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Abstract— Because of its limitations due to interference, ultra-
wideband impulse radio needs a careful investigation of the
signal-to-interference ratio (SIR). This paper contributes to
understanding the theoretical foundations of the SIR effects in
multi-user impulse radio systems. Two basic aspects are investi-
gated. First, the set of admissible power allocations to maintain
certain quality-of-service thresholds is described. Secondly, the
geometry of the set of feasible reciprocal bit rates is charac-
terized. Both sets turn out to have certain monotonicity and
convexity properties. We furthermore discuss the case that the
pulse repetition time is used as a global parameter to achieve an
admissible power allocation at the price of proportionally reduced
quality-of-service parameters. Techniques from analyzing code
division multiple access systems are generalized and applied to
impulse radio in this paper.

I. INTRODUCTION

Ultra-wideband impulse radio (UWB-IR) is a promising
technology for communication at extremely high data rates
with low power consumption, mainly over short distances.
Impulse radio operates in the spectrum from near DC to a
few gigahertz, a highly populated frequency band, and hence
must content with a variety of interfering signals. Further-
more, low intra-system interference from other users must
be ensured. Applying impulse radio as a multiuser system
necessitates careful power control for a fair radio resource
sharing, see [1], [2].

Since the system is interference limited, the signal-to-
interference ratio (SIR) plays a prominent role for assessing
the quality of transmission and the capacity of the system,
see [3]. Once the propagation environment is known, the SIR
boils down to a rational function of essentially two variables,
the power allocation and the binary bit rate.

In this paper, we choose two complementary approaches
to describe IR system performance. First, we investigate the
unrestricted set of power adjustments for a community of users
such that nobody’s SIR falls short of an individually chosen
threshold. It turns out that this set has nice geometrical proper-
ties. It has a uniformly minimal point which is componentwise
increasing as the QoS requirements increase.

Secondly, we consider the set of all reciprocal bit rates that
can be supported by some admissible power assignment. This
set turns out to be convex and monotonic, provided power
assignments form a convex set and are such that any reduced
power allocation is admissible in case its predecessor is.

Our approach stresses the analogy of important modeling
aspects for both impulse radio and code division multiple

access (CDMA). Power control and feasible quality of service
parameters can be treated for both systems in a similar setup.
We generalize and apply analytical techniques from CDMA
which can be found in [4], [5], [6]. We start with a short system
model overview in Section II. In Section III we deal with the
set of admissible power adjustments. Section IV characterizes
all feasible reciprocal bit rates, which can be supported by
some power allocation from a limited set. Finally, we use the
pulse repetition time as a global parameter for access control
to achieve a power allocation in a constrained set at the price
of proportionally reduced QoS parameters in Section V. We
conclude with a short summary in Section VI.

II. SYSTEM MODEL

We start by briefly recalling some basic facts about ultra
wideband (UWB) radio, or as alternatively referred to, impulse
radio (IR). A short general introduction is given in [1]. In
impulse radio systems, extremely short pulses are transmitted
(0.1 to 1.5 ns). A typical pulse, named monocycle, is the
Gaussian pulse g(t), see [3].

We consider a multi-user UWB system with K users. A
time-hopping code is used in order to accommodate multiple
users in UWB systems. For transmitting binary symbols pulse
position modulation (PPM) is used. A sequence of NS,i not
shifted pulses is transmitted for the symbol 0, while the
symbol 1 is transmitted by a sequence of NS,i pulses shifted
by amount δ for user i. The resulting transmitted signal of
user i is

sk
i (t) = Ak

∞
∑
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g(t− jTf − ckjTc − δdk
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where

• Ak is the pulse amplitude,
• Tf is the pulse repetition time interval,
• c

(k)
j is the time hopping code for the k-th user,

• Tc is the time shift defined for the hopping code,
• dk

i is the i-th symbol of the k-th user.

By assuming an AWGN channel model with perfect timing,
the SIR of user i is

SIRi =
A2
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where

• Gij is the path gain from user j to the receiver of user i,



• mp =
∫ ∞

−∞ g(t)v(t)dt, with v(t) = g(t) − g(t− δ)

• τ2
a = 1

Tf

∫ ∞

−∞

( ∫ ∞

−∞ g(t − s)v(t)dt
)2
ds is the interfer-

ence power resulting from one user,
• NS,i is the number of reduplicate pulses for one bit for

user i,
• N0,i is the thermal noise.
The SIRi defined above can also be expressed as a function

of the transmission powers p = (p1, . . . , pK) by introducing
the following relationships
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mp
the background noise energy

ri =
1

NS,iTf
the binary bit rate of user i.

The SIRi for user i can then be written as, cf. [2],

SIRi(p, r) =
Giipi

ri(Tf τ2
b

∑

j 6=i Gijpj + ηi)
,

where p = (p1, . . . , pK)′ and r = (r1, . . . , rK)′ denote the
vector of power adjustments and binary rates. Integrating the
system constants Tf and τ2

b into the path gains by setting

Aii = Gii, Aij = Tf τ
2
bGij , i 6= j,

yields

SIRi(p, r) =
Aiipi

ri(
∑

j 6=i Aijpj + ηi)
. (1)

Formula (1) is similar to the signal-to-interference ratio
of synchronous multiuser CDMA systems with K users and
processing gain N , see [7]. Let si ∈ R

N , i = 1, . . . ,K, the
N -dimensional signature sequence of user i. Denote by Gij

the fixed path gain from user j to the assigned base station
of user i. Suppose that the symbol of user i is decoded using
a linear receiver represented by some vector ci ∈ R

N . The
signal-to-interference ratio of user i is then given as

SIRi(p) =
Gii(c

′
isi)

2pi
∑

j 6=i Gij(c′isj)2pj + σ2(c′ici)
,

where σ2 denotes the variance of the additive Gaussian noise
and p = (p1, . . . , pK) the vector of transmit powers.

Summarizing the known channel and receiver effects into

Aij = Gij(c
′
isj)

2 and η′i = σ2(c′ici)

gives equation (1) with ri = 1 for all i = 1, . . . ,K.

III. POWER AND RATE ALLOCATION

In this section we analyze the ramification of both the
power pi and the data rate ri. Our starting point is equation (1).

Given QoS requirements γ1, . . . , γK for each user the power
region P IR

SIR of an ultra wideband radio system with K users
is defined as

PIR
SIR(γ, r) =

{

p ≥0 | SIRi(p, r) ≥ γi, i = 1, . . . ,K
}

. (2)

The inequalities defining (2) can be rewritten as a system
of linear inequalities. For this purpose write B = (bij)

K
i,j=1,

with

bij =

{

Aij/Aii, i 6= j,

0, i = j,
(3)

and
τ = (τ1, . . . , τK)T, where τi = ηi/Aii. (4)

Then for every p > 0 it holds that p ∈ P IR
SIR(γ, r) if and only

if
[I − ΓRB] p ≥ ΓRτ , (5)

where Γ = diag(γ) and R = diag(r) denote the matrices
with diagonal entries γi and ri, respectively, and non diagonal
entries equal to zero.

For convenience of notation we quote the following result
from [6]. It deals with solutions of the equation

[I − A]x = c (6)

when A is a non-negative but not necessarily irreducible
matrix. The proof given in [6] is direct and self-contained,
and it extends the Perron-Frobenius theory by avoiding the
assumption of irreducibility.

Let ρ(A) denote the spectral radius of the square matrix A,
i.e., the smallest radius of a disc centered at the origin in the
complex plane that covers all eigenvalues of A, or

ρ(A) = max{|λ| | λ is an eigenvalue of A}.

Proposition 1 Let A ∈ R
n×n be non-negative.

a) If there are x > 0 , c > 0 satisfying (6), then ρ(A) < 1.
b) If ρ(A) < 1, then I − A is non-singular and for every

c > 0, the unique solution x ∈ R
n of (6) is positive.

c) If ρ(A) < 1, then for every c ≥ 0, the unique solution
x ∈ R

n of (6) is non-negative.
d) If c > 0 and there exists y > 0 such that [I −A]y ≥ c,

then (6) has a unique solution x and 0 < x ≤ y.

If system (5) has a solution p > 0, then there is a unique
solution p∗ ≤ p satisfying

[I − ΓRB] p∗ = ΓRτ , (7)

as follows from Proposition 1. Moreover, for any given γ > 0

and r > 0, the equation [I − ΓRB] p = ΓRτ has a positive
solution p if and only if the spectral radius ρ(ΓRB) <
1, and in that case, the solution is unique. Denote it by
p∗(γ, r)(p∗1(γ, r), . . . , p∗K(γ, r))′. Thus

p∗(γ, r) = [I − ΓRB]−1
ΓRτ (8)

with all components positive.
Summarizing our results so far, we see that there is a unique

componentwise minimum power allocation in P IR
SIR, provided

that the power region is nonempty.



Proposition 2 If P IR
SIR(γ, r) 6= ∅, then there is a unique

power allocation p∗ = p(γ, r) such that

SIRi(p
∗, r) = γi for all i = 1, . . . ,K and

p∗ ≤ p for all p ∈ P IR
SIR(γ, r).

The uniformly minimal point p∗(γ, r) ∈ P IR
SIR(γ, r) is

of particular interest since it requires minimal energy while
maintaining the SIR demands γ = (γ1, . . . , γn)′ and binary
rates r = (r1, . . . , rK)′ of all users. In the following we deal
with the behavior of p∗(γ, r) as a function of γ and r.

Proposition 3 The function p∗(γ, r) is monotonically in-
creasing, i.e., if P IR

SIR(γ(2), r(2)) 6= ∅ and γ(1) ≤ γ(2) and
r(1) ≤ r(2), then p∗(γ(1), r(1)) ≤ p∗(γ(2), r(2)). Further-
more, p∗(γ, r) → 0 as γ → 0 or r → 0.

Proof: From Proposition 1 a) it follows that
ρ(Γ (2)R(2)B) < 1. Hence, expanding representation (8) in
a von Neumann series gives

p∗(γ(1)r(1)) = [I − Γ (1)R(1)B]−1Γ (1)R(1)τ

=
∞
∑

l=0

(Γ (1)R(1)B)lΓ (1)R(1)τ

≤
∞
∑

l=0

(Γ (2)R(2)B)lΓ (2)R(2)τ

= [I − Γ (2)R(2)B]−1Γ (2)R(2)τ = p∗(γ(2), r(2)),

which proves the first assertion.
It is immediate from (8) that p∗(γ, r) → 0 as γ → 0 or

r → 0. Observe that [I − ΓRB]−1 exists in a sufficiently
small neighborhood of 0.

We now analyze the geometrical properties of the power
region P IR

SIR(γ, r), but first quote two basic definitions.
A set C is called log-convex, if for any p(1), p(2) ∈ C and

any 0 ≤ α ≤ 1 the point

p(α) = p(1)α
p(2)1−α

∈ C,

where powers pα = (pα
1 , . . . , p

α
K) are applied componentwise.

Taking logarithms componentwise gives

log p(α) = α log p(1) + (1 − α) log p(2)

which means that the set C is convex in logarithmic scale.
A set C is said to be a cone if p ∈ C implies that αp ∈ C

for all α ≥ 0.

Proposition 4 The shifted power region P IR
SIR(γ, r)−p∗(γ, r)

is a closed convex cone in R
n. Moreover, P IR

SIR(γ, r) is log-
convex.

The proof of Proposition 4 follows immediately from ac-
cording assertions for the power region in CDMA, see [4],
[5].

IV. FEASIBLE BIT RATES

We now deal with the question which binary bit rates ri,
i = 1, . . . ,K, can be supported by impulse radio in a multiuser
environment where users may select a power adjustment from
a possibly bounded set P . Since ri = 1

NS,i Tf
for pulse

repetition times NS,i and time interval Tf , we rephrase this
question in terms of NS,i.

Let P ⊂ R
n denote the set of admissible power adjustments.

We assume that P is convex and closed under simultaneously
turning power down, i.e.,

if p ∈ P and 0 < q ≤ p then q ∈ P . (9)

Special cases of such constraints are the `t-norms as

P = {(p1, . . . , pK) |
∑

i

pt
i ≤ pmax, 1 ≤ t ≤ ∞}

which includes total power restrictions
∑

i pi ≤ pmax for t =
1, particularly dealt with in [8]. Individual restrictions pi ≤
pmax,i, i = 1, . . . ,K also belong to this class, see [9].

Requiring quality of service constraints in terms of the
signal-to-interference ratio (1) reads as

SIRi(p, r) =
Aiipi

ri(
∑

j 6=i Aijpj + ηi)
≥ γi

for all i = 1, . . . ,K, or equivalently, by substituting ri =
1

NS,iTf

Aiipi
∑

j 6=i Aijpj + ηi
≥

γi

NS,i Tf
.

We relax the problem of describing the set of discrete
pulse repetition numbers by introducing continuous variables
ni ≥ 0 substituting NS,i, in the sequel called fractional
pulse repetition numbers. Let n = (n1, . . . , nK)′ ∈ R

K with
ni = NS,i.

The set of feasible fractional repetition numbers is then
defined as

FP =
{

n = (n1, . . . , nK)′ > 0 |

∃p ∈ P :
Aiipi

∑

j 6=i Aijpj + ηi
≥

γi

ni Tf
∀i

}

.
(10)

The function
ψ(γi, x) =

γi

xTf
, x > 0,

is obviously log-convex with respect to x, which means, by
definition, that logψ(γi, x) is convex. Writing the diagonal
matrix

Ψ (γ,n) = diag
(

ψ(γ1, n1), . . . , ψ(γK , nK)
)

and using Proposition 1 yields the following representation.

FP =
{

n > 0 | ∃p ∈ P : [I − Ψ (γ,n)B]p = Ψ (γ,n)τ
}

.

with B and τ defined in (3) and (4), respectively. Analogously
let

F =
{

n > 0 | ∃p > 0 : [I − Ψ (γ,n)B]p = Ψ (γ,n)τ
}

.
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Fig. 1. The sets FP for SIR requirements γ1 = γ2 = 3.16, 10.0, 15.0

(shaded from light to dark) with total power restricted by p1 + p2 ≤ 10−4 .

denote the set of feasible fractional repetition numbers with
unlimited power. It is easy to see that F is independent of
parameter Tf which, however, fails to hold for FP . If n ∈ F ,
then according to Proposition 1 there exists a unique p∗(n) >
0 solving the system of equations [I − Ψ (γ,n)B]p =
Ψ (γ,n)τ . Further, regarding monotonous SIR requirements,
the set FP has the following property.

Proposition 5 Let γ(1) ≤ γ(2) be SIR requirements. Then it
holds that FP(γ(2)) ⊆ FP(γ(1)), with the obvious notation
FP(γ(j)) =

{

n > 0 | ∃p ∈ P : [I − Ψ (γ(j)n)B]p =
Ψ (γ(j),n)τ

}

.

Proof: From γ(1) ≤ γ(2) it follows that Ψ (γ(1),n) ≤
Ψ (γ(2),n), and thus ρ(Ψ (γ(1),n)) ≤ ρ(Ψ (γ(2),n)). By
Proposition 1 (I − Ψ (γ(1),n)B)−1 exists whenever (I −
Ψ (γ(2),n)B)−1 exists.

It remains to show that p(1) ∈ P whenever p(2) ∈ P
with p(j) = (I − Ψ (γ(j),n)B)−1Ψ (γ(j),n)τ , j = 1, 2.
Expanding p(j) in a von Neumann series gives

p(1) = (I − Ψ (γ(1),n)B)−1Ψ (γ(1),n)τ

=

∞
∑

l=0

(Ψ (γ(1),n)B))lΨ (γ(1),n)τ

≤
∞
∑

l=0

(Ψ (γ(2),n)B))lΨ (γ(2),n)τ

= (I − Ψ (γ(2),n)B)−1Ψ (γ(2),n)τ = p(2)

which proves the assertion using (9).
An immediate conclusion of Proposition 5 is that the above

holds for the set F , too.
Our results are visualized in Fig. 1 and Fig. 2. Fig. 1

shows the set FP for the two user case for γi = 3.16, 10, 15
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Fig. 2. The sets FP for SIR requirements 3.16, 10 with bounded maximum
power, max{p1, p2} ≤ 10−4.

when P is described by the `1-norm as p1 + p2 ≤ 10−4.
According to Proposition 5 it can be seen that FP(15) ⊂
FP(10) ⊂ FP(3.16). Corresponding parameters are G11 =
G22 = 0.8, G12 = G21 = 0.2, τ2

b = 1.9966 · 10−3, η1 = η2 =
10−11, Tf = 10−7. The same parameters are used in Fig. 2,
which depicts FP for γi = 3.16, 10 under the max-norm
max{p1, p2} ≤ 10−4. The curved lines show the extreme
points with p2 = pmax and variable p1 ∈ {0, pmax}, and vice
versa.

The problem is now embedded into a more general frame-
work, where the variables n may be arbitrary QoS parameters
and ψi arbitrary log-convex functions. We aim at the same
geometrical results for the set of feasible QoS parameters for
impulse radio as known for CDMA systems. For this purpose
we need a generalization of Theorem 2 in [6] as follows.

Proposition 6 Suppose that ψi, i = 1, . . . ,K, are log-convex
functions. Let n(0),n(1) ∈ F , n(0) 6= n(1), and n(λ) =
λn(1) + (1 − λ)n(0), 0 ≤ λ ≤ 1. Then p∗i (n

(λ)) is a log-
convex, and hence convex function of λ ∈ [0, 1].

Proof: The proof relies on the fact that the class L of
log-convex functions on [0, 1] augmented by the zero function
is closed under the following operations, see [10], page 19. If
α ≥ 0 and f1, f2 ∈ L, then αf1, f1+f2, f1 ·f2 ∈ L. Moreover,
if fj ∈ L, j ∈ N, and

∑∞
j=1 fj(λ) < ∞ for λ = 0, 1, then

∑∞
j=1 fj(λ) <∞ for all λ ∈ [0, 1] and

∑∞
j=1 fj ∈ L.

Now write

p∗(n(λ)) =
[

I − Ψ (n(λ))B
]−1

Ψ (n(λ))τ

=
[

∞
∑

j=1

(

Ψ (n(λ))B
)j]

Ψ (n(λ))τ . (11)



By assumption n(0),n(1) ∈ F . From Proposition 1 it
follows that ρ

(

Ψ (n(j)
)

< 1, j = 1, 2, and the series (11)
converges for λ = 0 and λ = 1.

Each entry of Ψ (n(λ)) = diag
(

ψ1(n
(λ)
1 ), . . . , ψK(n

(λ)
K )

)

is a log-convex function of λ ∈ [0, 1]. By the above and
representation (11), p∗i (n

(λ)) ∈ L for all i = 1, . . . ,K, such
that p∗i (n

(λ)) is a log-convex function of λ ∈ [0, 1]. The fact
that log-convex functions are convex completes the proof.

As a corollary to Proposition 6 the convexity of the set FP

follows.

Proposition 7 Suppose that ψi are log-convex functions, fur-
ther that P is convex and satisfies (9). Then the constrained
set FP is a convex set in R

K .

Proof: We start form two points n(0),n(1) ∈ FP . Hence,
p∗(n(0)),p∗(n(1)) ∈ P . Proposition 7 and the convexity of
P yield

p∗(n(λ)) ≤ λp∗(n(1)) + (1 − λ)p∗(n(0)) ∈ P

for all 0 ≤ λ ≤ 1. By (9) it follows that p∗(n(λ)) ∈ P , and
therefore n(λ) ∈ FP for all 0 ≤ λ ≤ 1.

Revisiting impulse radio with ψi(ni) = γi

niTf
Proposition 7

yields that the set of constrained fractional feasible repetition
numbers is convex.

As an immediate consequence of Proposition 3 we further-
more obtain that FP is unbounded whenever the components
of some feasible element are enlarged.

Proposition 8 Suppose that the set P of admissible power
allocations satisfies (9). If n(1) ∈ FP then n ∈ FP for all
n ≥ n(1).

V. CONTROLLING PULSE REPETITION TIME

The pulse repetition time, Tf , may be used as a global
system parameter to control proportional access of users in
the case of overload. To see this, consider the entries of the
matrix on the left hand side of (7). Its entries are

{

1 − γi

ni

τ2

b Gij

Gii
, if i 6= j,

1, if i = j,

such that I − ΓRB is independent of Tf . The ith entry of
the right hand side of (7) reads as

1

Tf

γi

ni

ηi

Gii
.

Now, if ρ(ΓRB) < 1, then a power assignment p∗ =
p∗(γ, r) exists according to (8), however, it may happen that
p∗ 6∈ P . By Proposition 3, increasing Tf , i.e., enlarging the
pulse repetition time, decreases p∗(γ, r) componentwise with
p∗(γ, r) → 0 as Tf → ∞. Hence, if P is closed there exists

Tf,min = min{Tf | p∗(γ, r) ∈ P}.

Tf,min can be used as a global control parameter to achieve a
power allocation

p∗ = [I − ΓRB]−1 1

Tf,min
diag

( γi

ni

)

τ

with proportionally reduced QoS parameters γi

ni
, but p∗ ∈ P .

VI. CONCLUSION

This paper has contributed to the interference and power
control modeling of ultra-wideband impulse radio. Important
parameters for controlling the system performance are power,
quality-of-service demands in terms of the SIR, and pulse
repetition time. The influence of each and their interaction
has been investigated in the present work. It has been shown
that both the set of admissible power allocations and the set
of feasible reciprocal binary bit rates are convex and have
certain monotonicity properties. After appropriate modeling
of the key effects, analytical methods from CDMA have been
extended and applied to the analysis of impulse radio. We
have also suggested how to use the pulse repetition time for
access control with proportionally reduced QoS parameters.
Future research will be devoted to effective algorithms for
determining the minimal reduction to achieve an admissible
power adjustment.
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