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Abstract—This paper presents a framework for studying
amplify-and-forward Gaussian relay networks and optimizing
the strategy of source/sink pairs. A typical communication
scenario is that many pairs of users try to exchange information
over the same network. Changing the strategy of the relays,
in such a network, for each communication might be an
overwhelming task. We consider the case where the behavior of
the relays is fixed. By solely optimizing the strategy of the source
and the sink, the goal is to maximize the mutual information
between the transmitted signal and the received signal. We show
a parallel between the multiple-input multiple-output (MIMO)
single user channel and amplify-and-forward Gaussian relay
networks and derive solutions for three different types of power
constraints on the network, namely 1) source power constraint,
2) global network power constraint and 3) individual relay
power constraints. Finally we provide numerical results for an
example network.

I. INTRODUCTION

Relay networks model communication problems where
one or more sources transmit information to one or more
sinks through relays which aim at optimizing the whole
communication process. The simple relay network with one
source, one sink and one relay was introduced in [1]. Fun-
damental results on this single relay channel are presented
in [2]. Another example of a basic network is the Gaussian
parallel network, introduced in [3], where one source commu-
nicates to two relays over two channels that do not interfere.
The relays then forward information to the sink.

In [4] and [5] the capacity of a more general network is
studied. In this network a source transmits a signal to a sink
through one direct path and M relays. The direct path signal
and the M signals forwarded by the relays interfere before
to reach the sink. In [6], the authors compare decode-and-
forward and amplify-and-forward strategies for this network
and derive optimal regions for each strategy in the case of a
one relay network. In [7], the authors further study capacity
bounds of this network while letting the number of nodes
going to infinity.

There exists other capacity results, for general network
topologies, which can be found for example in [8]–[10].
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In [8], the authors derive capacity regions while using multi-
hopping over a network of arbitrary size and the work in [9],
[10] is concerned with finding cooperative coding strategies
to develop achievable rate regions.

This paper presents a framework for amplify-and-forward
Gaussian relay networks and our approach is different from
these fundamental results in several aspects. The main differ-
ence consists in the way we approach the relaying strategy.
Generally one wants to optimize the strategy of the relays
to maximize the mutual information between the signal of
the transmitter and the receiver. We use our framework to
consider networks where the relaying strategy is fixed or
random but known in advance. This is motivated by the fact
that relay networks will be used by many pairs of source
and sinks, recalculating and changing strategies for each
transmission is a daunting task. Therefore we assume that the
relays use a generic strategy for any communication, which
is not optimized for a precise source/sink pair. What will be
optimized is the strategy of the source and the sink. Note
nevertheless that it is possible to optimize the strategy of the
relays using our model. This is however out of the scope of
this present paper.

Another notable specificity of this work is the algebraic
model underlying the network topology. This model makes
apparent a strong connection between the multiple-input mul-
tiple output (MIMO) single user channel and amplify-and-
forward relay networks. This link enables the use of powerful
methods developed in MIMO theory. The fundamental model
of the single user MIMO channel (which can be found in
[11], [12]) is recalled for later comparison and is described
as

x̂ = WHHPx + WHη (1)

where the transmitter has nT antennas, the receiver has nR
antennas, x ∈ CL is the transmitted signal, x̂ ∈ CL is
the received signal, P ∈ CnT×L is a precoding matrix
at the transmitter, H ∈ CnR×nT is the channel matrix,
W ∈ CnR×L is a filter at the receiver and η ∈ CnR is
noise vector with entries identically-distributed taken from
the Gaussian distribution. The power constraint of this system
is expressed as Tr(PPH) ≤ PT , where PT is the available
power at the transmitter.
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A last interesting connection with relay networks is net-
work coding [13], [14]. In a coded network, relays can
not only forward incoming packets but also combine them
linearly before to forward them. Although network coding
considers symbol transmission over a finite field and assumes
edges with perfect reliability, the algebraic matricial structure
of the network coding problem can be transposed to relay
networks problems.

In Section II, we recall the algebraic model of [14].
In Section III we present our model of the network. In
Section IV, we show the connexion between the MIMO
single user channel and amplify-and-forward relay networks.
In Section V we derive the optimal filter for single-source
single-sink networks. We consider three different power
constraints (namely, power constraint only on the source,
global constraint for the whole network and individual power
constraints for each node). We derive the optimal precoder
at the source for the first two constraints and present a
greedy algorithm for the last one. In Section VI, we present
numerical results for an example network. Finally Section
VII wrap-ups this work.

II. ALGEBRAIC MODEL FOR IDEAL NETWORKS

In [14], the author proposed an algebraic model for net-
works based on directed graphs as a framework for network
coding over finite alphabets. We want to extend this model to
Gaussian relay networks (although our model is continuous,
we can reuse the way matrices model a network in [14]). We
first present the basis from the model of [14]. An example
of a coded network is illustrated in Figure 1.
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Fig. 1: Ideal network.

In this example, the symbol si represent a signal com-
ponent transmitted by the node it is attached to. In other
words, node 1 transmits two signal components, and nodes
4, 5, 12 and 13 one signal component each. In this network
all transmitted nodes communicate with the sink. Therefore
a signal s = (s1, . . . , s6) is transmitted to the sink. The
symbol x̂i represents a signal component received by the
sink, in this example, the sink receives a signal x̂ = (x̂1, x̂2).

In this framework, edges are perfectly reliable. An impor-
tant point is that two edges arriving at the same node do not

interfere. Furthermore, intermediate nodes can linearly com-
bine incoming data before to forward them. Such network
can be represented as a linear system,

x̂ = Gs, (2)

where s is the input vector of size m, x̂ is the output vector
of size n and G is a n×m matrix modeling the network. In
[14] it is shown that G can be represented with three matrices
A, F and B. The matrix A of size e×m (e is the number
of edges in the network) represents the linear coefficients ãij
chosen by the source node to send information through the
network. The matrix A has the form

aij =

{
ãij if xj can be sent directly through edge i
0 otherwise.

(3)
The matrix F of size e × e represents the coefficients f̃ij
chosen by intermediate nodes while forwarding messages.
The matrix F has the form

fij =

{
f̃ij if a bit can flow directly from edge j to i
0 otherwise.

(4)
Finally the matrix B of size e×n represents the coefficients
b̃ij chosen by the sink to filter information out of the network.

bij =

{
b̃ij if x̂j can be received directly from edge i
0 otherwise.

(5)
Note that F represents the amplification of the signal after
one hop. Therefore Fk represents the amplification of the
signal after k hops. Interestingly F is strictly lower diagonal
and is therefore a nilpotent matrix, so there exists a power q
such that Fq = 0. It is possible to represent the amplification
of the signal after between zero and q − 1 hops, with only
one lower diagonal matrix M of size e× e,

M = Ie + F + F2 + · · ·+ Fq−1 = (Ie − F)−1.

It is proved in [14] that

x̂ = BHMAs = BH(Ie − F)−1As. (6)

Note that the only similarity between our work and the work
of [14] is the way a network is modeled using matrices. We
now extend this model to Gaussian relay networks.

III. SYSTEM MODEL AND OPTIMIZATION PROBLEM FOR
GAUSSIAN RELAY NETWORKS

We consider networks that can be represented by a directed
graph G = (V, E) with a vertex set V and an edge set E . For
simplicity, we only consider the case where the network has
one source, one sink and arbitrarily many relays. Note that
we present in the Appendix an extension to this model which
represents networks with several sources and several sinks. In
this framework the relays can 1) linearly combine incoming
signals and 2) amplify-and-forward signals to the next relay
or sink. We do not consider decode-and-forward strategies.
All links in the network are noisy, with the noise being taken
from the Gaussian distribution. We call hi the channel gain
of edge i.
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The source wants to transmit a vector x ∈ Cn to the
sink which receives a vector x̂ ∈ Cn. Typically we want
to maximize the mutual information between the transmitted
signal x and the received signal x̂. The min-cut of the
network is assumed to be at least n. It means that the network
has enough degrees of freedom to transport the whole signal.
We call η ∈ CN the noise vector applied to the edges of the
network. We assume that x is zero-mean, normalized and
uncorrelated such that x ∼ NC(0, In) (E[xxH] = In) and
the noise is such that η ∼ NC(0,Cη) where Cη ∈ CN×N is
the covariance matrix of the Gaussian noise (E[ηηH] = Cη).
An example of a network we would like to study is illustrated
in Figure 2.

Fig. 2: Gaussian relay network.

In this example we have one source, one sink and two
relays. Although we have only 4 real nodes, we represent also
multiplicative nodes (nodes with a × symbol) and additive
nodes (nodes with + symbol). These nodes are virtual and
only there for the sake of modeling channel gains and
Gaussian noise. Typically a link between two real nodes is
composed of three edges, one multiplicative node and one
additive node. A multiplicative node multiplies an incoming
signal with the channel gain of its link and an additive node
adds a Gaussian noise component to an incoming signal. A
simple link is illustrated in Figure 3.

Fig. 3: A simple link inside a Gaussian relay network.

In this simple link we have ŷ = hfy + η, where y is a
signal arriving at the first relay, f is the amplification applied
to the signal by the first relay, h is the gain of the channel
(applied by the multiplicative node), η is the Gaussian noise
added to the signal and finally ŷ is the signal received by the
second relay.

To make our model clearer, we detail a bit more the
example in Figure 2. We see that the source has two outgoing
edges. It means that the signals sent on these two edges

are totally orthogonal and do not interfere. In a wireless
network it represents, e.g., the fact that a node transmits
on two different frequency carriers. We can also see that
several edges coming from different multiplicative nodes
might arrive at the same additive node. It illustrates the fact
that two signals interfere. As for our example, it would mean
that the relays 1 and 2 both send two signals on the two
same frequencies. The sink receives then two signals on two
separate frequency carriers, each of them is a combination
of a signal from relay 1 and 2. In general it is important to
note that two signals on two edges arriving at the same node
do not interfere and can be separated by the receiving node.

Note that the multiplicative and additive nodes could be
put together as one single node, modeling the channel gains
experienced by incoming signals as well as the Gaussian
noise. In the rest of the present work we keep these two
aspects separated for the sake of clarity.

The idea, in order to model mathematically such a network,
is to apply the matricial framework of [14] to Gaussian relay
networks. To embed a network like the one in Figure 2 in
a framework that models networks like the one in Figure 1,
we proceed to the following problem changes

1) The noise inputs are considered as part of the trans-
mitted signal (although it will be filter later on).

2) The multiplicative nodes and additive nodes are con-
sidered as normal nodes in the sense of [14], i.e., they
can amplify-and-forward incoming data.

3) The amplifying coefficient of multiplicative nodes is
fixed and is equal to the channel gain of the link they
are in.

4) The amplifying coefficient of additive nodes is fixed
and is equal 1.

To model the first point we define s ∈ Cn+N as the
transmitted signal through the network (to relate to Section II
m = n + N ), where N is the number of noise inputs, i.e.,
η = (η1, . . . ,ηN ), where η is a vector composed of all noise
inputs. Remember that x ∈ Cn, we have

s =

(
x
η

)
. (7)

The matrix A has now size e × (n + N). In our model A
also models the coefficients to apply to the noise entering
the network. All coefficients from a noise input to a network
edge are set to one. We can always numerate the edges of the
network such that the source can transmit the n components
of x in the n first edges of the network. Therefore A has the
form

A =

[
Ax 0
0 Aη

]
, (8)

where Ax is a n × n matrix representing the coefficients
applied from the source to the real signal x and Aη is a (e−
n)×N matrix composed of ones and zeros. In the matrix F,
the coefficients related to multiplicative nodes are set with the
appropriate channel coefficients hi. The coefficients related
to additive nodes are set to one. The coefficients of F that
remain unset represent the strategy chosen by the relays. We
can always numerate the edges of the network such that the
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sink receives the n components of the incoming signal in the
n last edges of the network. Therefore B has the form

B =

[
0

Bx

]
, (9)

where Bx is a n × n matrix representing the filter applied
to the received signal to get x̂. Now all the parameters of
the system are set, we can apply (6) to our Gaussian relay
network (x̂ = BHMAs) and write the optimization problem
we want to solve. We maximize the mutual information
between the source signal and the sink signal I(x, x̂) with
some power constraints on the network

max.
Ax,Bx

I(x, x̂) = I(x,BHMAs)

s.t. Power used in the network ≤ PT .
(10)

Note that we do not optimize our problem on M and consider
it has fixed in this paper. Note also that we will study different
power constraints as described later in Section VI.

IV. PARALLELS WITH MIMO MODEL

In the problem (10), we optimize the matrices Ax and Bx.
However they are not apparent in (6). This can be changed
expressing the matrix M as a block matrix as follow

M =

[
ML MR

Mx Mη

]
, (11)

where Mx is a n×n matrix corresponding to the part of the
network that transports the input vector x form the source
to the sink, Mη is a n × (e − n) matrix that corresponds
to the part of the network that transfers all the Gaussian
noise to the sink. The matrices ML ∈ C(e−n)×n and MR ∈
C(e−n)×(e−n) represents respectively the part of the network
that transports x and η to the relays. Now we can rewrite
the received signal x̂ as

x̂ = Bx
H(MxAxx + MηAηη). (12)

The similarities with a multiple antenna system are now
apparent (comparing with (1)), Ax is in some sense a
precoder at the source that enables to spread x over the
different input edges and Bx is a filter that enables to separate
the noise from the signal. The main differences are 1) that
the noise is multiplied by Mη , in other words the noise is
amplified inside the network, if the network is longer, the sink
will receive more noise, 2) we can actually choose Mx and
Mη (in contrast to the channel matrix in multiple antenna
systems) to improve communication. However, in this work,
as explained in the introduction, we consider these matrices
as fixed. An interesting parallel is also the fact that, the min-
cut of the network is at least n, can interpreted in the MIMO
sense as the fact that the receiver as at least as much antennas
as the transmitter.

V. SOURCE/SINK STRATEGY OPTIMIZATION

As stated already we would like to maximize the mutual
information between the transmitted signal and the received
signal I(x, x̂). We define the matrix E as the mean square
error (MSE) matrix defined as E = E[(x̂− x)(x̂− x)H].

The matrix E depends on Ax and Bx and can be written as

E(Ax,Bx) =(Bx
HMxAx − In)(Ax

HMx
HBx − In)+

Bx
HMηAηCηAη

HMη
HBx

=Bx
H(MxAxAx

HMx
H+

MηAηCηAη
HMη

H)Bx+

In −Bx
HMxAx −Ax

HMx
HBx.

(13)

Now our goal is to maximize I(x, x̂) by choosing Ax and
Bx appropriately.

A. Minimum MSE Filter Design

Methodologically we follow the work of [11] and [12].
We want to get the matrix Bx that minimizes the MSE
between x and x̂, for that it suffices to minimize each Ei,i

independently, since the choice of one bi (i-th column of Bx)
only influence Ei,i.

Theorem 1: The Wiener filter Bx
∗ that minimizes Ei,i for

each i = 1, . . . , n is

Bx
∗ =(MxAxAx

HMx
H +MηAηCηAη

HMη
H)−1MxAx

=(MηAηCηAη
HMη

H)−1MxAx

(In +Ax
HMx

H(MηAηCηAη
HMη

H)−1MxAx)
−1.

(14)
Proof: We simply set the gradient of Ei,i with respect

to bi to zero and find the optimal bi. The second form of
Bx
∗ comes from the matrix inversion lemma, see [12] for

calculation details.
By plugging (14) in (13) we obtain

E(Ax) =In −Ax
HMx

H(MxAxAx
HMx

H+

MηAηCηAη
HMη

H)−1MxAx

=(In +Ax
HMx

H(MηAηCηAη
HMη

H)−1

MxAx)
−1,

(15)

where E(Ax) is now the MSE matrix after Wiener filtering.

B. Precoder Design

From now on we still have to optimize the precoding
matrix Ax to maximize the mutual information between
x and x̂. We can express the mutual information as
I(x, x̂) = −log det(E(Ax)). To optimize Ax we need to
consider the power constraints of the system, namely we
will derive results for three different constraints. First we
want to assume that the power at the source is limited but
the power at the relays is unconstrained. It does not mean
that the power at the relays is unlimited, namely the relays
are power constrained but the source is not concerned with
the power used at the relays. In other words, the relays
use a certain fixed amplification and are designed to be
capable of amplifying any input signal. This case illustrates
a network where the source is a small, power limited device,
transmitting to a large wireless relay, which forwards the
signal to other relays or base stations until it can reach
the sink. The available power at the relays is so much
larger than the one at the source that we can simply drop
the power constraints at the relays. The second scenario
we will study, is the one of a cognitive network where all
nodes are the same and share a global power constraint and,
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by allocating the power where its best used, try together
to maximize I(x, x̂). Finally, in the last scenario that we
consider, all nodes have an individual power constraint. In
the last two cases, the source does not influence the strategy
of the relays, it is responsible on not making them violate
the constraints. In all cases the goal is to maximize I(x, x̂)
while respecting the power constraints.

1) Power Constraint on the Source: In that case we have
a single power constraint on the power emitted by the source.
It can be expressed as E[‖Axx‖2l2 ] ≤ PT , where PT is
the maximum power available at the source. This power
constraint can be written as

Tr(AxAx
H) ≤ PT . (16)

Now by defining RM = Mx
H(MηAηCηAη

HMη
H)−1Mx

we can write the optimization problem we want to solve as

max.
Ax

log det(In + Ax
HRMAx)

s.t. Tr(AxAx
H) ≤ PT ,

(17)

which has exactly the form of the linear precoding problem
of the single user MIMO channel [12].

Theorem 2: The optimal precoding matrix Ax
∗ for the

problem (17) has the form

Ax
∗ = VM diag(

√
p), (18)

where VM ∈ Cn×n is the right singular matrix of RM and
p is a power allocation vector calculated using waterfilling
as

pi = (µ− λ−1M,i)
+, 1 ≤ i ≤ n, (19)

where λM,i are the eigenvalues of RM and µ is the water
level chosen such that

∑n
i=1 pi = PT .

Proof: See [12].

2) Network with a Global Power Constraint: In this
scenario we assume that the network as a whole has a global
power constraint, i.e., all nodes share a joint power budget.
Now this case is much less similar to the MIMO problem than
the former one. The key component here is to recognize that
the vector sN = MAs of size equal to the number of edges
in the network contains the output signal at each edge of the
network. Among all these components we want to constraint
only outgoing edges from the source or from relay nodes.
The power pG ∈ Re on each edge of the network can be
written as

pG = E[diag(MAssHAHMH)]. (20)

Unfortunately the information about which edge comes out
of which node is not included in the matrix F as it only
represents connexions from edge to edge. Therefore we need
to introduce a new matrix S which is a selection matrix
keeping only the diagonal entries of F corresponding to edges
going out of a source or a relay. The matrix S ∈ Ce×e is a
diagonal matrix defined as follow

si,i =

{
1 if edge i goes out of the source or a relay
0 otherwise.

(21)

Note that we could have skipped the multiplicative node in
the network model and have introduced the channel gain
directly in A. The big advantage of not having done that
is visible now. The output signal of relays before being
amplified by the channel gain (i.e., relevant for the power
constraints) is readily available from pN. Finally we express
the true power constraint of interest as

Tr(E[SMAssHAHMH]) ≤ PT . (22)

The problem consisting in minimizing the MSE with a global
power constraint for the network can be formulated as

max.
Ax

log det(In + Ax
HRMAx)

s.t. Tr(E[SMAssHAHMH]) ≤ PT .
(23)

Theorem 3: The optimal precoding matrix Ax
∗ for the

problem (17) has the form

Ax
∗ = UMΛM

−1/2VG diag(
√
p), (24)

where VG ∈ Cn×n is the right singular matrix of RG,
which is itself a n × n matrix depending on RM (RG is
defined explicitly latter in the proof), UM and ΛM

−1/2 are
respectively a n×n unitary matrix and a n×n diagonal matrix
both defined latter in the proof and p is a power allocation
vector calculated using waterfilling as

pi = (µ− λ−1G,i)
+, 1 ≤ i ≤ n, (25)

where λG,i are the eigenvalues of RG and µ is the water
level chosen such that

∑n
i=1 pi = PT − PN with PN an

amount of power depending on the network structure.
Proof: In problem (23) the constraint does not let Ax

appear. Therefore we rewrite M as a block matrix with the
following structure

M =

[
L1 0

MLL L2

]
, (26)

where L1 is a lower diagonal n × n matrix, L2 a lower
diagonal (e− n)× (e− n) matrix and MLL a (e− n)× n
matrix. We then derive E[MAssHAHMH] as following

E[MAssHAHMH]=

 L1AxAx
HL1

H L1AxAx
HMLL

H

MLLAxAx
HL1

H MLLAxAx
HMLL

H

+L2AηCηAη
HL2

H

.
(27)

Because we can always numerate the outgoing edges from
the source first (i.e., they have 1, . . . , n as indices) L1 = In
and by rewriting S as

S =

[
In 0
0 DS

]
, (28)

we can rewrite constraint (22) as

Tr(AxAx
H+DS(MLLAxAx

HMLL
H+L2AηCηAη

HL2
H))≤PT .

(29)
The problem (23) can be reformulated as

max.
Ax

log det(In + Ax
HRMAx)

s.t. Tr(AxAx
H + DSMLLAxAx

HMLL
H+

DSL2AηCηAη
HL2

H) ≤ PT .

(30)
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By calling PN = Tr(DSL2AηCηAη
HL2

H) and manipulat-
ing the expression in the trace, the problem simplifies to

max.
Ax

log det(In + Ax
HRMAx)

s.t. Tr(Ax
H(In + MLL

HDSMLL)Ax) ≤ PT − PN .
(31)

Note that if we have PN > PT , it means that any amount
of power used by the source will violate the global network
constraint. The matrix In+MLL

HDSMLL is symmetric, full
ranked and can be written as

In + MLL
HDSMLL =UMΛMUM

H

=UMΛM
1/2ΛM

1/2UM
H,

(32)

where UM ∈ Cn×n is a unitary matrix and ΛM ∈ Cn×n

is a diagonal matrix containing the eigenvalues of
In + MLL

HDSMLL. Next we proceed to the following
variable change

Ax
′ = ΛM

1/2UM
HAx (33)

where Ax
′ is a matrix of size n×n. It remains to plug (33)

in (31) to get the following transformed objective function

log det(In + Ax
′HΛM

−1/2UM
HRMUMΛM

−1/2Ax
′).
(34)

We define RG = ΛM
−1/2UM

HRMUMΛM
−1/2 with RG

a n× n matrix and get the simplified problem

max.
Ax

log det(In + Ax
′HRGAx

′)

s.t. Tr(Ax
′HAx

′) ≤ PT − PN .
(35)

Now we got to the exact same form as in (17), which
concludes the proof.

3) Relays with Individual Power Constraints: In this sce-
nario we assume that all nodes (source and relays) have the
same individual power available PT . We have shown in the
previous section that E[(SMAssHAHMH)] represents the
power on outgoing edges from the source and from the relays.
In order to express individual power constraints for each node
we need to group the edges belonging to the same node. We
define c matrices Si with i = 1, . . . , c and c is the number
of relays in the network plus one (for the source). We give
index one to the source and indices between 2 and c to the
relays. We define Si as a e× e diagonal matrix of the form

[si]j,j =

{
1 if edge j goes out node i
0 otherwise. (36)

In other words by multiplying Si with MAssHAHMH, it
remains a e×e matrix with only the power on edges outgoing
from node i on its diagonal. Therefore the network power
constraint can be written as

E[Tr(SiMAssHAHMH)] ≤ PT i, ∀i = 1, . . . , c. (37)

where PT i is the power available at node i. The problem
consisting in maximizing I(x, x̂) with individual power

constraints for each node can be formulated as

max.
Ax

log det(In + Ax
HRMAx)

s.t. E[Tr(S1MAssHAHMH)] ≤ PT 1

E[Tr(S2MAssHAHMH)] ≤ PT 2
...
E[Tr(ScMAssHAHMH)] ≤ PT c.

(38)

For each matrix Si, with i > 1, we will write the matrix M
with a specific block structure

M =


In 0 0 0

M1,1i L1i 0 0
M2,1i M2,2i L2i 0
M3,1i M3,2i M3,3i L3i

 . (39)

If we call ei the number of edges between the last outgoing
edge from the source and the first outgoing edge from node
i and ni the number of outgoing edges from node i, we
have M1,1i ∈ Cei×n, M2,1i ∈ Cni×n, M2,2i ∈ Cni×ei ,
M3,1i ∈ C(e−n−ei−ni)×n, M3,2i ∈ C(e−n−ei−ni)×ei ,
M3,3i ∈ C(e−n−ei−ni)×ni , L1i ∈ Cei×ei , L2i ∈ Cni×ni

and L3i ∈ C(e−n−ei−ni)×(e−n−ei−ni) . We also rewrite A
for each i > 1 as

A =


Ax 0 0 0
0 Aη1 i

0 0
0 0 Aη2 i

0
0 0 0 Aη3 i

 , (40)

with Aη1 i
∈ Cei×ei , Aη2 i

∈ Cni×ni and
Aη3 i

∈ C(e−n−ei−ni)×(e−n−ei−ni). After some calcula-
tions and seeing that Si has the form

Si =


0 0 0 0
0 0 0 0
0 0 Ini 0
0 0 0 0

 , (41)

we can transform the constraint (37), for each i > 1, into

Tr(M2,1iAxAx
HM2,1

H
i + M2,2iAη1 i

Aη1

H
i
M2,2

H
i +

L2iAη2 i
Aη2

H
i
L2

H
i ) ≤ PT i, ∀i = 2, . . . , c.

(42)
For i = 1 (for the source), the constraint (37) remains

Tr(AxAx
H) ≤ PT 1. (43)

By calling PNi = Tr(M2,2iAη1 i
Aη1

H
i
M2,2

H
i +

L2iAη2 i
Aη2

H
i
L2

H
i ) the problem (38) transforms to

max.
Ax

log det(In + Ax
HRMAx)

s.t. Tr(Ax
HAx) ≤ PT 1

Tr(Ax
HM2,1

H
i M2,1iAx) ≤ PT i − PNi,

i = 2, . . . , c.

(44)

In that case the matrix M2,1
H
i M2,1i has rank ni, i.e., the

number of outgoing edges from node i. This number is in
general smaller than n. It means that the source could theo-
retically put all its power on the eigenmodes corresponding to
zero eigenvalues of M2,1

H
i M2,1i and never violates its power

constraint. However since there exists no unconstrained path
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between the source and the sink (there is at least one relay
between the source and the sink and the source is itself
power constrained), the power will be limited somewhere else
in the network. The low rank nature of M2,1

H
i M2,1i only

expresses the fact that not all paths go through a specific
node. The consequence is that we can rewrite the constraints
by suppressing the unused eigenmodes of M2,1

H
i M2,1i, by

writing

M2,1
H
i M2,1i = UM2,1 i

[
ΛM2,1i

0

]
UM2,1

H
i
, (45)

where UM2,1 i
is a unitary matrix of size n × n and

ΛM2,1i
is a ni × ni diagonal matrix containing the

nonzero eigenvalues of M2,1
H
i M2,1i. By keeping only the

ni rows of UM2,1 i
corresponding to ΛM2,1i

and calling
RMi = U′M2,1 i

ΛM2,1i
U′M2,1

H
i

where U′M2,1 i
is a unitary

ni × n matrix, we transform problem (44) into

max.
Ax

log det(In + Ax
HRMAx)

s.t. Tr(Ax
HAx) ≤ PT 1

Tr(Ax
HRMiAx) ≤ PT i − PNi,

i = 2, . . . , c.

(46)

The problem formulation is finished, we see c constraints
in potentially c different basis. We cannot use a change of
variable to bring them all in the same basis so the optimal
solution will be trade-off between those different basis. This
however a complicated problem.

A greedy suboptimal algorithm consists in solving the
simple problem (17) with a power constraint on the source
and increase the power using waterfilling until it violates
some relay constraints. When some constraints are violated,
we take out of the waterfilling the power components that
influence the violated constraints and continue the waterfill-
ing on the remaining power components. It will be part of
future works to find more efficient algorithms to solve (46).

VI. NUMERICAL RESULTS

In this section we present few simulation results from the
network depicted in Figure 2. In order to get results that are
interpretable we take h2 = h1/2 (i.e., the channel gain of the
right outgoing edge from the source is twice weaker than the
left one). All hi (except h2), as well as all coefficients f̃ij
chosen by the relays are zero-mean Gaussian with variance
one. The noise covariance matrix is such that Cη = IN ,
i.e., the noise is white. We first concentrate on the network
with a power constraint on the source only. In Figure 4, we
show the mutual information between the source signal and
the sink signal, depending on the SNR, for the cases that 1)
both relays are active, 2) the left relay is inactive 3) the right
relay is inactive. In Figure 5, we show the strategy chosen by
the source in the case that the two relays are active (i.e., the
power that goes in the left and right relays). We can see as
expected that because h2 is worse than h1, the performance
of the network is better when the only left relay is active
than when only the right relay is active. When both relays
are active, the performance at low SNR is about the same as
when only the left relay is active. In that case the source can

0 5 10 15 20 25 30 35 40
0

5

10

15

SNR [dB]

M
u
tu

a
l 
In

fo
rm

a
ti
o
n
 I
 [
b
it
s
/s

/H
z
]

 

 

Both relays are active

Relay 2 inactive

Relay1 inactive

Fig. 4: Mutual information for three network configurations.
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Fig. 5: Power distribution from the source among left and
right edges.
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Fig. 6: Efficiency comparison of source constrained and
globally constrained networks.

spend all its power on the left side since the other side has
a poor quality. When the SNR grows, the right side starts
to be interesting for the source and we see from Figure 5
that the power distribution ratio tends to one. In other words
the source distributes its power more and more fairly among
sides.

It is difficult to compare networks with different power
constraints as described in Section V. We simulated the
network with a power constraint on the source only and then
with a global power constraint on the network. In the first
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case the source has PT power available and in the second case
the whole network has PT power available. To still be able
to compare both strategies we plot the mutual information
divided by the power consumed in the whole network in
Figure 6. At low SNR, the source and the relays in the
network with a global constraint have so few power available
that the efficiency stays close to zero. At high SNR however,
the power can be used very efficiently, all on the left side,
which compensates the difference in available power and the
efficiency of both network converges.

VII. CONCLUSION

In this work we presented a new framework for amplify-
and-forward Gaussian relay networks. By modeling the net-
work as a matrix and considering the relaying strategy as
fixed we have drawn a strong connexion between relay
networks and MIMO systems. Using our model we designed
optimal filter for the sink and optimal precoder for the
source for different power constraints in the network. We
now envisage to develop algorithms for networks with several
sources and sinks as well as more advanced methods for
networks with individual power constraints on each node.

APPENDIX
SYSTEM MODEL FOR MULTI-SOURCE MULTI-SINK

RELAY NETWORKS

In this section we extend our relay network model to repre-
sent multi-source multi-sink networks. We assume a network
with NT sources and NR sinks. Each source j transmits
a vector x̃j ∈ Cn′

. We define x = (x̃1, . . . , x̃NT
) ∈ Cn

as the global transmitted vector with n = NTn
′. Here also

we assume that x is zero-mean, normalized and uncorrelated
such that x ∼ NC(0, In). Each sink i is required to recover
the data from all sources, i.e., x, and actually receives a
vector x̂i ∈ Cn. Typically we want to maximize the mutual
information between x and x̂i for i = 1, . . . , NR.

The vector s ∈ Cn+N remains unchanged and is defined
as

s =

(
x
η

)
. (47)

The structure of the matrix A ∈ Ce×(n+N) stays the same,
i.e.,

A =

[
Ax 0
0 Aη

]
, (48)

but Ax ∈ Cn×n is now a block diagonal matrix of the format

Ax =

Ax1 0
. . .

0 AxNT

 , (49)

where Axj ∈ Cn′×n′
represents the amplification factors

applied by the source j to x̃j . The network matrix M ∈ Ce×e

can, in multi-source multi-sink network, be detailed as

M =


ML1 . . . MLNT

MR

Mx1,1 . . . Mx1,NT
Mη1

...
...

...
...

MxNR,1 . . . MxNR,NT
MηNR

 , (50)

with Mxi,j ∈ Cn×n′
is a matrix containing the amplifi-

cation factors experienced by x̃j on the way to the sink i,
MLj ∈ C(e−NRn)×n′

contains amplification factors of x̃j

to the relays, MR ∈ C(e−NRn)×N contains amplification
factors of the noise to the relays and finally Mηi ∈ Cn×N

contains amplification factors of the noise to the sink i.
Finally the filtering matrix B is now composed of one
filtering matrix Bi ∈ Ce×n per sink and has the form
B = [B1, . . . ,BNR

], which can be further expressed as

B =


0(e−NRn)×n 0(e−NRn)×n 0(e−NRn)×n

Bx1 0
. . .

0 BxNR

 , (51)

where Bxi ∈ Cn×n is a filter applied by the sink i to the
received signal.

Similar to (6) we can express the received signal at the
sink i as

x̂i = BH
i MAs. (52)

Further this expression can be detailed by using (48), (50)
and (51) as follow

x̂i = Bx
H
i (MxiAxx + MηiAηη), (53)

where Mxi = [Mxi,1, . . . ,Mxi,NT
].
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