is called admissible if 
there exists no channel design MA. # MAT with mi3 2 m,, for 
all i and j .  Otherwise it is called inadmissible. 

To rank different channel designs with respect to their per- 
formance we assume that an ordered pair (f,, w,) is assigned 
to each cell Z,.fi is a probability measure on IN and the 
numbers w, 2 0 with E:=, 20, = 1 are weights, expressing 
e.g. the relative importance of cell i .  The blocking probability 
Bz, (a , )  of cell Z, with a, allocated channels is given by 

Example I :  Let A, (in Erlangs) be the utilization of cell 
Z,. Assume that demands in different cells 2, are created 
according to independent Poisson processes with arrival rate 
p,, and that service times are independent and exponentially 
distributed with rate u,, i = 1,. . . ~ z .  This yields A, = 
p,/u, .  In the stationary case one can calculate the blocking 
probability Bz,(a,) of cell Z, by the well known Erlang-B 
formula [25]. In our notation (2.2) this leads to 

f i ( k )  = bi(k - 1) - b ; ( k ) ,  k E IN, 

where 

1=0 

It is quite natural to choose weights proportional to the traffic 
utilization in individual cells, as in [27] 

(2.4) 
Ai w;  = f ,  i =  l ; . . ; z .  

CAt 
E = l  

In what follows we will call a sequence (En(A))nE~o an 
Erlang-B sequence if 

A“ In!  
&(A) = 7 ,n  E INO,A > 0. (2.5) 

C A j / j !  
j = O  

We will measure the performance of a channel design 
MLhr = (mij)t;El by the weighted sum of individual blocking 
probabilities in each cell. Let a; = Cj”=l m;j, i = 1,. . s ,  z be 

the number of channels in cell 2,. The function 

z z a ,  

is called the benefit function. To find an optimal plan with 
maximum benefit we obviously may restrict our attention to 
admissible designs. 

The importance of (2.6) originates from its interpretation 
in an open network of servers with customers in FCFS 
discipline and equal priority. This has influenced many authors 
[14], [23], [26], [27], to use criteron (2.6). Of course, other 
benefit functions could be meaningful as well, depending 
on the particular goal under consideration. We already here 
emphasize that the performance of simulated annealing (cf. 
Section IV) does not strongly depend on the particular form 
of the benefit function. 

We are now prepared to formulate the channel assignment 
problem (CAP) in our model. 

CAP(N) ,N  E IN: 
Instance: An interference graph G z  and rational cell pa- 

rameters ( f i ,  w i ) t l .  
Problem: Determine an N-channel design M& with 

S(M,G) 5 S (Mlv )  for all N-channel designs 
MN . 

In the HCA case [26], the set of all channels is divided 
into two disjoint groups GI and Ga, where channels in the 
first group have their assignment fixed, and in the second 
group channels are assigned dynamically. In this model, it is 
necessary to allocate the channels in G1 optimally to achieve 
good performance. So for this strategy CAP(IG1I) arises as a 
subproblem. 

CAP(N) is NP-hard for every fixed N because it can easily 
be reduced to INDEPENDENT SET [lo]. Presumably there is 
even no efficient algorithm to find a approximately optimal 
solution of CAP, as may be seen by the following Lemma. 

Lemma I :  Provided P # N P  holds, for any Q > 1 there is 
no polynomially time bounded algorithm which for every CAP 
( N )  determines a solution MN satisfying 

where M A  is an optimal solution. 
The proof follows easily from [13, ex. 13.191 (cf. [7]). 

111. NETWORKS OF SPECIAL STRUCTURE 

Though CAP(N) is NP-hard in general, for certain types of 
networks there are effective algorithms to determine optimal 
channel allocations. In this chapter, we first investigate designs 
which are related to a fixed coloring of the interference 
graph. This is important if one is interested, a priori, only 
in designs with certain symmetry properties. Furthermore, we 
deal with star systems and linear networks. In all cases efficient 
algorithms are derived. Of course, these results are of interest 
by themselves. Moreover, in special cases they allow us to 
compare the best results obtained by the algorithms in Section 
IV with the corresponding optimal solutions. 
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To give a formal description, we first introduce a fixed 
covering C = {Wl, .  . . , Wm} of the interference graph Gz. 

Definition 3: A N-channel design M1,~.c is called C-design if 
each column of M N , ~  induces a set in C, i.e., Uj = {Zilmij = 
l , i =  l , . . . , z }  E C h o l d s f o r a l l j =  l , . . . , N  . 

Using combinations with repetitions (see e.g. [15]), one can 
see that there are (":",') nonisomorphic designs. We call 
two C-designs isomorphic if they coincide after renumbering 
the channels. So the number of C-designs increases rapidly 
with N .  For example, N = 100 and m = 19 yields about 
9.93 . 10'' C-designs. These values are typical for hexagonal 
structures in practice (cf. [19], [27]). 

We now deal with the problem of finding an optimal C - 
design MG,c with 9(M&,c)  5 9(Mlv ,c )  over all C-designs 

In the special case of hexagonal structures and regular 
coverings this problem has been considered by Zhang and Yum 
[27]. The following " Generalized Zhang Yum algorithm" 
aims at determining an optimal C-design by a greedy type 
strategy. 

begin 

M N , C .  

Algorithm GZY: 

Initialize mij := 0;ai  := 1 for all 1 5 i 5 z ,  1 5 j 5 N ;  
for j := 1 t o  N do 
begin 

Choose W' E { W1,. . . , Wm} with 
CzkEw* w f k ( a k )  maximal; 
for all Zk E W* do begin ak := a k  + 1; 

m k ,  := 1 end; 
end; 
ai := ai - 1 for all 1 5 i 5 z ;  

end. 

GZY allocates channels successively to those groups We of 
cells which yield the largest reduction in blocking probability. 
Now the question arises in which cases this algorithm finds 
an optimal C-design. 

Theorem I :  Let C be a coloring of Gz and f i  nonincreasing 
for all i = 1, . . . ~ z .  Then the GZY-algorithm determines an 
optimal C -design. 

Proof: For any C-design we have aj = ajl = aw,, say, 
whenever cells j and j' belong to the same group W,. Let 
F l , i ~ ~ ( j )  = EeEwrt wefg(j). Since C is a coloring, to find an 
optimal design means to 

m a, 

such that 

Because all f,, j = 1, . . , z ,  are decreasing, the functions 
Fw, , i = 1, . . . m, are decreasing, too. This is the reason why 
the above greedy algorithm always finds an optimal C-design.. 

In case of Erlangian blocking probabilities, we immediately 
get the following result. 

W 

Fig. 1. Interference graph of a star system. 

Corollary I :  Let C be a coloring of Gz,  (fz(n)),Ew = 
(&-I (&)  - E,(X,)) ,E~. and A, > O , i  = l ; . . . , z .  Then 
the GZY-algorithm finds an optimal C-design. 

Proof: For any X > 0 the sequence (E,(X)),E~ is 
decreasing and convex [21]. Thus the first order differences 
(f2(n)),Em of (2.3) are decreasing, which by Theorem 1 

Remarkl: The covering considered in [27] is not a col- 
oring. Counterexamples illustrating that the algorithm in [27] 
fails to find an optimal solution can be easily constructed. 
Roughly speaking, this is due to the absence of a matroid 
structure [24] in that case. 

Next we examine the CAP for interference graphs of special 
structure. Robinson [23] proves optimality results for certain 
types of 2-colorable graphs. A special class of such graphs 
is given by so called star systems, i.e. networks of the type 
depicted in Fig. 1. 

As in Example 1, for this network class we assume Er- 
langian blocking probabilities and weights proportional to the 
utilization. As shown in [23], if 

establishes optimality. . 

a=2 Cvi/j! 
3 =O 

an optimal channel design is given by the strategy: allocate 
all channels to the surrounding cells and none to the center. 
This still holds true even if dynamic channel assignment is 
applied. Mixed strategies (assign n channels to the center and 
N - n channels to the surrounding cells, n > 0) are never 
optimal with dynamic channel assignment, whatever the rates 
v, are (though for arbitrary v, in the case of fixed channel 
assignment, mixed strategies could be optimal). There is an 
effective way of calculating optimal design for star systems. 

Lemma 2: For star systems an optimal N-channel design 
can be determined in O(log, N )  steps. 

Proof: An optimal design is determined by the solution 
of min l lns ,v  h(n) ,  where h ( n )  = (C:=lXz) - l ( f (n)  + 
g ( n ) ) ,  and f (n) = (A;"+l/n!)/(c&o Xi/,j!),g(n) = 
E:=2 (X:-"+'/(N - n ) ! ) / ( X r i i n  X ; / j ! ) , n  E IN. h is convex 
since f and g have this property. So the minimum can be 
found by binary search (successively halving intervals). Start 
with calculating h( LN/2l) .  If h( LN/'2J - 1) is smaller than 
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-H...Qp reuse distance 3 

reuse distance 4 

Fig. 2. Interference graph of linear networks ( k  = 2,3)  

the previous value, calculate h( LN/4J), otherwise h( [3N/4J), 

The next type of networks where we can give an effective 
algorithm to calculate optimal designs are linear networks with 
reuse distance k + 1. Here interference is possible between 
cells Zi and Zif when li - i'l 5 k holds. Examples with reuse 
distance 3 and 4 are shown in Fig. 2. 

Theorem 2: For linear networks with reuse distance k + 1 
CAP(1) can be solved in U(z2+10g2(2k+1)) steps. 

Proof: Let P = (PI, .  . . , p z ) ' ? p i  E (0, l}, 1 5 i 5 z ,  be 
a 1-channel design. By Pi,j, 1 5 i. 5 j 5 z ,  we denote the 
subdesign (pi,...,pj)' of P =  PI,^. If i > j let Pi,j denote 
the empty design. For i 5 k 5 j write Pi,j = P., P k P k + l , j  

to concatenate Pi,k and Pk+l,j. Let P* = ( p ; ,  . . . ,p:)' be 
an optimal design which w.1.o.g. may be assumed admissible. 
Then there exists a number 1 E {-kl -k + 1;.. , k  - l , k }  
and a decomposition P* = P1 P2 P3 with the following three 
properties. 

etc. The minimum is reached after U(log2 N )  steps. 

Pl =p* 1,1(z+k)/21+e-kis an optimal 1-channel design 

P3 =p*  1(z+k)/21 +e+l,lis an optimal 1-channel design 

w.r.t. the subnet {Zl, . . . , Z, ( z+k) /2 ,+ , -k } .  (3.1) 
(3.2) P2 =p*  ~ ( z + k ) / 2 J + e - k + l , ~ ( z + k ) / 2 ~ + e  = (0 , .  . ' 9 0)'. 

w.r.t. the subnet { Z L ( ~ + ~ ) / P J + ~ + ~ ,  . . . , Zl} 
withPi(z+k)/2]+e+l = 1. (3.3) 

Such a decomposition exists since an admissible optimal 
design has at most 2k zeros between two consecu- 
tive ones. On the other hand, all consecutive ones are 
separated by at least IC zeros. Therefore, at least one 

p ~ ( z + k ) 1 2 , + e + l  = 1. The three subdesigns induced by 1 must 
have the above properties since otherwise P* would not be 
optimal. 

We assume that calculation time is proportional to the 
number of steps. Let t k ( z )  be the time in the worst case 
necessary to determine an optimal 1-channel design for a 
linear network with reuse-distance k + 1, where t,+(z) = 0 
if z < 0. Recursive application of the above decomposition 
scheme yields 

of PT(*+k)/2,-k+l:. . . 4 ( z + k ) , 2 , + k + >  is equal to 1, say 

I 22(2k + q 2 t k  (1; + + ;I) 
< 2 lb, (.)I (2k + 1) llog, (211 

5 z2z10g2(2k+l)tk(k + 4) 
- - 0(z2+log,(2k+l) 

- 
(21log2(z)J - 1)k 2Llog,(z)l - 1 

. tk (I& + 21logz(z)l + 2llog,(z)-l l  

1. 

From the proof of Theorem 2, it is clear how to construct a 
corresponding algorithm. We do not give a full implementation 
but only the basic description. For 1 = - I C , .  . . , k iterate de- 
composing P :  array[i . . . z ]  into P!", Pie'; and l',(') where 
the first index of P;') is [ ( z  + k ) / 2 ]  + C - k + 1 and I?,(') has 
length k .  Set all entries of P r )  = 0. Determine an optimal 
design for the right subarray Pi'). If the first element of Pi'' 
is 1, then determine an optimal design for P{e) ,  otherwise 
let C := 1 + 1. To determine optimal channel designs in the 
left and right subarrays, apply the above described procedure 
recursively until the remaining arrays are so small (e.g., 5 2k 
elements) that optimal designs can be determined immediately. 
The above estimation considers worst cases, we do not take 
into account cutting the left subtree if a 0 is achieved as the 
first element of the right subarray. 

Remark 2: The number of admissible 1-channel designs for 
linear networks can be described by generalized Fibonacci 
numbers which grow exponentially. Furthermore, the follow- 
ing decision problem is NP-complete: Given b E Q, decide 
whether there exists a 1-channel design A41 with S(M1) = b. 

Remark3: If N > 1 a successive application of the above 
algorithm does not necessarily yield an optimal N-channel 
design. But for monotone benefit functions fi (as e.g. for the 
Erlang-B benefit) this approach seems to give nearly optimal 
results for a variety of parameters (cf. Theorem 1 and Section 

Combining the results obtained so far, one can also treat 
more complex networks as is illustrated in Fig. 3. We have 
four subnets of stations 1-5 (linear, reuse distance 2),  6-13 
(linear, reuse distance 3), 14-16 (star system), and 17-20 (star- 

VI. 
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Fig. 3. Optimal l-channel design of a combined network. 

system); the utilization is denoted beside each cell in Erlangs. 
For each subnet, optimal channel allocations are determined 
by the above methods. Circled stations use the available 
channel. Since there is no interference between assigned 
stations of the individual optimal subdesigns, the depicted 
channel assignment is optimal for the whole network (cf. [23]). 
Using this method, it is possible to construct arbitrarily large 
networks with known optimal channel assignment. This will 
be important for our analysis of the solutions obtained by 
simulated annealing. 

Iv. SOLUTION OF THE CAP BY SIMULATED ANNEALING 

The channel assignment problem is an example of a combi- 
natorial optimization problem. An instance of such a problem 
is given by an ordered pair ( S ,  f ) ,  where S = { 1, . . . , T }  is a 
finite set and f : S .+ R is a cost function defined on the state 
space S. The aim is to find a solution iopt E S with f(iopt) 5 
f ( i )  for all i E S. Let So,, = {io,, E Sl f ( ioPt )  5 f ( i )  for all 
i E S }  denote the set of optimal solutions. In the present case 
the state space S is given by the set of (admissible) N-channel 
designs and 9 serves as the cost function. 

Simulated annealing (SA) is a general approach for sol:- 
ing combinatorial optimization problems. The corresponding 
algorithm is well described in [l], and there are several strong 
convergence results, see [l], [ l l ] ,  [20]. The basic ingredients 
are a subroutine commonly called generate(j  from i ) ,  and an 
appropriate cooling schedule for the control parameter. Accep- 
tance probabilities are chosen in a standard way, resembling 
the exponential form of Metropolis’ approach. 

The procedure generate(j  from i )  creates randomly with 
probability Gij a new state j from the current one i ,  1 5 i ,  j 5 
T .  Let the random variable X k  describe the state achieved after 
the kth iteration of the algorithm. Convergence in distribution 
(i.e. limk,, P ( X k  E SOpt) = 1) can be guaranteed under 
general circumstances [ l ]  provided the generation probabilities 

satisfy the following conditions. 

(4.1) G,, = G,, for all z ,3  E S,  

and for all i ,  
with eo = i , t p  = 3 such that 

E S there exist p 2 1 and l o ,  f?, , . . . , lp E S 

Gekek+l > O f o r a l l I c = O , . . . , p - l  . (4.2) 

We will formulate versions of the ’SA-algorithm which satisfy 
these conditions and thus guarantee convergence. Instead of 
choosing S as the set of admissible N -channel designs in the 
sense of Definition 1, we consider the set Sperm = {n = 
(III,...,~IN)~II, E Perm,,i = l , . . . , N } ,  where Perm, 
denotes the set of permutations of { 1, . . . , z } .  The following 
procedure establishes a correspondence between Sperm and S. 
For II E Sperm let Mn define the unique admissible channel 
design given by the algorithm below. 

Algorithm (II + Mn):  
€ o r  a := 1 t o  N do 

fo r  j := 1 t o  z do 
b e g i n  

if {Zl&(J)} u {ZrL(e)ImrL(e),z = 1 1  1 5 e < j >  
is an independent set in G z  
t h e n  mn%(,),% = 1 else mn1(3),2 = 0; 

end; 

Fig. 4 contains a small example illustrating how this algo- 
rithm works. 

Obviously for a given admissible N-channel design M N  , 
there is at least one Il E Sperm with Mn = M N .  The 
cost function f on Sperm is defined by f ( I I )  = S ( M n )  for 

Now let Q = { @ I , .  . . , at}  C Perm,. By the following 
procedure we generate a new channel design from the actual 
one II = (II,,...,IIN) . 

E S p e r m .  

genera te -one  (n’ from rI): 
1. Randomly choose a channel T E { 1, . . . , N }  according 

to a uniform distribution. 
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2. 

3. 

z = 5) N = 2, 

Fig. 4. Illustration of the n i itfn correspondence. 

Fig. 5 .  Hexagonal structure. 

prove theoretical convergence) are obtained as follows. We 
return to the original state space of N-channel designs. 

genera te - two (M' from M):  
1. Choose a channel r E { 1, . . . , N }  at random according 

to a uniform distribution. 
2. Choose a permutation @i E Q 3 , l  5 i 5 (;), at random 

according to a uniform distribution. 
3. Let Fixat denote the set of fixed points of ai. M' is 

updated from M by modifying the rth column according 
to the following algorithm. 

Initialize ml, = { 0, 
Independently choose i E { 1, . . . , t }  according to a 
uniform distribution and select a permutation 
For II = ( I I ~ , - . . , I I , , . . . , I I N ) ,  define II' = 

mjr, if j E Fix@,, 
if j 6 Fix+%. E @. 

(HI, .  . . ,@in,, . . . , I I jV).  f o r  , j  = 1 t o  z do 
If a generator contains along with each permutation its in- 

verse, the assumptions for theoretical convergence are fulfilled, 
as the following Lemma shows. 

Lemma 3: Let Q E Perm, be a generator of Perm, and 
suppose that 

a E 9 * a-l E \Ir (4.3) 

holds. Then the probabilities G;j corresponding to 
genera te -one  satisfy (4.1) and (4.2). 

Proof: (4.1) follows immediately from (4.3) and the 
distributional symmetry of the procedure genera te -one .  
To prove (4.2) it suffices to consider the case z = 1. Let 
I I l , I I 2 ,  E Perm,. Since Q is a generator of Perm, there 
exist permutations @kl,. . . , @kc E 9 such that @ k p  . . . @ k l  = 
I I 2 I I y ' .  This implies @ k p  . . . @ k l  II1 = I I 2 ,  and, therefore, 
each permutation E Perm, is reachable with positive 
probability in a finite number of steps from every other 

The following generators of Perm, are examples which 
II1 E Perm,, which is (4.2). 

fulfill condition (4.3): 

@I  = { ( i ( i  + 1))p 5 i < z } ,  
@2 = { ( i ( i  + 1 ) .  . . ( j  - 1)j) l l  5 2 < j I z }  

u { ( j ( j  - 1 ) .  . . ( 2  + 1)i)ll 5 i < j 5 z } ,  
Q3 = { ( i , j ) ( ( i + l ) ( j -  l ) ) - . . ( ( i + k ) ( j - k ) )  

. 11 5 i < j I: z , k  = [ ( j  - i - 1)/2]}. 

Using Lemma 3 and applying one of the generators \Ir1, Q2, 

or \Ir3, with an appropriate cooling schedule genera te -one  
yields a convergent sequence of channel designs. A drawback 
is that updating is relatively expensive. Examples of generate 
procedures which are less expensive (but for which we cannot 

i f  j 6 Fix@$, t h e n  
if ({.&(ij)} and {z+(ze)Im;, = 1 7 1  I e 5 .> 

are independent) 
t h e n  mlr = 1 else mgr = 0; 

Compared with genera te -one ,  in this procedure only 
local updating is necessary. The next generate procedure shows 
how updating may be carried out very fast. The decrease in 
performance will be investigated in chapter 5 (see Example 2) .  

g e n e r a t e - t h r e e  (M' from M):  
1. Choose at random a channel r E { 1, . . . , N} according 

2. Choose z E { 1, . . . , z }  at random according to a uniform 

3. Assign channel r to cell Zi and remove channel r from 

Note that the last two generate procedures do not in general 
satisfy the symmetry condition (4.1), and thus the conver- 
gence theory [ l ]  cannot be applied. Nevertheless, we have 
observed good results also with the relaxed updates from 
genera te - two and g e n e r a t e - t h r e e .  

The main differences between our model and [4], [5] show 
up in the treatment of constraints and the benefit function. 
In [4], [5] constraints concerning the interference graph are 
embedded in the benefit function 9 by adding a penalty term. 
This makes optimization of S complicated, and for many 
updates, and even possibly for obtained solutions, interference 
restrictions are violated. The aim in [4], [5] is to minimize in- 
terference while simultaneously assigning a certain prescribed 
number of channels per cell. For this purpose free parameters 
are needed, which determine the relative importance of the 
individual criteria. We think that it is sometimes difficult to 

to a uniform distribution. 

distribution and select cell Zi. 

all cells adjacent to cell Zi. 
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TABLE I 
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0.80 
0.81 
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0.09 
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0.61 
0.41 
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Fig. 7. Blocking probabilities with varying utilization. 

generate procedure more time consuming. We employ a very 
convenient representation of the state space, which allows us 
to treat a variety of neighborhood relations by using different 
generators (see e.g. @I, @ z ,  @3) .  This makes our approach very 
flexible, retaining theoretical convergence results. 

Our numerical experiences with concrete implementations 
of simulated annealing show that this method is a very 
powerful tool for designing cellular radio networks. 

argue which values of these parameters in the benefit function 
are reasonable. 

In contrast, we use a well justified benefit function, but a V. NUMERICAL EXPERIENCES 
more complicated state space. In updating, we never leave 
the space of admissible solutions, which of course makes the 

This chapter tests the quality of simulated annealing solu- 
tions on different concrete examples. We treat three instances 
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0.28 
0.54 
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0.41 
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0.50 
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0.50 
0.16 
0.33 
0.09 
0.66 
0.47 
0.09 
0.09 
0.66 
0.50 
0.50 
0.50 
0.50 
0.83 
0.50 
0.50 
0.33 
0.09 
0.83 
0.66 
0.50 
0.79 
0.83 
0.75 
0.79 
0.66 
0.66 
0.33 
0.47 
0.66 
0.75 
0.75 
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rigorously and compare the results with competing approaches 
in the literature. 

In all cases we have used the following simple cooling 
schedule. The temperature is decreased geometrically with 
factors around 0.94. The inner homogeneous loops of the 
corresponding Markov chains have length proportional to the 
problem size z . N .  We did not yet try to optimize the cooling 
schedule. Nevertheless the calculation times were moderate, 
most times less than 10 minutes on a SPARC l+. 

A. Example I 

The first example deals with a regular structure of 12 x 12 
hexagonal cells (see Fig. 5). We compare the SA assignment 

TABLE I11 

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0  
0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
i n o i o ~ o o o o o o o o o i o o o o i o o o o  
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0  
0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0  
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0  
n i o o o l o O o o l O O O O O l O O O O O O O O  
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 1 0 0 Q 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0  
0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1  
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0  
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0  
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1  
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1  
0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0  
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0  
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0  
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1  
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1  
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1  
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1  
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1  
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0  
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1  
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1  
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1  
0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0  
0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1  
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0  
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0  
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0  
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1  
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0  

1011 9 10 9 30 7 9 10 8 11 9 10 7 10 9 21 8 8 101313121317 

with the designs obtained by the algorithm of Zhang and Yum 
[27], developed for regular hexagonal structures, on the basis 
of the following scenario: N = 150 channels, the Erlang-B 
benefit function, cell utilization (in Erlangs) according to a 
uniform distribution on [2, 201, interferences occur between 
neighboring cells when the Euclidean distance between centers 
does not exceedfi (cell radius = 1). 

Fig. 6 shows the typical behavior of the benefit function 
in the run of SA. The bad starting value is due to an 
empty initial design and high temperature at the beginning. 
Escapes from local minima are clearly observable. This also 
happens at large iteration steps, here not observable because 
of the large scale of the y-axis. This behavior is typical 
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TABLE IV 

5 4 6 7 8 9 10 11 

3.85 4.45 5.07 5.70 1.65 2.16 2.70 3.27 

cell number 16,9,17,22 14,7,18,19,23,25 I 16,21 I8,14,15,20,24 I 10,11 I 3,5,12 I 1,13 I 2 

across different versions of SA: other versions show the same 
behavior. 

In Fig. 7 we have varied the basic cell load (corresponding 
to 1.0 on the x-axis) by factors ranging from 0.8 to 1.6 in 
steps of 0.1. The curves show the blocking probability of the 
solutions corresponding to the indicated algorithms. 

Uniform channel assignment allocates channels w.r.t. a min- 
imal coloring of the regular structure (see [27]), independently 
of the utilization. This is a standard test often used in the 
literature. 

Zhang and Yum [27f use the same approach via minimal 
colorings, but take into consideration the given utilization. 
These authors conjecture that the resulting designs are hardly 
improvable. That seems not to be true, as the comparison with 
SA results shows. We observe a significant improvement, uni- 
formly over the whole utilization range. g e n e r a t e - t h r e e  
has been used to calculate the depicted curve, other generate 
procedures yield even slightly better results. 

B. Example 2 

The purpose of this example is to compare the quality 
of different generating procedures. We have investigated two 
linear networks, the first one with 50 stations and reuse 
distance 3 ( k  = 2 ) ,  and the second one consisting of 80 
stations with reuse distance 4 ( k  = 3), see Table I and 11, 
respectively. One channel has to be assigned optimally under 
the standard model of Example 1 in Section 11. In both tables, 
the first column contains the numbers wifi( l ) -der ived from 
certain Xi’s and appropriately normalized-which occur in the 
benefit function (2.6). Optimal designs were calculated by the 
algorithm suggested by Theorem 2. These results are given in 
the second column. 

In the third column of the 50 cells example, the solution 
found by SA is given. All three variants of g e n e r a t e  
produce the same optimal solution for this example. 

In the third column of the 80 cells example, we see the solu- 
tion of SA using gene ra t e -one  and genera te - two.  This 
solution is also optimal. In contrast, the design represented in 
column four is not optimal. It has been determined by SA 
using the fast and simple g e n e r a t e - t h r e e  procedure. This 
indicates that the assumptions for theoretical convergence of 
SA are quite sharp and by no means practically irrelevant. 

In the 80 cells case we have also assigned 28 channels 
by iteratively using the optimal algorithm of Theorem 2. 
The resulting blocking probability is 2.48%. The best design 
achieved by SA has corresponding 2.44% blocking probability, 
which is a negligible difference (see Remark 3). 

Note that there is a big jump in complexity between the 
two instances, in the first case we have roughly 1.37 . lo6 
admissible designs, in the second case 1.25 . lo9. 
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C. Example 3 
In the last example we deal with a real-world network. The 

basic data may be found in [16]. We have 25 cells and 73 
channels, but do not take into account co-site constraints. In 
[16] optimal designs are obtained on the basis of a different 
benefit function. The key point is to satisfy local traffic 
demands. To satisfy certain prescribed local demands, at least 
73 channels are necessary (see [16]). But even without co-site 
restrictions, there are at least 73 channels necessary, as may 
be seen by finding a corresponding clique. The cell utilizations 
themselves are not published in [16]. 

We apply the approach of Example 1, Section 11, and assign 
the utilizations of Table IV to individual cells. SA yields 
very satisfactory results using gene ra t e -one  with each of 
9 1 ,  92, and 9 3  (cf. Lemma 3). 

Table I11 shows the resulting design (transposed w.r.t. the 
notation of Section 11). The last line contains the number 
of channels in each cell. As may be easily seen, the local 
traffic demands of [16] are fulfilled by this solution. The 
overall blocking probability is 1.088%. It is clear that a 
design which exactly satisfies the local channel demands-as 
is requested in [16]-is easily obtained by thinning the solution 
of Table 111. Of course, we then end up with an inadmissible 
design. 

In conclusion, we have investigated three completely differ- 
ent examples. In all cases SA gave very good results, though 
the procedure was not adapted to special networks, e.g. with 
respect to neighborhood structures. This indicates that SA is 
widely applicable with uniformly high performance and worth 
considering for future development. 
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