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Abstract

In this paper, we study an unmanned aerial vehicle (UAV)-enabled wireless power transfer network, where
a UAV flies at a constant altitude in the sky to provide wireless energy supply for a set of ground nodes with a
linear topology. Our objective is to maximize the minimum received energy among all ground nodes by optimizing
the UAV’s one-dimensional (1D) trajectory, subject to the maximum UAV flying speed constraint. Different from
previous works that only provided heuristic and locally optimal solutions, this paper is the first time to present the
globally optimal 1D UAV trajectory solution to the considered min-energy maximization problem. Towards this
end, we first show that for any given speed-constrained UAV trajectory, we can always construct a maximum-speed
trajectory and a speed-free trajectory, such that their combination can achieve the same received energy at all
these ground nodes. Next, we transform the UAV-speed-constrained trajectory design problem into an equivalent
UAV-speed-free problem, which is then optimally solved via the Lagrange dual method. The optimal 1D UAV
trajectory solution follows the so-called successive hover-and-fly structure, i.e., the UAV successively hovers at a
finite number of hovering points each for an optimized hovering duration, and flies among these hovering points at
the maximum speed. Building upon the optimal UAV trajectory structure, we further present a low-complexity UAV
trajectory design by first transforming the original problem into an equivalent non-convex problem with only the
UAV hovering locations and durations as optimization variables, and then updating the trajectory via the successive
convex approximation technique. Our analysis shows that the low-complexity design is guaranteed to converge to
a suboptimal solution at a significantly lower complexity irrespective of the geographical network size. Numerical
results show that the proposed low-complexity design actually achieves the same performance as the proposed
optimal solution, and both of them outperform the benchmark algorithms in prior works under different scenarios.
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I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have found abundant applications in, e.g., cargo delivery, aerial
inspection and surveillance, due to the relatively high payload and long endurance. In recent years, UAV-
enabled wireless applications have attracted increasing attentions, as UAVs can be used for the quick
deployment of on-demand wireless systems. Thanks to the presence of line-of-sight (LoS) aerial-to-ground
(A2G) wireless links between UAVs and ground devices, UAV-enabled wireless networks are likely to have
better system performance than conventional terrestrial wireless networks [1]. In general, there are two
types of UAV-enabled wireless applications, namely, wireless communication and wireless power transfer
(WPT), respectively. On one hand, UAVs can be utilized as mobile base stations (BSs) or relays to
improve the coverage [2]–[6] and data-rate throughput [7]–[15] performance for wireless communication.
On the other hand, UAVs can also be used as mobile energy transmitters (ETs) that fly in the sky to
broadcast radio frequency (RF) signals to wirelessly charge low-power ground nodes (such as sensors and
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Internet-of-thing (IoT) devices) [16], [17]. Furthermore, UAV-enabled wireless powered communication
networks [22]–[24] and wireless powered edge computing (see, e.g., [18]) have been studied in [15] and
[19], respectively.

Due to the fully controllable mobility, UAVs provide new degrees of freedom in improving the wireless
performance via optimizing UAVs’ quasi-stationary deployment locations or time-varying locations over
time (a.k.a. trajectories) [3]. For instance, the prior works [4]–[6], [9], [13] considered UAV-enabled
cellular BSs, where the UAV’s deployment locations are optimized to provide the maximum coverage for
ground users [4]–[6], [9], and to enhance the performance of cell-edge users via data offloading [13]. In
addition, in UAV-enabled mobile relaying systems, the UAV trajectory is jointly designed with the wireless
resource allocation, so as to improve the throughput [10], [11] or enhance the energy efficiency [12].

On the other hand, UAV-enabled WPT has recently emerged as a promising solution to prolong the
lifetime of low-power sensors and IoT devices, by using UAVs as mobile ETs to power these devices
[15]–[17], [19]. In particular, by considering the UAV flying at a fixed altitude, the works [16], [17]
optimized the one-dimensional (1D) or two-dimensional (2D) UAV trajectory to maximize the energy
transfer performance for a UAV-enabled WPT network, subject to maximum UAV speed constraints. In a
two-user scenario in a linear topology, the authors in [16] optimized the 1D UAV trajectory to characterize
the Pareto boundary of the achievable energy region by the two users. This result is then extended to
the general multiuser scenario in a 2D topology in [17], where the 2D UAV trajectory is optimized to
maximize the minimum received energy among these users. The essential idea of the UAV trajectory
design in [16], [17] is proceeded as follows. First, a relaxed problem is considered which ignores the
UAV speed constraints, based on which it is shown that the optimal UAV trajectory solution to this
relaxed problem follows a multi-location-hovering structure, where the UAV hovers at a finite number of
locations with optimized hovering durations. Then, a heuristic successive hover-and-fly (SHF) trajectory
is proposed for the general problem with the maximum UAV speed constraints considered, in which the
UAV successively hovers over these locations, and then flies among them at the maximum speed. Next,
the successive convex approximation (SCA) technique is further performed to refine the UAV trajectory,
by quantizing the continuous UAV trajectory into a finite number of way points. It is worth noting that
for the general case with the UAV maximum speed constraint considered, the heuristic SHF trajectory
can only obtain generally suboptimal solutions, while the SCP-based trajectory design can only ensure
the local optimality when the quantization size becomes extremely small. Nevertheless, such an accurate
quantization will lead to extremely high computation complexity. Furthermore, in [16], [17] the structure
of the optimal UAV trajectory solution still remains unknown, even for the basic case with two users. These
issues1 thus motivate us to characterize the optimal UAV trajectory structure and to design high-quality
UAV trajectories at low complexity in this paper.

In this paper, we consider a simplified UAV-enabled WPT network with a linear topology, where K > 1
ground nodes are deployed in a straight line. To charge these nodes in an efficient and fair manner, we
aim at maximizing the minimal received energy among all nodes via designing the UAV’s 1D trajectory
(or equivalently the velocity) for WPT, while the UAV mobility is subject to maximum speed constraints.
The results of this work are summarized as follows.
• Different from previous works that only provided heuristic and locally optimal solutions, for the first

time, we present the globally optimal 1D UAV trajectory solution to the considered WPT problem.
Towards this end, we first show that for any given speed-constrained UAV trajectory, we can always
construct a maximum-speed trajectory and a speed-free trajectory, such that their combination can

1It should be pointed out that there have been other prior works investigating UAV trajectory design for communication systems, e.g., in
mobile edge networks [13] and cellular networks [7]. These designs generally obtained locally optimal or sub-optimal trajectory solutions.
More recently, for a cellular-connected UAV network with pre-determined initial location and final location as well as minimum received
signal-to-noise ratio (SNR) constraints, the authors in [20], [21] provided a flexible trade-off in the trajectory design between complexity
and performance. The proposed trajectory design is able to approach the optimal solution with an arbitrarily small performance gap with
polynomial complexity. For more general UAV-connected communication systems without specific distance/SNR constraints and with the
initial location and final location to be optimized, how to reveal insightful structures and obtain optimal UAV trajectories are open questions
that remain unaddressed.
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achieve the same received energy at all these ground nodes. Next, we transform the original UAV-
speed-constrained trajectory design problem into an equivalent UAV-speed-free problem, which is
then optimally solved via the Lagrange dual method. It is proved that the optimal 1D UAV trajectory
solution follows an interesting SHF structure, i.e., the UAV successively hovers at a finite number of
hovering points each for an optimized hovering duration, and flies among these hovering points at
the maximum speed. Moreover, we analyze the number of hovering points at the optimal trajectories.
It is proved that there exists at least one optimal trajectory with the number of hovering points no
larger than K + 2.

• In addition to the optimal solution, an efficient and low-complexity UAV trajectory design is proposed.
First, based on the proved structure of the optimal trajectory, we transform the original optimization
problem as an equivalent non-convex problem with only the UAV hovering locations and durations as
optimization variables. Then, we update the trajectory in an iterative manner by using the SCA tech-
nique. In each iteration, we approximate the non-convex problem into a convex one, and subsequently
refine the trajectory towards a high-quality solution.

• Next, we analyze the complexities of the proposed optimal and suboptimal trajectory solutions
in comparison to benchmark solutions in existing studies (e.g., the heuristic SHF and the SCP-
based trajectory designs in [17]). In particular, it is shown that the computational complexity of our
suboptimal design is constant irrespective of the geographical network size, which is advantageous
over the optimal design in practical implementation. Via numerical results, we show that the proposed
low-complexity design actually achieves the same performance as the proposed optimal solution, and
both of them outperform the benchmark algorithms in prior works under different scenarios.

It is worth emphasizing that the obtained optimal SHF solution in this paper is in sharp contrast to the
heuristic SHF design in [17], as the obtained UAV hovering locations and durations take into account the
received energy during the UAV flying, while those in [17] ignore such impacts. Therefore, the proposed
design achieves the optimal performance and outperforms the heuristic design in [17], as will be validated
in our numerical results.

The remainder of this paper is organized as follows. We introduce the system model and formulate
the min-energy maximization problem in Section II. In Section III, we characterize the optimal trajectory
solution to the problem. Building upon the characterization, we propose an optimal trajectory design
and a low-complexity trajectory design in Section IV. Section V analyzes the complexity level of our
proposed designs versus other benchmark schemes. Finally, we provide simulation results in Section VI
and conclude this work in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a UAV-enabled multiuser WPT system with a linear topology as shown in
Fig. 1, where a UAV flies at a fixed altitude H > 0 to wirelessly charge a set K = {1, · · ·, K} of K ground
nodes (such as IoT devices and sensors) that are located in a straight line, e.g., ground nodes are deployed
within a limited distance interval along with a river, road or tunnel. We denote the horizontal location of
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Fig. 1. Illustration of the UAV-enabled WPT network with a linear topology.

node k ∈ K as wk. We assume that w1 ≤ · · · ≤ wK without loss of generality. To efficiently charge all
nodes, we focus on a finite UAV charging period T ∆

= [0, T ] with duration T > 0. The UAV’s time-varying
horizontal location is denoted by x(t) at time instant t ∈ T . In addition, the UAV is subject to a maximal
flying speed V . Hence, we have |ẋ(t)| ≤ V, ∀t ∈ T , where ẋ(t) denotes the first derivative of x(t).

In practice, the wireless channels between the UAV and ground nodes are LoS-dominant, and therefore,
we adopt the free-space path loss model as normally used in the UAV-enabled wireless communication and
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WPT literature [10]. At time t, the channel power gain from the UAV to ground node k ∈ K is denoted as
hk(x(t)) = β0

(x(t)−wk)2+H2 , where the distance between the UAV and ground node k is
√

(x(t)− wk)2 +H2

and β0 is the channel power gain at a reference distance of unit meter. Hence, the received RF power by
ground node k at time t ∈ T is

Qk (x(t)) =
β0P

(x(t)− wk)2 +H2
, (1)

where P denotes the constant transmit power of the UAV. Notice that in practice, the received RF signal
should be converted into a direct current (DC) signal to charge the rechargeable battery at each ground
node, and the RF-to-DC conversion is in general a non-linear process [29]. In order to focus our study
on the wireless transmission, we use the received RF power as the performance metric by ignoring the
non-linear RF-to-DC conversion process, as in [16], [17].

Due to the broadcast nature of the wireless transmission, all ground nodes can simultaneously receive
wireless power during the whole charging period T . As a result, the total energy received by ground node
k ∈ K is given by

Ek({x(t)}) =

∫ T

0

Qk (x (t)) dt. (2)

Our objective is to design the UAV trajectory to maximize the minimal received energy among all the K
nodes during the charging period T . In particular, it is assumed that the UAV is able to be freely deployed
with both initial and final locations to be optimized. The problem of our interest is formulated as

(OP) : max
{x(t)}

min
k∈K

∫ T

0

Qk(x(t))dt (3)

s.t. |ẋ(t)| ≤ V, ∀t ∈ T .

By introducing an auxiliary variable E, the original problem (OP) is equivalently reformulated as

(P1) : max
{x(t)},E

E

s.t.

∫ T

0

Qk(x(t))dt ≥ E,∀k ∈ K , (4)

|ẋ(t)| ≤ V, ∀t ∈ T .

Notice that both the original problem (OP) and the reformulated problem (P1) are non-convex, due to
the fact that the objective function in (OP) is non-concave, and constraint

∫ T
0
Qk(x(t))dt ≥ E in (P1) is

non-convex, respectively. Furthermore, both problems consist of an infinite number of variables {x(t)}
over continuous time. Therefore, how to find the optimal solution to the min-energy maximization problem
is generally a very difficult task.

Note that in the prior work [17], the authors have proposed two designs, namely the heuristic SHF and
the SCP-based trajectory solutions, which can also be used to solve (OP) and (P1) sub-optimally. However,
as we discussed in Section I, the heuristic SHF trajectory solution is suboptimal, while the performance
of the SCP-based trajectory can only ensure the local optimality even the quantization becomes extremely
accurate. Moreover, the practical performance of the SCP-based trajectory depends on the quantization
accuracy, and the implementation complexity is high especially when the quantization accuracy increases.
It is still unknown how to obtain the optimal and well-structured 1D UAV trajectory solution to the
min-energy maximization problem with maximum speed constraints.

III. CHARACTERIZATION OF THE OPTIMAL TRAJECTORY SOLUTION TO PROBLEM (P1)

In this section, we characterize the optimal trajectory solution to problem (OP) or (P1). We show that
it has an interesting SHF structure, in which the UAV hovers among a number of locations and then flies
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among them at the maximum speed. This can significantly simplify the derivation of problem (P1), as
will be shown in Section IV.

First, notice that there always exists a uni-directional trajectory2 that is optimal for (P1), i.e., x(t1) ≤
x(t2),∀t1, t2 ∈ T , t1 < t2. Therefore, in this paper we focus on the uni-directional trajectory without loss
of optimality. Next, to characterize the structure of the optimal trajectory solution to problem (P1), we
consider problem (P1) under a given pair of initial and final locations xI and xF, i.e., x(0) = xI and
x(T ) = xF. This sub-problem is given by

(P1.1) : max
{x(t)},E

E

s.t.

∫ T

0

Qk(x(t))dt ≥ E,∀k ∈ K (5)

|ẋ(t)| ≤ V, ∀t ∈ T
xI ≤ x(t) ≤ xF,∀t ∈ T .

Note that as the solution to (P1) is a special case (with optimal initial and final locations) of the solution
to (P1.1), the structure of the optimal trajectory solution to (P1.1) holds also for the optimal trajectory
solution to (P1).

In the following, we first show that any speed-constrained trajectory to problem (P1.1) is mathematically
equivalent to the combination of a maximum-speed trajectory and a speed-free trajectory, and then provide
the optimal solution to problem (P1.1) under any given pair of xI and xF via the Lagrange dual method.
Accordingly, the structure of the optimal trajectory solution to problem (P1) will be characterized.

A. Problem Reformulation via Constructing Equivalent Max-Speed and Speed-Free Trajectories

We start with the following lemma to show that we can construct two trajectories for any unidirectional
trajectory {x(t)} satisfying the maximum speed constraint V .

Lemma 1. For any duration-T unidirectional trajectory {x(t)} satisfying the maximum speed constraint V
with given initial position x(0) = xI and final position x(T ) = xF, we can always find two UAV trajectories
{x̄(t)} and {x̂(t)} to jointly achieve the same WPT performance. In particular, {x̄(t)} is the max-speed
flying with x̄(t) = xI + V t,∀t ∈ (0, T̄ ], where T̄ = (xF − xI)/V . In addition, {x̂(t)} has a time duration
T̂ = T − (xF − xI)/V without any UAV speed constraints (speed-free). In other words, the following
equality holds for any ground nodes.∫ T

0

Qk (x (t)) dt

=

∫ T̄

0

Qk (x̄ (t)) dt+

∫ T̂

0

Qk (x̂ (t)) dt,∀k ∈ K.
(6)

Proof. The proof is provided in Appendix A.

Note that for the maximum-speed flying trajectory {x̄(t)} from xI to xF, the trajectory is fixed, i.e., the
UAV flies from xI to xF at the maximal speed V . In particular, for trajectory {x̄(t)}, the received energy

2Assume that there exists an optimal trajectory {xS(t)} with path S, which is not uni-directional, i.e., the UAV flies forward and backward.
Under {xS(t)}, the UAV flies multiple times over each location on the (or a part of the) path S. Then, we can calculate the cumulative
flying/hovering time duration of the UAV over each location on the path S. We can always find an alternative uni-directional UAV trajectory
with the same path S to achieve the same WPT performance as {xS(t)}, by letting the UAV fly with a relatively lower speed such that the
flying/hovering time duration of the UAV over each location on S is the same as the cumulative flying/hovering time duration of the UAV
over each location under {xS(t)}. Hence, without loss of generality, there always exists a uni-directional trajectory solution being optimal
to (P1).
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by ground node k ∈ K is

Ēk =

∫ T̄

0

Qk(x̄ (t)) dt =

∫ T̄

0

Qk (xI + V t) dt

=
β0P

V H
arctan(

xF−wk
H

)− β0P

V H
arctan(

xI−wk
H

).

(7)

Based on Lemma 1, (P1.1) is equivalently reformulated as

(P2) : max
{x̂(t)},E

E

s.t.

∫ T̂

0

Qk(x̂(t))dt+ Ēk ≥ E, ∀k ∈ K (8)

xI ≤ x̂(t) ≤ xF,∀t ∈ T̂ ,

where T̂ = [0, T̂ ] and Ēk is a constant defined in (7).
All problems (P1), (P1.1) and (P2) are non-convex but satisfy the so-called time-sharing condition from

[30]. Hence, strong duality holds between each problem and its Lagrange dual problem. However, note
that the constraint |ẋ(t)| ≤ V, ∀t ∈ T , in problem (P1) and problem (P1.1) is a time-continuous constraint,
which cannot be decomposed over time. In other words, the dual Lagrange function of either problem
(P1) and problem (P1.1) has an infinite number of Lagrange multipliers, which makes the problems non-
tractable. On the other hand, as not having such constraints with location variables coupling over time,
problem (P2) can be efficiently solved via the Lagrange dual method [31] with decomposition, which is
actually the key motivation of reformulating problem (P1.1) to problem (P2).

B. Optimal Solution to Problem (P2)

Denote the Lagrange multipliers for the k-th constraint in (8) by λk ≥ 0, k ∈ K. The partial Lagrangian
of (P2) is

L2 ({x̂(t)}, E, {λk})

= E +
∑
k∈K

λk

(∫ T̂

0

Qk(x̂(t))dt+ Ēk − E

)

= (1−
∑
k∈K

λk)E+
∑
k∈K

λkĒk+

∫ T̂

0

∑
k∈K

λkQk(x̂(t))dt.

(9)

Immediately, we have the corresponding dual function as

f2 ({λk}}) = max
{x̂(t)},E

L2 ({x̂(t)}, E, {λk}}) (10)

s.t. xI ≤ x̂(t) ≤ xF,∀t ∈ T̂ .

Clearly, the condition 1 −
∑

k∈K λk = 0 must be satisfied to guarantee that the function f2({λk}) is
upper-bounded from above, i.e., f2({λk}) < ∞. Otherwise, if 1 −

∑
k∈K λk < 0 (or 1 −

∑
k∈K λk > 0),

we have f2 ({λk}})→∞ by setting E → −∞ (or E →∞). Then, the dual problem of (P2) is

(DP2) : min
{λk}

f2({λk}) (11)

s.t. 1−
∑

k∈K
λk = 0, λk ≥ 0,∀k ∈ K.

According to the solution to problem (P3.1) in [17], the dual function can be obtained by solving the
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following problem

max
x̂

F (x̂) ,
∑

k∈K
λkQk(x̂) (12)

s.t. xI ≤ x̂ ≤ xF.

Moreover, we can obtain the extreme points of F (x̂) by letting its first order derivative be zero, i.e.,
F ′(x̂) =

∑
k∈K λk

−2(x̂−wk)β0P

((x̂−wk)2+H2)2
= 0, which equals to solve

K∑
k=1

{
− 2(x̂− wk)β0Pλk ·

i∈K∏
i 6=k

(
(x̂− wi)2 +H2

)2
}

= 0. (13)

In other words, the extreme points of F (x̂) can be obtained by solving (13). By comparing the objective
values in (12) at the extreme points versus those at the boundary points xI and xF, the optimal hovering
points x̂∗1, x̂∗2, ..., x̂

∗
N are obtained, where N denotes the number of optimal solutions which achieves the

same objective value. Accordingly, the dual function f({λk}) is obtained.
With f({λk}) obtained, the dual problem (DP2) can be solved via the ellipsoid method, and therefore,

the solution {λ∗k} is obtained. Based on {λ∗k}, we can reconstruct the primal optimal solution to (P2) by
solving the time-sharing problem for allocating the total duration T over the N hovering points, for which
the optimization problem is formulated as the following linear program (LP):

max
{τ̂i≥0},E

E

s.t.
∑N

i=1
τ̂iQk(x̂i) + Ēk ≥ E,∀k ∈ K (14)∑N

i=1
τ̂i = T̂ .

By solving this LP problem via standard interior point method, we obtain the optimal hovering durations
τ̂ ∗1 , τ̂ ∗2 , ..., τ̂

∗
N corresponding to the N hovering points. Therefore, (P2) is optimally solved under the given

xI and xF. In summary, the optimal solution to (P2) is described by the optimal hovering points and
hovering durations

x̂∗(t) = x̂∗i , if t ∈
[∑i

j=1
τ̂ ∗j −τ̂ ∗i ,

∑i

j=1
τ̂ ∗j

]
, i = 1, · · · , N. (15)

It is observed that the optimal solution to (P2) has a multi-location-hovering structure. Note that the
left side of (13) is a 4K − 3 order polynomial of x̂, i.e., F (x̂) has at most 4K − 3 extrema and therefore
at most 2K − 1 maximum points as potential hovering points. In addition, the two boundary points xI

and xF are also potential hovering points. Hence, there are a maximum number of 2K + 1 hovering
locations in the optimal solution to (P2). Fortunately, we can further show that there exists an optimal
multi-location-hovering solution to (P2) with only K hovering locations required as follows.

Lemma 2. There exists one optimal multi-location-hovering solution to problem (P2) with the number of
hovering points being no more than K, i.e., N ≤ K.

Proof. The proof is provided in Appendix B.

C. Optimal Solution to Problem (P1.1)

In Section III-B, we have shown that for given xI and xF, the global optimal trajectory problem (P2)
can be obtained. Suppose that the corresponding optimal solution to problem (P2) x̂(t) with optimal
hovering points x̂∗1, x̂∗2, ..., x̂

∗
N and the corresponding optimal hovering durations. τ̂ ∗1 , τ̂ ∗2 , ..., τ̂

∗
N . According

to Lemma 1, we can express the optimal solution to (P1.1) by combining x̂(t) with x̄(t) = xI + V t,∀t ∈
(0, T̄ ], i.e., letting the UAV fly at the maximal speed from xI to xF while stopping/hovering at the N
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x∗(t)=


x̂∗i , if

i∑
j=1

τ̂ ∗j −τ̂ ∗i +
x∗i−x∗0
V
≤ t ≤

i∑
j=1

τ̂ ∗j +
x∗i−x∗1
V

, 1 ≤ i ≤ N + 1,

x∗0 + V (t−
i∑

j=1

τ̂ ∗j ), if
i∑

j=1

τ̂ ∗j +
x∗i−x∗0
V
≤ t ≤

i∑
j=1

τ̂ ∗j +
x∗i+1−x∗0

V
, 1 ≤ i ≤ N.

(16)

hovering points (in between) with the corresponding optimal hovering durations. By defining x∗0 = x∗I ,
x∗N+1 = x∗F and τ̂ ∗0 = τ̂ ∗N+1 = 0, we have the optimal solution {x∗(t)} to problem (P1.1), given in (16).

D. Structure of Optimal Trajectory Solution to Problem (P1)

In this subsection, we describe the structure of this optimal trajectory solution to (P1) in the following
proposition.

Proposition 1. The optimal trajectory solution to problem (P1.1) or problem (P1) follows the SHF
structure, i.e., there exists a number of N hovering locations at the optimal trajectory, such that the
UAV always flies at the maximum speed from one hovering location to another, and then hovers at that
location for a certain time duration. Furthermore, there always exists an optimal trajectory with no more
than K + 2 hovering locations , i.e., N ≤ K + 2.

Proof. Combining Lemmas 1 and 2, this proposition is verified directly for problem (P1.1). In particular,
recall that the minimum number of hovering points in x̂(t) is upper-bounded by K, where these hovering
points are not necessarily including xI and xF, since in x̂(t) the UAV does not have a speed constraint to
really start and end at xI and xF. Then, in x(t) the UAV flies from xI to xF with a limited speed, these
two points are possible to be hovering points of x(t).

In addition, note that the globally optimal trajectory to problem (P1) is obtained by applying a 2D
exhaustive search over the possible pair of xI and xF, i.e., the optimal solution to problem (P1) is the best
one in the solutions of all the problems (P1.1) with different xI and xF. Hence, as the optimal solution to
any problem (P1.1) has an SHF structure, the globally optimal trajectory to problem (P1) also has such
a structure. Therefore, Proposition 1 is finally proved.

IV. OPTIMAL AND LOW-COMPLEXITY TRAJECTORY SOLUTIONS TO PROBLEM (P1)

Following the provided characterization in Section III on the optimal trajectory, in this section we
propose the optimal solution and a low-complexity suboptimal solution to (P1).

A. Optimal Solution to Problem (P1)

In Section III-C, we have shown that the global optimal trajectory to problem (P1.1) is obtained, i.e.,
we have optimally solved problem (P1) under given xI and xF. Hence, by applying a 2D exhaustive
search over the possible pair of xI and xF together with solving (P1.1) under each xI and xF, the global
optimally trajectory solution to (P1) is finally obtained.

It is clear there is no benefit if the UAV hovers at a position out of the region of ground nodes3.
Hence, the feasible set of xI is [w1, wK ] while the corresponding feasible set of xF is [xI, wK ]. To
apply the exhaustive search on xI or xF within its continuous feasible set, we introduce dmin as the
resolution in distance. Note that we have dmin should be small and let wK−w1

dmin
be an integer. Hence,

feasible locations of xI and the corresponding xF become {w1, w1+dmin, w1+2dmin, · · ·, wK} and {xI, xI+
dmin, xI+2dmin, · · ·, wK}, respectively. The flow chart of the optimal solution to (P1) is shown in Fig. 2.

3For any trajectory {x1(t)} with the initial location xI < w1 and the flying time t0 from xI to w1, there always exists another trajectory
{x2(t)} that achieves a higher WPT performance than {x1(t)}, where {x2(t)} has an initial location exactly at w1 with hovering time t0
(at w1) while the rest part (after w1) is the same as {x1(t)}.
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Fig. 2. Flow chart for deriving the optimal solution to problem (P1).

x(t)=


xi, if

i∑
j=1

τj−τi+ xi−x1
V
≤ t ≤

i∑
j=1

τj+
xi−x1
V
, 1 ≤ i ≤ K + 2,

x1 + V (t−
i∑

j=1

τj), if
i∑

j=1

τj+
xi−x1
V
≤ t ≤

i∑
j=1

τj+
xi+1−x1

V
, 1 ≤ i ≤ K + 1.

(17)

B. An Efficient Low-Complexity Trajectory Design to (P1)

In this subsection, we propose an efficient trajectory approach based on the optimal SHF structure as
shown in Proposition 1. According to this structure, in order solve problem (P1), we actually only need to
find the K+2 hovering points {x1, ..., xK+2} (at maximum) satisfying w1 ≤ x1 ≤ x2 ≤ · · · ≤ xK+2 ≤ wK
and the corresponding hovering durations {τ1, ..., τK+2}. Notice that these K + 2 hovering points already
include the initial and finial locations, which are also potential optimal hovering points to problem (P1).
If the optimal trajectory solution only has less than K + 2 hovering points, this corresponds to the case
when we have zero hovering durations for certain locations. Therefore, this model (with K + 2 hovering
points and their hovering durations) is general enough to characterize the optimal trajectory. Following
the structure of the optimal solution given in (16), the trajectory with K + 2 hovering points is expressed
in (17) on the next page.

By substituting (17) into (7), we have

Ek(x, t) =Ek,Hov(x, t) + Ek,Fly(x1, xK+2)

=
K+2∑
i=1

Ek,i,Hov(xi, τi) + Ek,Fly(x1, xK+2)

=
K+2∑
i=1

β0Pτi
(xi−wk)2+H2

+
β0P

V H
arctan(

xK+2−wk
H

)

− β0P

V H
arctan(

x1−wk
H

),

(18)

where Ek,i,Hov(xi, τi) = β0Pτi
(xi−wk)2+H2 denotes the received energy at node k during UAV hovering at the

hovering point i and Ek,Hov(x, t) =
∑K+2

i=1 Ek,i,Hov(xi, τi) denotes the sum of received energy at node k
when UAV hovering at all K + 2 hovering points. In addition, Ek,Fly(x1, xK+2) = β0P

V H
arctan(xK+2−wk

H
)−

β0P
V H

arctan(x1−wk

H
) denotes the received energy at node k during the UAV flying. Therefore, problem (P1)
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is equivalently transformed as

(P3) : max
x,t,E

E

s.t. Ek(x, t) ≥ E,∀ k ∈ K ,∑K+2

i=1
τi +

xK+2 − x1

V
= T , (19)

w1 ≤ x1 ≤ x2 ≤ · · · ≤ xK+2 ≤ wK ,

ti ≥ 0,∀i ∈ {1, 2, · · · , K + 2},

where the second constraint
∑K+2

i=1 τi +
xK+2−x1

V
= T ensures that the whole charging duration T must be

fully utilized.
Although problem (P3) is non-convex as the first constraint is not convex, we present an efficient

solution by applying the SCA technique. It should be pointed out that the proposed approach is different
from the conventional alternating optimization, which has been widely applied in UAV trajectory design to
handle non-convex trajectory optimization problems, but is not applicable to problem (P3). In particular,
if we apply the alternating optimization, problem (P3) can be solved by alternatively optimizing t and x,
i.e., the problem of t is linear and the problem of x can be approximated to a convex problem via the
Taylor expansions. However, we can easily find in the alternating optimization that

∑K+2
i=1 τi is constant for

given t and that
∑K+2

i=1 τi is also constant for given x according to the constraint
∑K+2

i=1 τi + xN−x1
V

= T .
In other words, the sum of the hovering durations (and therefore the total flying time corresponding to
the distance between x1 and xK+2) never changes under the alternating optimization. This leads to an
unchanged objective value and thus results in a highly suboptimal solution when the initial point is badly
chosen.

To efficiently solve problem (P3), in the following two subsections, we first present a new convex
approximation for the problem at any given local point (x(r), t(r)) in the r-th iteration, and then propose
an efficient iterative algorithm.

1) Convex Approximation: In this subsection, we design a new convex approximation for problem (P3),
where the aim is to provide a concave function for each iteration, namely function E(r)

k for the r-th iteration,
such that Ek ≥ E

(r)
k and the equality holds at the local point (x(r), t(r)) in the iteration. According to

(18), the energy Ek received by ground node k are from two parts. In the following, we provide concave
functions to approximate these two parts respectively.

We start with the part of energy received when UAV is hovering while distinguishing τ
(r)
i > 0 and

τ
(r)
i = 0:

• Case τ (r)
i > 0: We obtain the approximation f (r)

i,k (xi, τi) in the following way:
Note that function 1

(xi−wk)2+H2 is convex in (xi−wk)2. According to the first order condition, it holds

for the two points (xi − wk)2 and (x
(r)
i − wk)2 that

Ek,i,Hov(xi, τi) =
β0Pτi

(xi − wk)2 +H2

≥ −A(r)
i,k

(
(xi−wk)2−(x

(r)
i −wk)2

)
τi +B

(r)
i,k τi,

(20)

where A(r)
i,k = β0P

((x
(r)
i −wk)2+H2)2

and B(r)
i,k = β0P

(x
(r)
i −wk)2+H2

. Clearly, the equality of (20) holds when xi = x
(r)
i .

Moreover, by introducing two positive constants C(r)
i,k > 0, D(r)

i,k > 0, we have the inequality shown in
(21) on the top of next page. The inequality in (21) follows the inequality of arithmetic and geometric

means [25], i.e., ab ≤ 1
2
a2+ 1

2
b2 where the quality holds when a = b. In addition, F (r)

i,k =
τ
(r)
i +D

(r)
i,k

(x
(r)
i −wk)2+C

(r)
i,k

is introduced to guarantee the equality of (21) at xi = x
(r)
i . Combining the derivations from (20) to

(21), we can have following (lower-bounded) approximation of Ek,i,Hov, which is given in (22) on the
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(xi − wk)2τi =
(

(xi − wk)2 + C
(r)
i,k

)(
τi +D

(r)
i,k

)
− C(r)

i,k τi −D
(r)
i,k (xi − wk)2 − C(r)

i,kD
(r)
i,k

≤
F

(r)
i,k

2

(
(xi − wk)2 + C

(r)
i,k

)2

+
1

2F
(r)
i,k

(
τi +D

(r)
i,k

)2

− C(r)
i,k τi −D

(r)
i,k (xi − wk)2 − C(r)

i,kD
(r)
i,k .

(21)

Ek,i,Hov(xi, τi) ≥ −A(r)
i,k ((xi − wk)2 − (x

(r)
i − wk)2)τi +B

(r)
i,k τi

≥ −
A

(r)
i,kF

(r)
i,k

2

(
(xi − wk)2 + C

(r)
i,k

)2
−

A
(r)
i,k

2F
(r)
i,k

(τi +D
(r)
i,k )2 + A

(r)
i,k (x

(r)
i − wk)2τi

+B
(r)
i,k τi + A

(r)
i,kC

(r)
i,k τi + A

(r)
i,kD

(r)
i,k (xi − wk)2 + A

(r)
i,kC

(r)
i,kD

(r)
i,k

, f
(r)
i,k (xi, τi), (22)

top of next page, while f (r)
i,k (xi, τi) = Ek,i,Hov holds at point xi = x

(r)
i , as the two inequalities have

been shown to be inequalities under the case. Moreover, to guarantee the concavity of f (r)
i,k (xi, τi),

F
(r)
i,k is required to be limited by F

(r)
i,k ∈

(
0,

τ
(r)
i

(x
(r)
i −wk)2

]
. In other words, the choices of C(r)

i,k , D(r)
i,k

should stratify 0 <
τ
(r)
i +D

(r)
i,k

(x
(r)
i −wk)2+C

(r)
i,k

≤ τ
(r)
i

(x
(r)
i −wk)2

.

• Case τ (r)
i = 0, f (r)

i,k (xi, τi) is given by

f
(r)
i,k (xi, τi) ,

β0Pτi

max
{

(w1−1wk)2, (wK−wk)2
}

+H2

≤ β0Pτi
(xi − wk)2 +H2

.

(23)

On the one hand, the inequality holds, as max
{

(w1−wk)2, (wK −wk)2
}
≥ (xi−wk)2. On the other

hand, the equality also holds at point xi = x
(r)
i , as τi = 0 makes both sides of the inequality be

zeros. Moreover, f (r)
i,k (xi, τi) is linear and therefore concave.

Next, we discuss the approximation for Ek,Fly = β0P
V H

arctan(xK+2−wk

H
)−β0P

V H
arctan(x1−wk

H
), which is the

difference/gap between two arctan functions. Although the convexity/concavity of the arctan function is
clear, i.e., arctan(µ) is convex when µ > 0 and concave when µ < 0, it is still difficult to provide a concave
function to approximate for Ek,Fly due to the fact that (as min{w} ≤ x1 ≤ x2 ≤ · · · ≤ xK+2 ≤ max{w})
xK+2−wk and x1−wk are possible to be either both positive or both negative or one positive and one
negative.

In this work, we obtain the approximation g
(r)
k (x1, xN) in the following way: i. We first reformulate

Ek,Fly to be the sum of two arctan functions, i.e., Ek,Fly(x1, xN) = β0P
V H

arctan(xK+2−wk

H
)+β0P

V H
arctan(wk−x1

H
).

ii. Then, we approximate each arctan function to a concave quadratic function, while this quadratic
function is the lower bound of the original arctan function and the two functions have the same value
case (x

(r)
1 , x

(r)
K+2) = (x1, xK+2). As a result, the sum of two concave functions is also concave and is the

lower bound of Ek,Fly while having the same value as Ek,Fly case (x
(r)
1 , x

(r)
K+2) = (x1, xK+2). Following

the above methodology, we provide in Lemma 3 a process to obtain a lower bound concave quadratic
function for function arctan(z), while the two functions have the same value at a local point z = z0.

Lemma 3. Given an upper-bounded variable z ∈ (−∞, Z], and a local point z0, z0 ≤ Z, there exists
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such a, b, c guaranteeing the following two conditions:

arctan(z) ≥−az2 + bz + c,∀x ∈ (−∞, Z], a ≥ 0, (24)
arctan(z0) =−az2

0 + bz0 + c. (25)

An example solution of a, b, c satisfying (24) and (25), can be obtained in the following
i. Define

a = max

{
0,−

arctan(Z)−arctan(z0)+ z0−Z
z20+1

(Z − z0)2

}
. (26)

ii. If a > 1
2(Z−z0)(z20+1)

, we redefine a as the positive root of the following equation

16(z2
0 + 1)2a2 − 8z0(z2

0 + 1)a− 1 = 0. (27)

iii. Based on a, we define

b =
1

z2
0 + 1

+ 2az0, (28)

c = arctan(z0) + az2
0 − bz0. (29)

Proof. The proof of Lemma 3 is provided in Appendix B.

According to the example solution in Lemma 3, for a local hovering point x(r) in the r-th iteration,
we can find corresponding (a

(r)
K+2,k, b

(r)
K+2,k, c

(r)
K+2,k) and (a

(r)
1,k, b

(r)
1,k, c

(r)
1,k) to approximate arctan(xK+2−wk

H
)

and arctan(wk−x1
H

) by −a(r)
K+2,k(

xK+2−wk

H
)2 + b

(r)
K+2,k

xK+2−wk

H
+ c

(r)
K+2,k and −a(r)

1,k(
wk−x1
H

)2 + b
(r)
1,k

wk−x1
H

+

c
(r)
1,k, respectively. In particular, according to Lemma 3, the (a

(r)
K+2,k, b

(r)
K+2,k, c

(r)
K+2,k) and (a

(r)
1,k, b

(r)
1,k, c

(r)
1,k),

which are depending on x
(r)
K+2 and x

(r)
1 , definitely guarantee arctan(xK+2−wk

H
) = −a(r)

K+2,k(
xK+2−wk

H
)2 +

b
(r)
K+2,k

xK+2−wk

H
+ c

(r)
K+2,k at x(r)

K+2 = xK+2 and arctan(wk−x1
H

) = −a(r)
1,k(

wk−x1
H

)2 + b
(r)
1,k

wk−x1
H

+ c
(r)
1,k at

x
(r)
1 = x1.
Define by g(r)

k (x1, xN) the approximation of Ek,Fly in the r-th iteration. Hence, for any feasible point/trajectory
x in problem (P3), g(r)

k (x1, xN) is given by

g
(r)
k (x1, xK+2),

β0P

V H

(
−a(r)

K+2,k(
xK+2−wk

H
)2+b

(r)
K+2,k

xK+2−wk
H

+c
(r)
K+2,k−a

(r)
1,k(

wk−x1

H
)2+b

(r)
1,k

wk−x1

H
+c

(r)
1,k

)
≤ β0P

V H
arctan(

xK+2 − wk
H

) +
β0P

V H
arctan(

wk − x1

H
)

=
β0P

V H
arctan(

xK+2 − wk
H

)− β0P

V H
arctan(

x1 − wk
H

)

= Ek,Fly(x1, xK+2),

(30)

while g(r)
k (x1, xN) = Ek,Fly(x1, xN) holds in the case of (x

(r)
1 , x

(r)
K+2) = (x1, xK+2).

So far, we have obtained the (lower-bounded) approximations, i.e., f (r)
i,k (xi, ti) and g

(r)
k (x1, xK+2), for

Ek,i,Hov(xi, ti) and Ek,Fly(x1, xK+2), respectively. As a result, for any feasible point/trajectory x of problem
(P3) we have the combined approximation E(r)

k (x, t)

E
(r)
k (x, t) =

∑N

i=1
f

(r)
i,k (xi, ti) + g

(r)
k (x1, xK+2)

≤ Ek(x, t).
(31)

Based on the above designs, f (r)
i,k (xi, ti) = Ek,i,Hov(xi, ti), i = 1, · · · , K + 2 and g(r)

k (x1, xN) are concave.
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Fig. 3. Flow chart of optimally solving problem (P3).

In addition, it has been shown that ∀i = 1, · · · , K + 2, f (r)
i,k (xi, ti) = Ek,i,Hov(xi, ti) holds when x(r)

i = xi

and that g(r)
k (x1, xN) = Ek,Fly(x1, xN) holds when (x

(r)
1 , x

(r)
K+2) = (x1, xK+2). Hence, we can conclude

that E(r)
k (x, t) is concave and that the equality in (31) holds at (x(r), t(r)).

2) Iterative Algorithm: Based on the above convex approximation, in the following we propose an
iterative solution for (P3). In the initialization step, we set a feasible local point (x0, t0) by uniformly
scattering points on a line segment in interval [w1, wk] and uniformly allocating hovering time at each
hovering point. Clearly, the line segments lie in the interval [w1, wk] and the sum length of the segments
is less than V T .

After the initialization step, the algorithm starts the iteration. In the r-th iteration, we first derive a convex
approximation of problem (P3) at a local point (x(r), t(r)). Then, following the convex approximation
design provided in the previous subsection, we have an approximated problem provided in (P4)

(P4) : max
x,t,E

E

s.t. E
(r)
k (x, t) ≥ E,∀k ∈ {1, 2, · · · , K} ,∑N

i=1
τi +

xK+2 − x1

V
= T ,

ti ≥ 0, ∀i ∈ {1, 2, · · · , K + 2}. (32)

TABLE I
COMPLEXITY LEVEL COMPARISON

Algorithm Complexity level

Proposed optimal SHF O
(

max(K, D
dmin

)K3( D
dmin

)2 log(1
ε
)
)

Proposed low-complexity SHF O
(
ϕK4 log(1

ε
)
)

Heuristic SHF[17] O
(

max(K, D
dmin

)K3 log(1
ε
)
)

SCP with time quantization[17] O
(

max(K, D
dmin

)K3 log(1
ε
)
)
+O

(
ϕ( T

tmin
)3 max( T

tmin
, K) log(1

ε
)
)

Note that E(r)
k (x, t) is concave. Problem (P4) is a convex and can be solved efficiently. Then, the solution

to problem (P4) is used as the local point in the next iteration.
According to the above analysis, the flow chart of this iterative algorithm is provided in Fig 3.

V. COMPLEXITY LEVEL ANALYSIS

In this section, we discuss the complexity of the proposed trajectory designs, i.e., proposed optimal
SHF in Section III and proposed low-complexity SHF in Section IV-B, in comparison to two recent
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benchmark solutions in [17], i.e., heuristic SHF and SCP with time quantization, as we discussed after
(P1) in Section II.

A comment characteristic of these four designs is that the trajectories are obtained in an iterative
manner for minimizing convex functions. Note that there are many iterative methods can be applied (in
these designs), which definitely results in different complexities. To provide a fair complexity comparison,
we assume that all the three trajectory designs use the same quantization size for iteration and the iterations
stop at the same error threshold ε > 0. In particular, we assume that the ellipsoid method is applied for the
iterations, motivated by the two characteristics of the ellipsoid method [26]: On the one hand, the ellipsoid
method generates a sequence of ellipsoids whose volume uniformly decreases at each step, thus efficiently
converging to a minimizer of a convex function after finite rounds of iterations. On the other hand, its
complexity depends on the number of variables and the related calculation of the objective and constraint
functions [27], which facilitates our complexity analysis. According to the complexity analysis in [27],
when applying the ellipsoid method to solve a convex sub-problem with N variables, O(N2 log(1

ε
)) calls,

namely iterations in the ellipsoid method for ellipsoid updates, are required, while in each call additional
computational complexity is introduced due to the calculation of the objective and constraint functions.
For the computational complexity in each call, we evaluate the floating point operations based on the
operation analysis in [28].

The results of complexity comparison are provided in Table 1, where ϕ denotes the number of it-
erations of the two iterative algorithms till achieving the convergence, i.e., the error threshold ε is
satisfied. Moreover, dmin represents the resolution in distance for the exhaustive search and tmin is the
quantization size in the SCP with time quantization. In the proposed optimal SHF, there are in total
O
(
( D
dmin

)2
)

pairs of (xI, xF) in the exhaustive search. For each pair of (xI, xF), a dual problem with
K variables (K Lagrange multipliers) is solved, corresponding to O

(
K2 log(1

ε
)
)

calls. In each call,
complexities of O(K2) and O(K D

dmin
) are introduced respectively due to the ellipsoid updates [27] and

solving (13) based on the analysis in [28]. Therefore, the complexity level of optimal SHF is given
by O

(
( D
dmin

)2
)
· O(K2 log(1

ε
)) ·

(
O (K2) +O(K D

dmin
)
)

= O
(

max(K, D
dmin

)K3( D
dmin

)2 log(1
ε
)
)

. For the
proposed suboptimal design (low-complexity SHF), in each iteration of the algorithm, a convex problem
with 2N variables is required to be solved, resulting in O

(
(2N)2 log(1

ε
)
)

calls in the ellipsoid method. In
each call, the complexities of ellipsoid updates and of the objective function calculation are respectively
O((2N)2) and O (KN). As the number of iterations of this iterative method is given by ϕ and the
number of hovering points N is proved to be N = K + 2, the complexity level of this design is given
by ϕO

(
(2N)2 log(1

ε
)
)
· (O((2N)2) +O (KN)) = O

(
ϕK4 log(1

ε
)
)
. Next, the complexity of the heuristic

SHF is the same as that of the Optimal SHF with a given (xI, xF) pair. Hence, the total complexity level
of the heuristic SHF is given by O

(
max(K, D

dmin
)K3 log(1

ε
)
)

. Finally, the SCP with time quantization is
actually a further improvement based on the result of the heuristic SHF. Hence, the complexity of it is
the sum of the heuristic SHF and the additional SCP process, where the SCP process has T

tmin
variables,

resulting in O
(
ϕ( T

tmin
)3 max( T

tmin
, K) log(1

ε
)
)

level of complexity.

Clearly, to have an accurate trajectory solution, dmin and tmin are required to be sufficiently small,
which lets D

dmin
and T

tmin
be significantly larger than the other terms in the complexity expressions of all

solutions. In this case, the SCP with time quantization is expected to have the highest complexity, i.e., its
complexity level has the order of ( T

tmin
)4. In addition, the proposed optimal SHF and the heuristic SHF

are also have high complexities, as their complexities are in the orders of ( D
dmin

)3 and D
dmin

, respectively.
Hence, the complexities of these three algorithms are decreasing in dmin and/or tmin and increasing in the
geographical network size D. At the same time, the complexity level of the proposed low-complexity SHF
is not influenced by the resolutions dmin and tmin, i.e., it is not influenced by the geographical network
size D with given resolutions. As a result, it is expected to introduce a significantly low complexity while
providing an efficient WPT performance.
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Fig. 4. Average WPT performance (over 20 realizations of random ground node topologies) versus the charging duration T .

VI. NUMERICAL RESULTS

In this section, we evaluate the proposed optimal SHF and the proposed low-complexity SHF, in
comparison to the heuristic SHF [17] and the SCP with time quantization [17], following the complexity
comparison in the previous section. To obtain the WPT performance, we randomly drop ground nodes to
have 20 different topologies, and then apply these four algorithms at each topology, and finally average of
the max-min received power among all ground nodes over these random realizations. In the simulation,
we have the following default setups of parameters: β0 = −30 dB, P = 40 dBm, K = 5, N = K + 2,
H = 5 m, T = 20 s, V = 1 m/s and D = 20 m. In addition, we set the quantization size of distance for
the exhaustive search to dmin = 0.01 m and set accordingly the time quantization size in the reference
algorithm SCP with time quantization to tmin = dmin/V .

Fig. 4 shows the impact of the charging duration T on the WPT performance, where the upper bound
of the ideal case with UAV speed constraint ignored is also provided. First, it is observed that, as the
charging duration T increases, the performance of all the four algorithms increases towards the upper
bound. In addition, owning to applying additional SCP process, the SCP with time quantization has a better
performance than the heuristic SHF, which is consistent with the results in [17]. More importantly, both
the proposed algorithms (optimal SHF and low-complexity SHF) outperform the two reference algorithms,
in the whole charging duration regime. In particular, the proposed low-complexity SHF achieves a similar
performance of the optimal SHF (although it has a significantly low complexity than the rest three
algorithms), which confirms the performance advantages of this algorithm. It should be mentioned that in
addition to Fig. 4 we have also done more simulations (not shown due to space limitation), where similar
relationships among the algorithms are observed under scenarios with relatively short charging durations
T .

Fig. 5 shows relationship between the WPT performance and UAV speed V . From the figure, we learn
that under all algorithms, the max-min received power increases as the UAV speed V becomes larger.
In addition, as the speed significantly increases, all the four designs are observed to approach the upper
bound. Moreover, we observe again the performance advantage of the proposed algorithms in comparison
to the two reference algorithms. We have also studied scenarios with relatively high maximal speeds
V , similar results (not provided here due to space limitation) are also observed. Furthermore, recall that
the heuristic SHF has two steps: first solving the relaxed problem assuming an infinite UAV speed and
then based on it obtaining a new trajectory by using TSP or SCP to satisfy the speed constraint. In
other words, there exists a certain performance loss of the heuristic SHF in comparison to the optimal
trajectory solution. However, when the UAV speed becomes faster (more closer to the infinite speed), this
performance loss is reduced. On the other hand, as shown in the figure, the proposed low-complexity
SHF has almost the same performance as the proposed optimal solution. As a result, the performance
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Fig. 5. Average WPT performance (over 20 realizations of random ground node topologies) versus the maximum UAV speed V .
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Fig. 6. The comparison in terms of computing time (over 20 realizations of random ground node topologies) with dmin = 0.01 m for the
proposed optimal SHF. For the SCP with time quantization, we set tmin = dmin/V , which decreases as V increases.

advantages of proposed algorithms are reduced, when the speed of the UAV becomes faster.
Next, we provide a complexity comparison in Fig. 6 among the four algorithms in terms of the average

computing time. In the comparison, we scale the geographical network size D together with the UAV
speed V while keeping D/V = T . By doing so, we can observe the impact of D on the complexities
of these algorithms, while D/V = T guarantees that the scenarios are meaningful, i.e., if the speed of
UAV is too slow to fly over the network, there is no time for hovering and the system gains less from
all trajectory design algorithms. It should be noticed that with a fixed resolution in distance or time, the
computing time of the proposed optimal SHF and the SCP with time quantization are significantly long
for a network with a relatively large geographical size. Due to time limitation, we only obtain partial
results (in the cases with relatively short geographical network size) of the proposed optimal SHF and the
SCP with time quantization. We observe that the proposed optimal SHF has relatively less complexity
than the SCP with time quantization, which matches well with our analysis at the end of Section V. Recall
that the complexities of the optimal SHF and the SCP with time quantization are in the orders of ( D

dmin
)3

and ( T
tmin

)4, respectively. Note that in the simulation of Fig. 6, both D
dmin

and T
tmin

are linearly increasing
in D. Hence, the complexities of the optimal SHF and the SCP with time quantization generally increase
polynomially in the order of D

dmin
= T

tmin
= 100D. Moreover, combining with results from Fig. 4 and Fig. 5,

it is validated that the proposed optimal SHF provides a higher WPT performance than the SCP with time
quantization while spending less complexity. Furthermore, the results clearly show the advantage of the
proposed low-complexity SHF. In particular, the figure confirms our analytical results in Section V that the
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Fig. 7. The WPT performance comparison in terms of the resolution in exhaustive search. In the figure, we vary dmin directly while updating
tmin = dmin/V accordingly for the SCP with time quantization.

complexity level of the proposed low-complexity SHF is not influenced by the geographical network size.
These results actually indicate the practical importance of the proposed structure of optimal trajectories
as well as the proposed low-complexity SHF following the structure.

Note that the comparison in Fig. 6 is based on setups of resolutions dmin and tmin with relatively
small value. We finally study in Fig. 7 how much these resolutions influence the performance of the four
algorithms. It is observed from the figure that the impacts of resolutions on these algorithms are quite
different. First of all, as expected, the proposed low-complexity SHF is not influenced by the resolution
and it always provides an outstanding WPT performance.

Secondly, the SCP with time quantization significantly relies on the resolution, i.e., a relatively large
value of tmin results in a poor performance. In particular, it provides a competitive performance (to other
algorithms) only when spending significant complexity, i.e., tmin ≤ 10−2s. Note that this algorithm actually
approximates a flying trajectory in a time slot/resolution to a hovering point and treats the flying time in
the time slot/resolution as the corresponding hovering time. For a given tmin > 0, the real performance
based on the SCP result is more likely to be lower than the ideal results (i.e., the optimum of the
approximation) of the SCP process. This is actually the reason why the SCP with time quantization has
a lower performance than the rest algorithms (including the heuristic SHF) when tmin is not significantly
small. Finally, the performance of both the proposed optimal SHF and the heuristic SHF are not quite
sensitive to dmin, especially when dmin is not extremely large. The reason is as follows. In the heuristic
SHF, the exhaustive search is applied for obtaining the hovering points. After that, the heuristic SHF
further provides an hovering time allocation based on these points. Hence, the performance improvement
of the hovering time allocation could migrate the impact of the inaccuracy of the hovering points. For an
extreme example, the hovering time allocation process is possible to allocate zero time for a bad hovering
point. On the other hand, it is surprising that the proposed optimal SHF provides an excellent performance
even with a relatively large dmin. Note that a relatively large dmin results in slightly inaccurate locations
of (xI, xF). Hence, the proposed optimal SHF has actually been shown to be not sensitive in slight errors
on (xI, xF), as for given (xI, xF) the algorithm will further adjust the optimal hovering points and optimal
hovering durations, i.e., migrating the impact of the inaccuracy of (xI, xF).

VII. CONCLUSION

In this paper, we focus on a UAV-enabled WPT network with a linear topology. We studied the 1D
UAV trajectory design problem with the objective of maximizing the minimal received power among all
ground nodes, subject to the maximum UAV speed constraints. Different from previous works that only
provided heuristic and locally optimal solutions, for the first time, we presented the globally optimal 1D
UAV trajectory solution to the considered WPT problem in an SHF structure. Following the optimal SHF
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Fig. 8. Under Case 3, the WPT performance of {x(t)} from xI to xF is equivalent to {x̄(t)} together with {x̂(t)}.

∫ xi,F−xi,I
vi

0

β0Pdt

(xi,I+vit−wk)2+H2︸ ︷︷ ︸
{x(t)}

=
vi
V

∫ xi,F−xi,I
vi

0

β0Pdt

(xi,I + vit− wk)2 +H2
+
V − vi
V

∫ xi,F−xi,I
vi

0

β0Pdt

(xi,I + vit− wk)2 +H2

vit=V t1

vit=
V vi
V−vi

t2
=

∫ xi,F−xi,I
V

0

β0Pdt1
(xi,I + V t1 − wk)2 +H2︸ ︷︷ ︸

{x̄(t)}

+

∫ xi,F−xi,I
vi

−
xi,F−xi,I

V

0

β0Pdt2

(xi,I+
V vi
V−vi t2−wk)

2+H2︸ ︷︷ ︸
{x̂(t)}

.

(33)

structure, we proposed an efficient low-complexity trajectory design by using the SCA technique. It is
shown via analysis and simulations that this proposed low-complexity design has a constant complexity
irrespective of the geographical network size, i.e., thus making it quite promising for practical implemen-
tation. Numerical results confirm the performance advantage of the proposed optimal and low-complexity
SHF trajectory designs, in comparison to benchmark schemes in the existing literature.

It is worth noting that our proposed trajectory design principles can be extended to UAV-enabled wireless
communications with information broadcasting (see, e.g., [14]) and multicasting (see, e.g., [32]) with a
1D network topology, e.g., communication users are located in a line on the ground. It is expected that
our proof technique can also be used to show that the optimal trajectory in such networks still follows
the SHF structure. Accordingly, how to obtain the optimal hovering locations jointly with the wireless
resource allocation is an interesting problem.

It is also worth noting that our proposed 1D trajectory design provides insights into the more general
2D/3D trajectory designs. For instance, it can be similarly shown that the UAV also follows the SHF
trajectory structure. However, the maximum-speed flying path (curve) in 2D/3D scenarios becomes crucial
for the performance optimization, i.e., the UAV flying path still needs to be optimized even hovering points
are determined. How to design such path becomes an interesting issue that is non-trivial and left for our
future work.

APPENDIX A
PROOF OF LEMMA 1

This lemma can be proved by partitioning the whole time duration T into a sufficiently large number
of time portions, each with a sufficiently small length such that during the portion the UAV speed is
constant. Denote the length of i-th portion by τi, i = 1, · · · , I and we have

∑
i=1,··· ,I

τi = T . In addition,

denote by vi the speed of the UAV at the i-th portion, i.e., 0 ≤ vi ≤ V . Hence, there are three cases at
each portion: Case 1. the UAV hovers at a given location, i.e., vi = 0; Case 2. the UAV flies from xi,I to
xi,F with speed vi = V ; Case 3. the UAV flies from xi,I to xi,F with speed 0 < vi < V .

In the following, we prove Lemma 1 by showing that within each time portion the UAV trajectory
satisfying the maximum speed constraint is equivalent to two trajectories as defined in the lemma. The
i-th portion of {x(t)}, the corresponding parts in {x̄(t)} and {x̂(t)} can be developed in the following
way:
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∑
j 6=i

(
τj −

τi
si
sj +

τi
M − 1

(1−
∑
j 6=i

(−sj
si

))
)
uj =

∑
j 6=i

τjuj −
τi
si

∑
j 6=i

sjuj +
∑
j 6=i

( τi
M − 1

(1 +
∑
j 6=i

sj
si

)
)
uj

siui=−
∑
j 6=i

sjuj

=
M∑
m=1

tmum +
∑
j 6=i

( τi
M−1

(1+
∑
j 6=i

sj
si

)
)
uj = (E1, · · · , EK)T +

∑
j 6=i

( τi
M − 1

(1 +
∑
j 6=i

sj
si

)
)
uj.(34)

• Case 1: When the UAV is hovering in the portion, just let the {x̂(t)} have the same hovering point
and the same hovering time τi.

• Case 2: When the UAV flies from xi,I to xi,F with the maximal speed, i.e., vi = V , just let trajectory
{x̄(t)} have the same trajectory as {x(t)} in this portion. Hence, in Case 2 trajectory {x̂(t)} not
covers the interval between xi,I and xi,F. Hence, the trajectory (in terms of not time but topology)
of {x̂(t)} is not continuous, i.e., there is not speed limit of the UAV in {x̂(t)}.

• Case 3: In this case, the UAV flies from xi,I to xi,F with a speed lower than the maximal speed, i.e.,
0 < vi < V . The length of the portion is τi =

xi,F−xi,I
vi

.
As shown in Fig. 8, we can let the UAV fly with the maximal speed in {x̄(t)} which has the time
cost xi,F−xi,I

V
. In addition, we let the UAV in {x̂(t)} use the remaining time, i.e., xi,F−xi,I

vi
− xi,F−xi,I

V
,

to fly from xi,I to xi,F, while the corresponding speed can be calculated as xi,F−xi,I
xi,F−xi,I

vi
−

xi,F−xi,I
V

= V vi
V−vi .

Note that when vi becomes significantly close to V and therefore the corresponding UAV speed in
{x̂(t)} is possible to be sufficient large, which confirms again no speed limit for the UAV in {x̂(t)}.
It can be shown that in i-th portion the WPT performance of {x(t)} and the sum WPT performance
of {x̄(t)} and {x̂(t)} are the same ∀k = 1, · · · , K, given in (33).

So far, for each portion of {x(t)}, we can obtain the corresponding parts of {x̄(t)} and {x̂(t)} having
the same WPT performance as the portion of {x(t)}. By repeating the above process for every portion
of {x(t)}, {x̄(t)} and {x̂(t)} can be developed while satisfying Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

We show that at most K hovering points can achieve the optimal performance. Assume there are M
hovering points in an optimal trajectory without UAV speed limit. We denote these hovering points and
corresponding non-zero hovering time by x1, · · · , xM and t = (τ1, · · · , τM). We define a charging matrix
U = (umk)M×K , where umk = Qk(xm) = β0P

(xm−wk)2+H2 and um is the m-th row of matrix U. Then, the
received energy at devices can be obtained by

∑M
m=1 τmum = (E1, · · · , EK)T .

In the following, we prove N ≤ K holds (at least for one optimal trajectory) by showing: For an
optimal trajectory with M > rank(U) hovering points, we can always find a trajectory that achieves the
same WPT performance but with only rank(U) hovering points.

If M > rank(U), the rows of matrix U will be linearly dependent, i.e., there exists sm 6= 0,m =
1, · · · ,M such that

∑M
m=1 smum = 01×K . Hence, we have the following lemma

Lemma 4. For an optimal trajectory with M > rank(U) hovering points,
∑M

m=1 sm = 0 holds.

Proof. This lemma is proved by contradiction while distinguish the following two cases:
Case 1: when

∑M
m=1 sm > 0, we let i = arg min

m,sm>0

τm
sm

. Then, we delete the hovering point i and

allocate the hovering time on remaining hovering points to obtain a better performance. The hovering
time re-allocation is definited as{

τj −→ τj − τi
si
sj+

τi
M−1

(1−
∑
j 6=i

(− sj
si

)), when j 6= i ,

τj −→ 0 when j = i
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Note that the total charging duration does not change, i.e.,∑
j 6=i

(
τj −

τi
si
sj +

τi
M − 1

(1−
∑
j 6=i

(−sj
si

))
)

=
∑
j 6=i

τj + τi.

And τj− τi
si
sj ≥ 0 holds due to i = arg minm,sm>0

τm
sm

, 1 −
∑

j 6=i(−
sj
si

) > 0 holds due to
∑M

m=1 sm > 0
and si > 0. Thus, the hovering time in new allocation is still larger than zero. For the new allocation, the
received energy is given in (34). Note that in vector

∑
j 6=i

(
τi

M−1
(1 +

∑
j 6=i

sj
si

)
)
uj each element is positive,

i.e., all devices receive more energy in the new allocation. Thus,
∑M

m=1 sm > 0 does not hold.
Case 2: when

∑M
m=1 sm < 0, we define i = arg max

m,sm<0

τm
sm

and do the same allocation. In the same way

as above, it can be proved that there is also an allocation scheme with a better performance.
Therefore,

∑M
m=1 sm = 0 holds in an optimal trajectory when M > rank(U).

For an optimal trajectory S.1 with M > rank(U), the hovering point i can be determined according
to i = arg min

m

τm
|sm| . Then, we can obtain a new trajectory S.2 by deleting this hovering point i and

re-allocating its hovering time to the rest hovering points of S.1 following (B). According to (34), as
1 +

∑
j 6=i

sj
si

= 0, S.1 and S.2 have the same WPT performance, i.e., S.2 is also optimal. By iteratively
applying this process of deleting hovering point and re-allocating hovering time, we finally obtain an
optimal trajectory with only rank(U) hovering points. Note that rank(U) ≤ K. Hence, we have N =
rank(U) ≤ K.

APPENDIX C
PROOF OF LEMMA 3

The lemma can be proved by showing the proposed example solution of (a, b, c) satisfies conditions (24)
and (25). According to (28)-(29), b and c are defined based on a. The lemma holds if a can be found,
while ∀z ∈ (−∞, Z], a ≥ 0 satisfying arctan(z) ≥ −az2 + ( 1

z20+1
+ 2az0)z + arctan(z0) + az2

0 − bz0.
According to (26), a ≥ 0. In the following, we further discuss the following two cases, i.e., 0 ≤

a ≤ 1
2(Z−z0)(z20+1)

and a > 1
2(Z−z0)(z20+1)

. In fact, when a ≤ 1
2(Z−z0)(z20+1)

, it is easy to show that (24)
and (25) hold. The main focus is on the case of a > 1

2(Z−z0)(z20+1)
, which corresponds b

2a
< Z, i.e., the

inequality (24) does not hold (at least it does not hold at point z = b
2a

). According to (27), a should be
adjusted. We introduce θ(z) = arctan(z) + az2 − bz − c > 0 to guaranteeing the inequality (24). We can
quickly have first derivative θ′(z) = (z− z0)

(
2az2− 1

z20+1
z+ 2a− z0

z20+1

)
. Clearly, θ(z0) = 0 is guaranteed

by the definition of b and c in (28)-(29). Hence, θ(z) ≥ 0 holds if we can find a satisfying the following
three conditions: i. θ′(z) < 0 when z < z0; ii. θ′(z) = 0 when z = z0; iii. θ′(z) > 0 when z > z0. These
conditions further require (2az2 − 1

z20+1
z + 2a − z0

z20+1
) ≥ 0, ∀z ∈ (−∞, Z], which is guaranteed in (27)

as the following relationship holds

2az2− 1

z2
0 +1

z+2a− z0

z2
0 +1

≥ 0

a>0⇔ z2− 1

(z2
0 +1) 2a

z+1− z0

(z2
0 +1) 2a

≥ 0

⇔
(
z− 1

(z2
0 +1) 4a

)2

+1− z0

(z2
0 +1) 2a

− 1

(z2
0 +1)

2
16a2

≥ 0

⇐ 16(z2
0 +1)2a2−8z0(z2

0 +1)a−1 ≥ 0.

To sum up, with definitions of a, b, c in (26)-(29), conditions (24) and (25) are guaranteed.
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