Accelerating Radio Wave Propagation Predictions
by Implementation on Graphics Hardware

Daniel Catrein, Michael Reyer, Tobias Rick
Institute of Theoretical Information Technology
RWTH Aachen University
D-52056 Aachen, Germany
Email: {catrein,reyer,rick } @ti.rwth-aachen.de

Abstract—Fast radio wave propagation predictions are of
tremendous interest, e.g., for planning and optimization of
cellular radio networks. We propose the use of ordinary graphics
cards and specialized algorithms to achieve extremely fast pre-
dictions. Our implementation of the empirical COST-Walfisch-
Ikegami model allows the computation of several hundred pre-
dictions in one second in a 7 km? urban area. Further, we present
a ray-optical approach exploiting the programming model of
graphics cards. This algorithm combines fast computation times
with high accuracy.

I. INTRODUCTION

Radio wave propagation models play an essential role in
planning, analysis and optimization of radio networks. For
instance, coverage and interference estimates of network con-
figurations are based on field strength predictions. For network
planning, a vast amount of different configurations has to be
explored to achieve optimal utilization of radio resources, de-
manding for extremely fast radio wave propagation algorithms.

An overview of radio wave propagation models is given
in [1] and [2]. Approaches for estimating field strengths
can basically be divided into (semi-)empirical and ray-optical
models. The semi-empirical COST-Walfisch-Ikegami model
[1] estimates the received power predominantly on the basis
of frequency and distance to the transmitter. Ray-optical ap-
proaches identify ray paths through the scene, based on wave
guiding effects like reflection and diffraction. Semi-empirical
algorithms usually offer fast computation times but suffer from
inherent low prediction quality. Ray-optical algorithms feature
a higher prediction quality at the cost of higher computation
times. For comparison with our new algorithms we use a fast
and well tested ray-optical algorithm (CORLA) [3], [4], in this
paper. Current work on prediction algorithms which are based
on ray-optical approaches can be found in [5] and [6].

Modern graphics cards offer tremendous computing power
due to their highly parallel architecture. Additionally, the
performance of graphics cards doubles every half year [7],
compared to the performance of standard CPU’s which in-
creases with the factor /2 every year, according to Moore’s
Law. Thus, making the graphics card an attractive platform
for computation-intensive tasks. The computational power
offered by graphics cards is already exploited for problems
that go beyond graphical applications, like sorting or physi-
cal simulations. Implementations on the Graphics Processing

1550-2252/$25.00 ©2007 IEEE 510

Unit (GPU) often accelerate algorithms by over an order of
magnitude compared to the standard CPU implementation. An
overview on some ideas of General-Purpose Computations on
GPUs (GPGPU) is presented in [7]. Recent work includes the
mapping of classical ray tracing programs to the GPU, [8] and
[9], which is of particular interest with regard to ray-optical
wave propagation algorithms.

In this paper, we show that the use of graphics hardware
allows the acceleration of existing approaches, if mapped
correctly to the graphics programming concept. The algorithm
developed in Section V extends the ray launching approach of
[4]. However, the present algorithm is completely redesigned
to benefit from graphics hardware. The algorithm adapts
shadow algorithms from computer graphics that run extremely
fast on graphics hardware to compute ray paths based on roof
diffraction.

This paper is organized as follows. In Section II we briefly
introduce the underlying programming paradigm of today’s
graphics cards. The semi-empirical COST-Walfisch-lIkegami
model is used as a kind of prototype to show the abilities
of graphics hardware based implementations in Section III.
Section IV presents a path loss model that derives the re-
ceived power based on distance and diffraction over rooftops.
Section V describes an algorithm that calculates roof diffrac-
tion ray paths. This algorithm is explicitly developed to run
on graphics hardware. Section VI discusses the introduced
algorithms, with respect to prediction quality and computation
time. We conclude this work with an overview of the results
in Section VIIL.

II. GRAPHICS HARDWARE

The underlying architecture of graphics cards is called
Single Instruction Multiple Data (SIMD), i.e., many parallel
processors execute the same instructions at a time on different
parts of data. In addition to the high computing power, modern
graphics cards are programmable at certain stages of their
Rendering Pipeline (Figure 1).

The pipeline consists of an input, a processing and an
output unit. The input consists of planar geometric objects,
e.g., triangles or quadrangles, described by three dimensional
coordinates (vertices) with connectivity information and arbi-
trary numerical information (textures). In the first pipeline step
multiple vertex processors execute in parallel the instructions

Global Memory
(Textures)

\—+

Fragment
Processors

-

Vertex Frame
Processors Rasterizer Buffer

Vertex Buffer |—>

Fig. 1. The Graphics Rendering Pipeline.

from a user-written program (kernel) on the vertices. Usually,
geometric transformations like translations and rotations are
applied.

In the next step, the processed geometric objects are ras-
terized into discrete points (fragments). Each fragment has a
screen position (pixel position), a depth value and additional
numerical information.

Analogous to the vertex processors, multiple fragment pro-
cessors execute user-written programs on each fragment in
parallel, producing the final result of the computation. Usually,
the output consists of a vector v € R3 which is commonly
interpreted as color information.

In a final non-programmable stage all fragments are col-
lected and recorded in the framebuffer. If multiple fragments
are mapped to the same pixel position, the depth test decides
which one is written into the framebuffer, by comparing the
fragments’ depth values.

Both, vertex and fragment processors can be programmed
in a slightly restricted C-like language. The major drawback of
the GPU programming model is that each vertex or fragment
is processed independently, without access to others. Only the
non-programmable depth test at the very end of the pipeline
may compare information of several fragments on the same
position.

III. SEMI-EMPIRICAL MODEL EVALUATION ON THE GPU

To proof the power of GPUs for radio wave propagation pre-
dictions we implemented the COST-Walfisch-Ikegami (COST-
WI) model [1]. In this model, the path loss at a receiver point
r is given by

pas , r in line-of-sight

COSTWI (T) =

(D

, otherwise,

B (7)
Bfos (1)

where P (r) and Bg (r) are functions of the distance
between transmitter and receiver and some transmitter specific
parameters as frequency and height. As in [10], we neglect the
parameter containing the orientation of the road. Furthermore,
we assume a flat receiver plane and 2.5 dimensional building
data, i.e., each building is described by its polygonal outline
and a single height. To evaluate the COST-WI model, it has to
be determined whether a given receiver point lies in line-of-
sight to the transmitter. Afterwards, we have to calculate the
distance to the transmitter and evaluate (1).

511

hp < hyy by > by
s
hy Y 2 3 hr
hp ™ hyy !
X d.
% 4

Fig. 2. Non-line-of-sight region of a transmitter beneath (left) and above
(right) wall height, side view (upper) and top view (lower).

A/ ® B/
¥
-

B

A'A BB A

174

Fig. 3. Vertex processing.

The line-of-sight calculation is based on shadow algorithms
from computer graphics, which can be implemented on recent
graphics hardware. Our method is based on the so-called
shadow volumes [11]. The basic idea of this technique is to
construct a polygonal representation of the shadow cone. We
call the intersection of the shadow cone and the receiver plane
the shadow polygon. Regions are in line-of-sight, if they are
in no shadow polygon and vice versa. The shadow cones are
constructed by identifying the silhouette edges of the shadow
caster and by moving them away from the light source (here,
the transmitter).

The construction of the shadow polygon for a single wall
is depicted in Figure 2. The shadow polygon is a quadrangle,
where two of its corners are the end points of the wall. The
remaining two corners are given by the intersection of the
receiver plane and the straight lines trough the transmitter and
the wall points. If the transmitter is located above the top of
the wall, Ah = hy — hyy > 0, the shadow polygon is finite
and its dilation A can be calculated by

hw _A-d \ o w
Ah d AR’
Otherwise the shadow polygon extends to infinity, in this case

let A = o0.
This method can be implemented efficiently on graphics

600

" GPU 7800 GT (full COST-WI) ——
CPU AMD 3500 (no check for LOS) ----=---

500

400

300

Predictions per second

200

100

2- ----------- 3 4 5 6 7 8 9 10
Gridsize [m]
Fig. 4. CPU vs. GPU COST-WI implementation (Runtimes from the COST-
Munich scenario).

hardware. We decompose the building data into single walls.
Let A= A’ and B = B’ denote the two end points of a wall
and their duplicates, see Figure 3. We use the degenerated
quadrangle A’ABB’ as input for the rendering pipeline. The
vertex processors shift A’ and B’ away from the transmitter
by the corresponding), resulting in the outline of the shadow
polygon. The rasterizer discretizes the supplying area into
fragments, and fills fragments inside the shadow polygon
with non-line-of-sight information. The fragment processors
execute a program to evaluate the path loss formula (1).

We implemented our algorithm in OpenGL for recent GPUs.
For comparison we implemented just the evaluation of P on
a CPU. Note, we do not check if a point is in line-of-sight on
the CPU, which would presumably be the most expensive part
of a full COST-WI implementation. Furthermore, evaluating
P%, is computationally less expensive than evaluating Pg...
Figure 4 shows that our GPU implementation of the full model
clearly outperforms even the simplified CPU implementation.
We tested our algorithm on the COST-Munich data [12], an
area of 2.4 x 3.4 km?. Figure 4 shows the number of pre-
dictions per second for this area depending on the resolution
from 2 m to 10 m.

A CPU implementation of the full COST-WI model in a
commercial tool like Winprop needs “less than one minute”
for a single prediction with 72 - 10® evaluations, see [10].
We achieve more than fifty predictions per second, even
with a resolution of 2 m on the COST-Munich scenario,
which corresponds to more than 2 - 105 evaluations of (1) per
prediction. Therefore, the implementation on GPUs allows for
real-time prediction for a moving transmitter.

IV. ROOF DIFFRACTION MODEL

In this section we introduce the Roof Diffraction Model
(RDM) for urban environments, see [4]. We assume that rays
propagate in a straight line from the transmitter and may be
diffracted downwards at the roof of buildings. The path loss

512

B e

/i Y

€ - Size of diffraction cone ==>

(a) Creating the Diffraction Wall Map.
r= a

r——)

(b) Creating the convex ray path.

Fig. 5. Principles of the ray path calculation.

for a receiver point r is modeled by

K,
P ()= cr 7101 (d) + > g (of)
=1

with the well-known frequency dependent term

4
cr=20lg <:f) ,

where ¢ denotes the speed of light. The second summand
depends on the path loss exponent v > 0 and the length of the
diffracted path d,.. K, denotes the number of roof diffractions
and o is the i-th diffraction angle. The function

g(a)=by+bia+ba® ac {0, g] ,

with parameters by, b1, b2 € R models the attenuation due to
a diffraction angle «.

Adequate values for the parameter v and the coefficients
bo, b1, by are retrieved from a calibration with measurement
data. Route METRO202 of the COST-Munich scenario yields

The above values are used in this paper when calculating the
path loss.

V. ROOF DIFFRACTION ON THE GPU

In this section we will extend the ideas presented in Section
IIT to calculate the diffracted ray path for the RDM model.
First we explain the principles of our algorithm, briefly. For
each point in the receiver plane we determine if it is in line-
of-sight to the last diffracting wall on the ray path to the
transmitter. This information is written into the Diffraction
Wall Map (DWM). We use it to calculate the last diffraction
point for each receiver point, i.e., the intersection of the ray

Algorithm 1 BUILDDIFFRACTIONWALLMAP(WallSet W,
Transmitter T)
CLEARBUFFER(Framebuffer,RGBA(0,0,0,0))
CLEARBUFFER(Depthbuffer,0)
ht < T.height
T.height < STARTHEIGHT() {Start at almost infinity.}
while T.height > hy do
for all wall € W do
{In the vertex processor}
poly «+— GETSHADOWPOLYGON(wall,T)
{In the rasterizer}
fragments «— RASTERIZEPOLYGON(poly)
{In the fragment processor}
for all frag € fragments do
frag.color «— wall.ID
frag.depth « T.height
{Execute depth test}
if Depthbuffer[frag.pos] < frag.depth then
Depthbuffer[frag.pos] < frag.depth
Framebuffer[frag.pos] <« frag.color
end if
end for
end for
T.height < DECREASEHEIGHT(T.height)
end while
return Framebuffer

path and the last diffracting wall. This information is stored
in the Diffraction Point Map (DPM). For each receiver point
we traverse the DPM until we reach the transmitter to gen-
erate a sequence of points containing all possible diffraction
points, the Diffraction Sequence Map (DSM). Exploiting the
height information at those points the diffracted ray path is
reconstructed.

To obtain the DWM containing the last diffracting wall for
each point in the receiver plane, we use the procedure sketched
in Figure 5(a). We let the transmitter “drop” from an infinite
height down to its original height. For each height of the
transmitter we use the shadow polygon algorithm described in
Section III. We mark each shadow polygon with the shadow
casting wall’s unique ID. These IDs are written in the DWM,
once a point enters shadow for the first time.

This method can be implemented efficiently on graphics
card, only. The implementation is sketched in Algorithm 1. We
use the depth buffer to ensure, that only the very first shadow
casting wall is recorded. Implementing the algorithm requires
to choose discrete heights while dropping the transmitter. As
the evaluation of a single height is very fast, a high height
resolution can be chosen without slowing down the whole
algorithm significantly, see Section VI.

The DPM is calculated in the fragment processors once
we have obtained the DWM. For every receiver point the
diffracting wall is stored in the DWM. The last diffraction
point can be found easily, by intersecting the corresponding
wall segment with the straight connection between the receiver

513

Fig. 6. Field strength prediction of the Roof Diffraction Model in Munich.

Task / Runtime GPU Nvidia 7800 GT,
CPU AMD 3500

Diffraction Wall Map 0.05s (GPU)

Diffraction Point and Sequence Map 0.8s (GPU)

Convex ray path and model evaluation 2.2s(CPU)

Total 3.05s (GPU+CPU)

CORLA (only roof diffraction, recursion depth 9s (CPU)

of 6)

TABLE 1
RUNTIME ANALYSIS OF THE MUNICH-SCENARIO
(7 KM? AT A RESOLUTION OF FIVE METER).

point and the transmitter, with its height given by the wall
height. In this step, some effort is necessary to cope with
discretization effects.

We traverse the DPM to generate the DSM in the following
way. Starting from a receiver point we look up its diffraction
point in the DPM. For this diffraction point we continue the
lookup until we reach the transmitter, as depicted in Figure
5(b). Note, this sequence contains all diffraction points on the
ray path, but it may also contain further points. It can be
shown, that the ray path must be convex. Further more, only
two dimensions have to be considered, as all points lie in a
plane. Therefore, we use Andrew’s Monotone Chain algorithm
[13] to construct the final convex ray path. As the points on
the path are already sorted, this step can be skipped here.

Now we have all the information to evaluate the path loss
from (2). Both the convex ray path calculation and the path
loss evaluation are currently implemented on the CPU.

VI. COMPARISONS

For benchmarking we used the building and measurement
data released in the COST 231 action for the city of Munich
[12]. All predictions were performed on the whole supplied
area, of approximately 7 km? with a resolution of 5 m.
Figure 6 visualizes a RDM prediction for a part of this
area. Table I shows the runtime of the different parts of

Prediction model mean error MSE | std. dev. Runtime

Ericsson (Raytracing + 1.4 dB - 7.5 dB -

COST-WI), [1]

Uni.-Karlsruhe —1.0 dB - 8.6 dB -

(Raytracing), [1]

CORLA 0.1 dB 5.7 dB 5.7 dB 23 s

CORLA (roof diffrac- 0.3 dB 7.3 dB 7.3 dB 9s

tion only)

COST-WI (GPU) 11.6dB 14 dB 7.9dB | 0.0045 s

RDM (GPU) 0.3dB | 7.4 dB 7.4 dB 3.05s
TABLE II

ACCURACY OF PROPAGATION MODELS IN THE COST-MUNICH SCENARIO
ALONG ROUTE METRO202.

our roof diffraction algorithm. Obviously, constructing the
diffraction wall map is extremely fast, consuming less than
2% of the total runtime of the algorithm. Calculating the
diffraction point and sequence map take about 25% of the
overall time, however, most of the time is currently spend to
cope with discretization effects. We expect to reduce this time
significantly in the future. Calculating the convex ray path is
currently the most expensive part, last but not least because it
is implemented on the CPU. This problem will be addressed
in the future, too. However, even our current version is three
times faster compared to roof diffraction calculated by the
highly optimized CPU-only implementation CORLA [4].

Table II compares the accuracy of both, our COST-WI
and RDM implementation with the accuracy of CORLA
and results published in [1]. Even though the RDM model
considers roof diffraction only, the mean squared error (MSE)
between prediction and measurement is as low as 7.3 dB on
measurement route METRO202 with a mean error of 0.3 dB.
Figure 7 visualizes measurement and prediction with RDM on
route METRO201, on which a MSE of 4.7 dB is achieved.

VII. CONCLUSIONS

In this paper we demonstrated the value of graphics cards as
means of accelerating the evaluation of radio wave propagation
models. The parallel architecture of today’s graphics cards is
exploited to achieve extremely fast computation times. We
show that empirical models like the COST-WI model can be
evaluated extremely fast. About 200 predictions per second
can be achieved on recent hardware.

Implementing the more sophisticated roof diffraction model
partially on graphics hardware results in fast and accurate
predictions. This proofs the potential of using GPUs for field
strength predictions. However, as seen in Section V, adapting
existing algorithms to the programming concept of graphics
cards is a challenging task.

514

ROM ——
Measurement -«
80 |

path loss [dB]

160 B

180 n n n n
0 50 100 150 200

measurement location number

2;0 3:')0 3;30
Fig. 7. Comparison between measured and predicted path loss along route
METRO201 with a mean error of -0.3 dB and a mean squared error of 4.8
dB.

After implementing RDM completely on the GPU, future
work will include mapping of other wave guiding effects like
reflection or diffraction on building edges onto the graphics
hardware. The final aim is a three dimensional radio wave
propagation algorithm implemented on the GPU, solely.

ACKNOWLEDGMENT

This work was partially supported by the German Federal
Ministry of Economics and Technology within the AIF pro-
gram PRO INNO II, grant KF0102601SS5.

REFERENCES

E. Damosso, Ed., COST Action 231: Digital mobile radio towards future
generation systems, Final Report. Luxembourg: Office for Official
Publications of the European Communities, 1999.

N. Geng and W. Wiesbeck, Planungsmethoden fiir die Mobilkommu-
nikation. Berlin: Springer, 1998.

Telecommunication Network Consulting GmbH, Aachen. [Online].
Available: http://www.telnetcon.com

M. Schmeink, “Optimierungsalgorithmen zur automatisierten Funknetz-
planung.” Ph.D. dissertation, RWTH Aachen University, 2005.

P. Wertz, R. Wahl, G. Wolfle, P. Wildbolz, and F. Landstorfer., “Domi-
nant path prediction model for indoor scenarios,” in German Microwave
Conference (GeMiC), Ulm, April 2005, pp. 176-179.

R. Wahl, G. Wolfle, P. Wertz, P. Wildbolz, and F. Landstorfer., “Domi-
nant path prediction model for urban scenarios,” in /4th IST Mobile and
Wireless Communications Summit, Dresden, June 2005.

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computation
on graphics hardware,” in Eurographics 2005, State of the Art Reports,
Aug. 2005, pp. 21-51.

N. A. Carr, J. Hoberock, K. Crane, and J. C. Hart, “Fast GPU ray tracing
of dynamic meshes using geometry images,” in Proceedings of Graphics
Interface, Quebec, June 2006, pp. 203-209.

D. Weiskopf, T. Schafhitzel, and T. Ertl, “GPU-based nonlinear ray
tracing,” in Computer graphics forum, vol. 23, September 2004, pp.
625-633.

AWE Communications GmbH, Stuttgart, “WinProp.”
Available: “http://www.awe-communications.com”

M. McGuire, GPU Gems. Addison Welsey, 2004, ch. Effective Shadow
Volume Rendering, pp. 137-166.

G. Mannesmann Mobilfunk GmbH, “Cost 231 - wurban micro
cell measurements and building data” [Online]. Available:
“http://www.ihe.uni-karlsruhe.de/forschung/cost231/cost231.en.html”

A. M. Andrew, “Another efficient algorithm for convex hulls in two
dimensions.” Inf. Process. Lett., vol. 9, no. 5, pp. 216-219, 1979.

[1]

[2]
[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10] [Online].

[11]

[12]

[13]

	Select a link below
	Return to Proceedings

