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Abstract—In this work, we derive a new upper bound on the
achievable rate of stationary Rayleigh flat-fading channels with
i.i.d. input symbols. The novelty lies in the fact that this bound
is not restricted to peak power constrained input symbols like
known bounds, e.g., in [1] or [2]. Therefore, the derived upper
bound can also be used to evaluate the achievable rate with i.i.d.
proper Gaussian input symbols, which are capacity achieving in
the coherent case. The derivation of the upper bound is based on
the prediction error variance of the one-step channel predictor.

I. INTRODUCTION

In this paper, we consider a stationary Rayleigh flat-fading
channel with temporal correlation. We assume that the chan-
nel state information is unknown to the transmitter and the
receiver, while the receiver is aware of the channel law. The
capacity of this scenario is particularly important, as it applies
to many realistic mobile communication systems.

The capacity of fading channels where the channel state
information is unknown, i.e., sometimes referred to as non-
coherent capacity, has been studied in several publications,
see, e.g., [1]–[5]. Most of the existing work on the capacity
of/achievable rate on stationary fading channels is restricted
to peak power constrained input symbols. On the one hand,
this restriction is reasonable as any realistic transmitter has
a peak limited transmit power. Furthermore, this approach
seems to simplify the mathematical derivation of bounds
on the capacity. On the other hand, in the coherent case
independent identically distributed (i.i.d.) zero-mean proper
Gaussian input symbols are capacity achieving, which are
obviously not peak power limited. Furthermore, in many cases
the capacity achieving input distribution becomes peaky and,
thus, impractical for real system design. In contrast, i.i.d.
zero-mean proper Gaussian input distributions serve well to
upper-bound the achievable rate with practical modulation and
coding schemes, see also [6]. Therefore, we are interested in
bounds on the achievable rate with i.i.d. zero-mean proper
Gaussian input symbols for a stationary Rayleigh flat-fading
channel. Furthermore, the achievable rate with i.i.d. zero-mean
proper Gaussian input symbols will converge to the coherent
capacity for asymptotically small channel dynamics. However,
if we want to evaluate the achievable rate with proper Gaussian
input symbols, this requires the derivation of bounds on the
achievable rate, which also hold in case of non-peak power
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constrained input symbols. In [6] the achievable rate with
i.i.d. proper Gaussian input symbols has been computed for
a Rayleigh block-fading channel. Concerning the case of a
stationary Rayleigh flat-fading channel, in [7] we have already
given bounds on the achievable rate with i.i.d. zero-mean
proper Gaussian input symbols. These bounds rely on a purely
mathematical derivation and do not give any link to a physical
interpretation like the channel prediction error variance as it
has been used in [1]. In the present work, we give a new
upper bound on the achievable rate which is also based on the
channel prediction error variance and is not restricted to peak
power constrained input symbols. In contrast, for the deriva-
tion of the channel prediction based capacity bounds in [1], the
peak power constraint has been required for technical reasons.
We do not give an upper bound on the capacity but only on
the achievable rate, as we must restrict to i.i.d. input symbols
for mathematical reasons, which are not capacity achieving in
general [2]. In conclusion, the contribution of the present work
is the derivation of a new upper bound on the achievable rate
of a single-antenna discrete-time Rayleigh flat-fading channel
with i.i.d. input symbols. We consider a stationary zero-mean
jointly proper Gaussian [8] fading process. Its realization is
unknown to both, the transmitter and the receiver, while the
receiver is aware of the channel law. In addition, we assume
that the power spectral density (PSD) of the fading process
has compact support. And in contrast to the upper bound on
the achievable rate with i.i.d. zero-mean proper Gaussian input
symbols given in [7], which holds only for a rectangular PSD
of the fading process, the upper bound given in the present
work holds for an arbitrary PSD with compact support.

Finally, we evaluate the new upper bound on the achievable
rate with i.i.d. input symbols, on the one hand, for peak power
constrained input symbols and, on the other hand, for zero-
mean proper Gaussian data symbols. For the case of a peak
power constraint, we compare the new upper bound to capacity
bounds given in [2], and for the case of proper Gaussian input
symbols we compare the new upper bound to the bounds on
the achievable rate for the same scenario given in [7].

II. SYSTEM MODEL

We consider a discrete-time zero-mean jointly proper Gaus-
sian flat-fading channel with the following I/O-relation

y = Xh+ n (1)

with the diagonal matrix X = diag(x). Here the diag(·)
operator generates a diagonal matrix whose diagonal is given
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by the argument vector. The vector y = [y1, . . . , yN ]
T contains

the output symbols in temporal order. Analogously, x, n, and h
contain the channel input symbols, the additive noise samples,
and the channel fading weights. All vectors are of length N .

The additive noise process is white and zero-mean jointly
proper Gaussian with variance σ2

n. The fading process is zero-
mean jointly proper Gaussian with the temporal correlation
rh(l) = E[hk+lh

∗
k] and variance rh(0) = σ2

h. The PSD of the
channel fading process is defined as

Sh(f) =
∞∑

m=−∞
rh(m)e−j2πmf , |f | ≤ 0.5. (2)

We assume that the PSD exists, which for a jointly proper
Gaussian fading process implies ergodicity. Furthermore, we
presume the PSD to be compactly supported within the interval
[−fd, fd] with fd being the maximum normalized Doppler
shift and 0 < fd < 0.5. The assumption of a PSD with limited
support is motivated by the fact that the velocity of the
transmitter, the receiver, and of objects in the environment
is limited. To ensure ergodicity, the case fd = 0 is excluded.

For the transmit symbols, which are contained in x, we cur-
rently only make the assumption that they are i.i.d. and have a
maximum average power of σ2

x. We name the set of input prob-
ability density functions p(x) fulfilling these properties Pi.i.d..

The processes {xk}, {hk}, and {nk} are assumed to be
mutually independent. With the preceding definitions, the
nominal mean SNR1 is given by ρ =

σ2
xσ

2
h

σ2
n

.

III. THE ACHIEVABLE RATE

Using differential entropies the mutual information equals

I(y;x) = h(y)− h(y|x). (3)

As we study the achievable rate, we consider an infinite
transmission length and evaluate the mutual information rate

I ′(y;x) = lim
N→∞

1

N
I(y;x) = h′(y) − h′(y|x) (4)

where h′(·) is the differential entropy rate.
We construct an upper bound on the achievable rate based

on channel prediction. As the fading process is stationary and
ergodic, and as we assume i.i.d. input symbols, it holds that

h′(y|x) = lim
N→∞

1

N
h(y|x) (a)

= lim
N→∞

1

N

N∑

k=1

h(yk|x,yk−1
1 )

(b)
= lim

N→∞
1

N

N∑

k=1

h(yk|xk
1 ,y

k−1
1 )

(c)
= lim

N→∞
h(yN |xN

1 ,yN−1
1 ) (5)

where, e.g., the vector yN−1
1 contains all channel output

symbols from the time instant 1 to the time instant N−1. Here,
for (a) we have used the chain rule for differential entropy, (b)
is based on the fact that yk conditioned on yk−1

1 and xk
1 is

independent of the symbols xN
k+1 due to the independency of

the transmit symbols. Equality (c) follows from the ergodicity
and stationarity of all processes, see [9, Chapter 4.2].

1We use the term nominal mean SNR as in case of a peak power constraint
it is in general not optimal to use the maximum average transmit power. The
nominal mean SNR is the actual mean SNR if the average Tx power is σ2

x.

Correspondingly, h′(y) can be written as [9, Chapter 4.2]

h′(y) = lim
N→∞

h(yN |yN−1
1 ). (6)

Thus, based on (5) and (6), the achievable rate is given by

I ′(y;x) = lim
N→∞

{
h(yN |yN−1

1 )− h(yN |xN
1 ,yN−1

1 )
}
. (7)

A. An Upper Bound based on Channel Prediction
Now, we upper-bound the achievable rate based on (7).
1) Upper Bound on h′(y): An upper bound on h′(y) is

given by the following derivation. As conditioning reduces
entropy, we can upper-bound h(yN |yN−1

1 ) in (6) by

h(yN |yN−1
1 ) ≤ h(yN ). (8)

Using (6), (8), ergodicity, and stationarity, we get

h′(y) ≤ h(yN)
(a)

≤ log
(
πe
(
ασ2

xσ
2
h + σ2

n

))
= h′

U (y) (9)

where for (a) we used the fact that proper Gaussian distribu-
tions maximize entropy, see [8], and that the average transmit
power is given by ασ2

x with α ∈ [0, 1]. Using an average
transmit power of ασ2

x still enables to choose average transmit
powers smaller than the maximum average transmit power σ2

x.
2) The Entropy Rate h′(y|x): To lower-bound h′(y|x),

we express h(yN |xN
1 ,yN−1

1 ) at the RHS of (5) based
on the one-step channel prediction error variance. As the
following argumentation will show, the channel output yN
conditioned on xN

1 ,yN−1
1 is proper Gaussian and, thus,

fully characterized by its conditional mean and conditional
variance. The conditional mean is given by

E
[
yN |xN

1 ,yN−1
1

]
= xNE

[
hN |xN−1

1 ,yN−1
1

]
= xN ĥN (10)

where ĥN is the MMSE estimate of hN based on the channel
output observations at all previous time instances and the
channel input symbols at these time instances. Based on ĥN

the channel output yN can be written as

yN = xNhN + nN = xN

(
ĥN + eN

)
+ nN (11)

with the prediction error eN = hN − ĥN .
As both, the noise as well as the fading process, are jointly

proper Gaussian, the MMSE estimate is equivalent to the linear
minimum mean squared error (LMMSE). Since ĥN and hN

are jointly proper Gaussian and zero-mean, it follows that the
estimation error eN is zero-mean proper Gaussian.

As eN is proper Gaussian, it can be easily seen by (11) that
yN conditioned on xN

1 ,yN−1
1 is also proper Gaussian. Thus,

for the evaluation of h(yN |xN
1 ,yN−1

1 ), we calculate the con-
ditional variance of the channel output yN which is given by

var
[
yN|xN

1 ,yN−1
1

]
=E
[∣∣yN − E

[
yN |xN

1 ,yN−1
1

]∣∣2
∣∣∣xN

1 ,yN−1
1

]

=|xN|2E
[
|eN|2

∣∣∣xN−1
1 ,yN−1

1

]
+σ2

n=|xN|2σ2
epred

(xN−1
1 )+σ2

n (12)

where
σ2
epred

(xN−1
1 )

(a)
= E

[
|eN |2

∣∣∣xN−1
1

]
(13)

is the prediction error variance of the MMSE estimator for ĥN .
For (a) we have used the fact that the zero-mean estimation er-
ror eN is orthogonal to and, thus, independent of the observa-
tions yN−1

1 . The prediction error variance depends on the input
symbols xN−1

1 , which is indicated by writing σ2
epred

(xN−1
1 ).
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Based on σ2
epred

(xN−1
1 ), we can write h(yN |xN

1 ,yN−1
1 ) as

h(yN |xN
1 ,yN−1

1 )=Ex

[
log
(
πe
(
σ2
n+σ2

epred
(xN−1

1 )|xN |2
))]
. (14)

With (5) and (14), we get for i.i.d. input symbols

h′(y|x)=Exk

[
Exk−1

−∞

[
log
(
πe
(
σ2
n + σ2

epred,∞(xk−1
−∞)|xk|2

))]]

(15)

where σ2
epred,∞(xk−1

−∞) is the prediction error variance in (13)
for an infinite number of channel observations in the past, i.e.,

σ2
epred,∞(xk−1

−∞) = lim
N→∞

σ2
epred

(xN−1
1 ) (16)

which is indicated by writing σ2
epred,∞(xk−1

−∞). Note that we have
switched the notation and now predict at the time instant k
instead of predicting at the time instant N . This is possible, as
the channel fading process is stationary, the input symbols are
assumed to be i.i.d., and as we consider an infinitely long past.

3) Upper Bound on the Achievable Rate: With (4), (9), and
(15), we can give the following upper bound on the achievable
rate with i.i.d. input symbols

I ′(y;x)≤ log(αρ+1)−Exk

[
Exk−1

−∞

[
log

(
1+

σ2
epred,∞(x

k−1
−∞)

σ2
n

|xk|2
)]]

.

(17)

Obviously, the upper bound in (17) still depends on the channel
prediction error variance σ2

epred,∞(xk−1
−∞) given in (16), which

itself depends on the distribution of the input symbols in the
past. Effectively σ2

epred,∞(xk−1
−∞) is itself a random quantity. For

infinite transmission lengths, i.e., N → ∞, its distribution is
independent of the time instant k, as the channel fading process
is stationary and as the transmit symbols are i.i.d..

4) The Prediction Error Variance σ2
epred,∞(xk−1

−∞): The
prediction error variance σ2

epred,∞(xk−1
−∞) in (16) depends on

the distribution of the input symbols xk−1
−∞ . To construct an

upper bound on the RHS of (17) we need to find a distribution
of the transmit symbols in the past, i.e., xk−1

−∞ , which leads
to a distribution of σ2

epred,∞(xk−1
−∞) that maximizes the RHS

of (17). Therefore, we have to express the channel prediction
error variance σ2

epred,∞(xk−1
−∞) as a function of the transmit

symbols in the past, i.e., xk−1
−∞ . In a first step, we give such

an expression for the case of a finite past time horizon, i.e.,
for σ2

epred
(xN−1

1 ) in (13) which can be expressed by

σ2
epred

(xN−1
1 )=σ2

h−rH
yN−1
1 hN|xN−1

1

R−1

yN−1
1 |xN−1

1

ryN−1
1 hN|xN−1

1
(18)

where RyN−1
1 |xN−1

1
is the correlation matrix of the observa-

tions yN−1
1 while the past transmit symbols xN−1

1 are known

RyN−1
1 |xN−1

1
=E
[
yN−1
1 (yN−1

1 )H
∣∣xN−1

1

]
=XN−1RhX

H
N−1+σ2

nIN−1
(19)

with XN−1 being a diagonal matrix containing the past
transmit symbols such that XN−1 = diag

(
xN−1
1

)
and IN−1

being the identity matrix of size (N−1)×(N−1). In addition,
Rh is the autocorrelation matrix of the channel fading process

Rh = E
[
hN−1
1 (hN−1

1 )H
]

(20)

where hN−1
1 contains the fading weights from time instant 1

to N−1. The cross correlation vector ryN−1
1 hN |xN−1

1
between

the observation vector yN−1
1 and the fading weight hN while

knowing the past transmit symbols xN−1
1 is given by

ryN−1
1 hN |xN−1

1
= E

[
yN−1
1 h∗

N

∣∣xN−1
1

]
= XN−1rh,pred (21)

with rh,pred = [rh(−(N − 1)) . . . rh(−1)]
T where rh(l) is the

autocorrelation function as defined in Section II.
Substituting (19) and (21) into (18) yields

σ2
epred

(xN−1
1 )=σ2

h−rHh,pred

(
Rh+σ2

n

(
XH

N−1XN−1

)−1
)−1

rh,pred

(a)
= σ2

h − rHh,pred
(
Rh + σ2

nZ
−1
)−1

rh,pred (22)

where for (a) we have used Z = XH
N−1XN−1 i.e., Z is

a diagonal matrix containing the powers of the individual
transmit symbols in the past from time instant 1 to N − 1.
For ease of notation, we omit the index N − 1.

Remember that we want to derive an upper bound on
the achievable rate with i.i.d. input symbols by maximizing
the RHS of (17) over all i.i.d. distributions of the transmit
symbols in the past with an average power ασ2

x. Obviously,
the distribution of the phase of the past transmit symbols
xN−1
1 has no influence on the channel prediction error variance

σ2
epred

(xN−1
1 ). Thus, it rests to evaluate, for which distribution

of the power of the past transmit symbols the RHS of (17)
is maximized. In the following, we will show that the RHS
of (17) is maximized in case the past transmit symbols have
a constant power ασ2

x. I.e., calculation of the prediction
error variance under the assumption that the past transmit
symbols are constant modulus symbols with transmit power
|xk|2 = ασ2

x maximizes the RHS of (17) over all i.i.d. input
distributions for the given average power constraint of ασ2

x.
To prove this statement, we use the fact that the expression

in the expectation operation at the RHS of (17) (but here for
the case of a finite past time horizon) with (22), i.e.,

log

(
1+

|xN |2
σ2
n

(
σ2
h−rHh,pred

(
Rh+σ2

nZ
−1
)−1

rh,pred

))
(23)

is convex with respect to each individual element of the
diagonal of Z, which we name z, see Appendix A for a
proof. As the transmit symbols are i.i.d., using convexity and
Jensen’s inequality, we get

Ez

[
log

(
1 +

|xN |2
σ2
n

(
σ2
h − rHh,pred

(
Rh + σ2

nZ
−1
)−1

rh,pred

))]

≥ log

(
1+

|xN |2
σ2
n

(
σ2
h − rHh,pred

(
Rh+σ2

n (Ez [Z])
−1
)−1

rh,pred

))

= log

(
1 +

|xN |2
σ2
n

(
σ2
h−rHh,pred

(
Rh+

σ2
n

ασ2
x

IN−1

)−1

rh,pred

))

= log

(
1 +

|xN |2
σ2
n

σ2
epred,CM

)
(24)

where σ2
epred,CM

is the channel prediction error variance in case
all past transmit symbols are constant modulus symbols with
power ασ2

x. Here, the index CM denotes constant modulus.
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As this lower bounding of the LHS of (24) can be performed
for an arbitrary N , i.e., for an arbitrary long past, we can also
conclude that the RHS of (17) is upper bounded by

I ′(y;x)≤ log(αρ+1)−Exk

[
log

(
1+

σ2
epred,CM,∞

σ2
n

|xk|2
)]

(25)

where σ2
epred,CM,∞ is the channel prediction error variance in

case all past transmit symbols are constant modulus symbols
with a power ασ2

x and an infinitely long past observation
horizon. In this case, the prediction error variance is no longer
a random quantity but is constant for all time instances k.

Constant modulus symbols are in general not the capacity
maximizing input distribution. However, we only use them to
find a distribution of σ2

epred,∞(xk−1
−∞) that maximizes (17).

For constant modulus input symbols and an infinitely long
past, the prediction error variance is given by, cf. [1]

σ2
epred,CM,∞=

σ2
n

ασ2
x

{
exp

(∫ 1
2

− 1
2

log

(
1+

ασ2
x

σ2
n

Sh(f)

)
df

)
−1

}
(26)

5) Effect of Constraints on the Input Distribution: We
evaluate the upper bound given in (25) for different constraints
on the input distribution. First, we consider the case of a
peak power constrained to Ppeak in addition to the average
power constraint. With the nominal peak-to-average power
ratio2 β = Ppeak/σ

2
x, we get the following upper bound on

the achievable rate with i.i.d. input symbols

sup
Ppeak

i.i.d.

I ′(y;x)

≤ sup
α∈[0,1]

sup
Ppeak

i.i.d.

∣∣α

{
log(αρ+1)−Exk

[
log

(
1+

σ2
epred,CM,∞

σ2
n

|xk|2
)]}

(a)

≤ sup
α∈[0,1]

{
log (αρ+ 1)− α

β
log

(
1+

σ2
epred,CM,∞

σ2
h

ρβ

)}
(27)

where Ppeak
i.i.d. corresponds to Pi.i.d. but with an additional

peak power constraint |xk|2 ≤ βσ2
x. Ppeak

i.i.d. |α corresponds
to Ppeak

i.i.d. but with the average transmit power fixed to ασ2
x.

Inequality (a) can be shown by calculating a lower bound

on the infimum of Exk

[
log

(
1+

σ2
epred,CM,∞

σ2
n

|xk|2
)]

over Ppeak
i.i.d.

∣∣α.

Note that the prediction error variance σ2
epred,CM,∞ depends on

α. Now, we would have to calculate the supremum of the
RHS of (27) with respect to α which turns out to be difficult
due to the dependency of σ2

epred,CM,∞ on α. However, σ2
epred,CM,∞

monotonically decreases with an increasing α. Furthermore,
the RHS of (27) monotonically increases with a decreasing
σ2
epred,CM,∞ . Thus, we can upper-bound (27) by setting α = 1

within σ2
epred,CM,∞ in (26), i.e., σ2

epred,CM,∞

∣∣
α=1

, and obtain

sup
Ppeak

i.i.d.

I ′(y;x)≤ sup
α∈[0,1]

{
log(αρ+1)−α

β
log

(
1+

σ2
epred,CM,∞

∣∣
α=1

σ2
h

ρβ

)}

2The nominal peak-to-average power ratio corresponds to the actual peak-
to-average power ratio if the actual average transmit power is equal to σ2

x .

= log (αoptρ+ 1)− αopt

β
log

(
1 +

σ2
epred,CM,∞

∣∣
α=1

σ2
h

ρβ

)

= I ′
U (y;x)

∣∣
pred,Ppeak

(28)

with

αopt=min



1,
(
1

β
log

(
1+

σ2
epred,CM,∞

∣∣
α=1

σ2
h

ρβ

))−1

− 1

ρ



. (29)

As the bound in (28) becomes loose for β → ∞, we also give
an upper bound on the achievable rate with i.i.d. zero-mean
proper Gaussian (PG) input symbols which is given by

I ′
U (y;x)

∣∣
pred,PG=log(ρ+1)−

∫ ∞

0

log

(
1+

σ2
epred,CM,∞

∣∣
α=1

σ2
h

ρz

)
e−zdz

(30)

where we set α = 1, as in the non-peak power constrained
case the upper bound is maximized for the maximum average
transmit power σ2

x.
As far as we know, the upper bound on the achievable rate in

(25) is new. The innovation in the derivation of this bound lies
in the fact that we separate the input symbols into the one at
the time instant xk and the previous input symbols contained
in xk−1

−∞ . The latter ones are only relevant to calculate the
prediction error variance, which itself is a random variable
depending on the distribution of the past transmit symbols. To
derive an upper bound on the achievable rate with i.i.d. input
distributions, we have shown that the achievable rate is upper-
bounded if the prediction error variance is calculated under the
assumption that all past transmit symbols are constant mod-
ulus input symbols. As the assumption on constant modulus
symbols is only used in the context of the prediction error
variance, the upper bound on the achievable rate still holds
for any i.i.d. input distribution with the given average power
constraint. This allows us to evaluate this bound also for the
case of i.i.d. zero-mean proper Gaussian input symbols.

Note that all preceding upper bounds can be enhanced, as
I ′(y;x) is upper bounded by the coherent mutual information
rate I ′(y;x|h). The coherent channel capacity is known and
achieved by i.i.d. zero-mean proper Gaussian input symbols.
Thus, we can enhance the bounds in (28) and (30) as follows

I ′(y;x) ≤ min

{
I ′
U (y;x), sup

Pi.i.d.

I ′(y;x|h)
}

(31)

where supPi.i.d.
I ′(y;x|h) is the coherent capacity given by

sup
Pi.i.d.

I ′(y;x|h) =
∫ ∞

0

log (1 + ρ · z) e−zdz. (32)

IV. NUMERICAL EVALUATION

In the following, we evaluate the new upper bound on the
achievable rate with i.i.d. input symbols, on the one hand,
for the case of a peak power constraint, i.e., (28) and, on
the other hand, for zero-mean proper Gaussian input symbols,
i.e., (30), both in combination with (31). Furthermore, we
compare these bounds to the upper and lower bounds on the
peak power constraint capacity given in [2], and respectively
with the upper and lower bound on the achievable rate with
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Fig. 1. Comparison of the upper bound on the achievable rate with i.i.d.
symbols and a peak power constraint given in (28)/(31) based on channel
prediction to the upper bound on capacity given in [2, Proposition 2.2] for
β = 2; in addition the lower bound on the peak power constrained capacity
[2, (32)] is shown for a constant modulus (CM) input distribution with 100
signaling points without and with time sharing, i.e., for γ = 1 and for γopt

i.i.d. zero-mean proper Gaussian input symbols given in [7].
For the following evaluations, we assume in all cases that
the PSD of the channel fading process is rectangular, i.e.,
Sh(f) = σ2

h/(2fd) for |f | ≤ fd and zero otherwise.
Fig. 1 shows the upper bound on the achievable rate with

i.i.d. input symbols and a peak power constraint based on the
channel prediction error variance in (28)/(31) in comparison
to the upper bound on the peak power constrained capacity
given in [2, Prop. 2.2] with β = 2 for both. For comparison
we use the lower bound on the peak power constrained
capacity given in [2, (32)] based on a constant modulus input
distribution with 100 discrete signaling points with a uniform
angular spacing. This approximates the case of a uniformly
distributed phase. This lower bound is shown without time
sharing (γ = 1) and with time sharing (γopt). Time sharing
means, that the transmitter uses the channel only a 1/γ part of
the time. Obviously, time sharing is not in accordance with the
assumption on i.i.d. input symbols. Therefore, the lower bound
with γ = 1 matches the new upper bound on the achievable
rate with i.i.d. input symbols in (28)/(31), while the lower
bound with time sharing (γopt) only matches the capacity upper
bound in [2, Prop. 2.2]. From Fig. 1 it can be seen that the
upper bound on the achievable rate with i.i.d. input symbols
in (28)/(31) is lower or equal than the capacity upper bound
in [2, Prop. 2.2]. However, (28)/(31) is only an upper bound
on the achievable rate with i.i.d. input symbols and not on the
capacity, as i.i.d. input symbols are in general not capacity
achieving [2]. This can also be seen, as the lower bound on
the achievable rate with time sharing is larger than the upper
bound on the achievable rate with i.i.d. input symbols (28)/(31)
for very low SNRs. Furthermore, it is worth mentioning that
for the case of a nominal peak-to-average power ratio β = 1,
the upper bound in (28)/(31) and the one given in [2, Prop.
2.2] coincide. In addition, the prediction based upper bound on
the achievable rate in (28)/(31) as well as the capacity upper
bound in [2, Prop. 2.2] become loose for large β.

Fig. 2 shows the prediction based upper bound on the
achievable rate with i.i.d. zero-mean proper Gaussian input
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Fig. 2. Comparison of the upper bound on the achievable rate with
i.i.d. zero-mean proper Gaussian (PG) inputs based on channel prediction
(30)/(31) with the upper bound given in [7, (36)/(37)]; in addition the lower
bound on the achievable rate with i.i.d. zero-mean proper Gaussian inputs
[7, (35)/(38)] is shown

symbols given in (30)/(31) in comparison to the upper and
lower bound on the achievable rate with i.i.d. zero-mean proper
Gaussian inputs given [7]. Both upper bounds are shown
in combination with the coherent upper bound, see (31). A
comparison of the prediction based upper bound (30)/(31) and
the bound given in [7, (36)/(37)] shows, that it depends on
the channel parameters, which one is tighter. It can easily be
shown that for fd → 0 and for fd = 0.5 both bounds are
equal. For other fd it depends on the SNR ρ which bound is
tighter. An analytical comparison turns out to be difficult as in
both cases we use a different way of lower bounding h′(y|x).

V. SUMMARY

In the present paper, we have derived a new upper bound on
the achievable rate with i.i.d. input symbols based on the pre-
diction separation of the mutual information rate in (7). Based
on this separation, the conditional channel output entropy rate
h′(y|x) can be expressed by the one-step channel prediction
error variance, which is a well known result, see, e.g., [1]. We
show that for i.i.d. input symbols the prediction error variance
σ2
epred,∞(xk−1

−∞) calculated under the assumption of constant
modulus symbols yields an upper bound on the achievable
rate. As the constant modulus assumption is only used in the
context of σ2

epred,∞(xk−1
−∞), we can still give upper bounds on

the achievable rate for general i.i.d. input symbol distributions,
even for the case without a peak power constraint.

For a peak power constraint, we have observed that for
nominal peak-to-average power ratios of β = 2 and β = 1 the
upper bound on the achievable rate with i.i.d. input symbols is
lower than or equal to the capacity upper bound in [2, Prop.
2.2]. But, it is not an upper bound on the capacity due to
the restriction to i.i.d. input symbols. In case of i.i.d. proper
Gaussian input symbols, it depends on the channel parameters
if (30)/(31) or the upper bound in [7, (36)/(37)] is tighter.
Concerning the case of proper Gaussian input symbols, the
new bound given in (30)/(31) is more general than the upper
bound in [7, (36)/(37)] as it holds for arbitrary PSDs of the
fading process with compact support and is not limited to
rectangular PSDs as the one in [7, (36)/(37)].
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APPENDIX A
Convexity of (23): To prove that (23) is convex with respect

to the individual diagonal elements of Z we rewrite the
prediction error variance σ2

epred
(xN−1

1 ) = σ2
epred

(z) as follows

σ2
epred

(z) = σ2
h − rHh,pred

(
Rh + σ2

nZ
−1
)−1

rh,pred

(a)
= σ2

epred
(z\i)−

zi · a
1 + ziλmax

(33)

where for (a) we have used the matrix inversion lemma several
times, and we have separated the diagonal matrix Z as follows

Z = Z\i + ziVi (34)

where Z\i corresponds to Z except that the i-th diagonal
element is set to 0, Vi is a matrix with all elements zero
except of the i-th diagonal element being equal to 1, and zi
is the i-th diagonal element of the matrix Z. In addition, λmax
is the non-zero eigenvalue of the rank one matrix

B =

(
1

σ2
n

Z\i +R−1
h

)−1
1

σ2
n

Vi. (35)

Furthermore, σ2
epred

(z\i) is given by

σ2
epred

(z\i)=σ2
h−rHh,pred

(
R−1

h −R−1
h

(
Z\i
σ2
n

+R−1
h

)−1

R−1
h

)
rh,pred

which is the prediction error variance if the observation at the
i-th time instant is not used for the channel prediction. Finally,
for (a) in (33) we have used the substitution

a=rHh,predR
−1
h

(
Z\i
σ2
n

+R−1
h

)−1
Vi

σ2
n

(
Z\i
σ2
n

+R−1
h

)−1

R−1
h rh,pred

≥ 0 (36)

where the nonnegativity follows as Vi is positive semidefinite.
Thus, with (33) we have found a separation of the channel

prediction error variance σ2
epred

(z) into the term σ2
epred

(z\i) be-
ing independent of zi, and an additional term, which depends
on zi. Note that a and λmax in the second term on the RHS
of (33) are independent of zi and that the element i is an
arbitrarily chosen element. I.e., we can use this separation for
each diagonal element of the matrix Z.

By substituting the RHS of (33) into (23) we get

log

(
1 +

|xN |2
σ2
n

(
σ2
epred

(z\i)−
zi · a

1 + ziλmax

))
= K. (37)

Recall that we want to show the convexity of (37) with
respect to the element zi. Therefore, we calculate its second
derivative with respect to zi which is given by

∂2K

(∂zi)2
=

|xN|2
σ2
n

a2λmax(1+ziλmax)
(1+ziλmax)4

{
1+ |xN|2

σ2
n

(
σ2
epred

(z\i)−
a(zi+ 1

2λmax )
1+ziλmax

)}

(
1 + |xN |2

σ2
n

(
σ2
epred

(z\i)− azi
1+ziλmax

))2

and will show that it is nonnegative, i.e.,

∂2K

(∂zi)2
≥ 0. (38)

Therefore, first we show that λmax is nonnegative. This can be
done based on the definition of the eigenvalues of the matrix B

Bu =

(
1

σ2
n

Z\i +R−1
h

)−1
1

σ2
n

Viu = λmaxu

⇒ 1

σ2
n

uHViu = λmaxu
H

(
1

σ2
n

Z\i +R−1
h

)
u

(a)⇒ λmax ≥ 0

where (a) follows from the fact that the eigenvalues of(
1
σ2
n
Z\i +R−1

h

)
are nonnegative, as Rh is positive definite

and the diagonal entries of the diagonal matrix Z\i are also
nonnegative. In addition, Vi is also positive semidefinite.

With λmax, zi, and a being nonnegative, for the proof of
(38), it rests to show that

σ2
epred

(z\i)−
a

1 + ziλmax

(
zi +

1

2λmax

)
≥ 0. (39)

To prove this inequality, we calculate the derivative of the LHS
of (39) with respect to zi, which is given by

∂

∂zi



σ

2
epred

(z\i)−
a
(
zi+

1
2λmax

)

1+ziλmax



=

−a

2(1+ziλmax)2
≤ 0 (40)

where for the last inequality we have used (36). I.e., the LHS
of (39) monotonically decreases in zi. Furthermore, for zi →
∞ the LHS of (39) becomes

lim
zi→∞



σ2

epred
(z\i)−

a
(
zi +

1
2λmax

)

1 + ziλmax





(a)
= lim

zi→∞
σ2
epred

(z)
(b)

≥ 0

where (a) follows due to (33), and where (b) holds as the
prediction error variance must be nonnegative. As the LHS
of (39) is monotonically decreasing in zi and as its limit for
zi → ∞ is nonnegative, (39) must hold.

With (39), (38) holds and, thus, (37) is convex in zi. As the
element i has been chosen arbitrarily, in conclusion, we have
shown that (23) is convex in each zi for i = 1, . . . , N − 1.
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