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Abstract— This work is inspired by the general question of how
to choose signaling points from a bounded set such that capacity
of the corresponding channel is maximized. Since subject to
peak power constraints capacity achieving distributions become
discrete, this question is most relevant for practical application.
However, a solution seems to be difficult in general. In this paper
we confine ourselves to determining optimum signaling points for
selected schemes. As a key problem, determining the entropy of
mixture distributions is identified, which is of interest in itself
and has applications in many engineering applications. Even for
the equiprobable mixture of two Gaussians no simple analytical
expression is known. For 2-PAM signaling we investigate two
simpler noise distributions, the triangular and chopped uniform
one, and determine the capacity of the corresponding channels.
While in the first case capacity increases monotonically as
signaling points become further apart, in the second monotonicity
does not hold. We finally conjecture that monotonicity can be
concluded from the behavior of the equivalent binary asymmetric
channel.

I. INTRODUCTION AND MOTIVATION

The starting point of this paper is a rather general problem
of optimal signaling over discrete input, continuous noise
channels. Given that signaling points x1, . . . ,xM ∈ S may
be chosen from a bounded set S ⊂ RN , what is the optimum
choice of x1, . . . ,xM ∈ S and the optimum distribution
(p1, . . . , pM ) such that mutual information is maximized over
all discrete distributions with at most M support points?

This problem is motivated on one hand by practical re-
quirements, present digital signaling is exactly done that
way, like M-QAM or M-PSK. On the other hand, is turns
out to be the key problem when dealing with peak power
constraints. Considering average power constraints only, the
classical result of Shannon for additive white Gaussian noise
(AWGN) channels, and its extension to MIMO channels, see,
e.g., [1], state that the capacity-achieving distribution is also
Gaussian with infinite continuous support. However, if peak
power constraints are added, then the capacity-achieving input
distribution for the scalar Gaussian channel becomes discrete
with finite support, as was demonstrated by [2]. Other channels
like Poisson, quadrature Gaussian and additive vector Gaussian
were also shown to possess a discrete capacity-achieving
input distribution under average and peak power constraints
as surveyed in [3]. This work and [4] generalize a number
of previous papers on the subject by considering conditional

Gaussian vector channels subject to bounded-input constraints
described by a bounded and closed support S ⊂ RN . Under
certain conditions on S the capacity-achieving distribution is
discrete, which includes the previously mentioned modulation
schemes as special cases. In [5] the related topic of character-
izing the optimum number of mass points is analyzed.

Once the position of signaling points is fixed, the optimum
input distribution can be characterized by help of the Kullback-
Leibler divergence, as is done in the work [6]. This does not
solve the general problem of course, but gives valuable advise
how to modify the bit mapping onto complex symbols if the
noise distribution is not circularly symmetric, as is often the
case for fibre-optical channels.

In this paper, we derive from the above problem interesting
subproblems, which are important in themselves and are still
hard to solve. We give partial solutions that provide valuable
insight into the structure of the general problem.

II. THE CHANNEL MODEL AND ITS MATHEMATICAL
STRUCTURE

We consider a channel model with a finite number M
of input signaling points x1, . . . ,xM ∈ Rn which are used
by the transmitter according to a certain input distribution
p = (p1, . . . , pM ) ∈ DM , where the set of all probability
distributions with M support points is denoted by

DM =
{
p = (p1, . . . , pM ) | pi ≥ 0,

∑M
i=1pi = 1

}
.

Let random variable X denote the discrete channel input
with support {x1, . . . ,xM} and distribution p. The channel
output Y is randomly distorted by noise. Throughout the paper
we assume that the distribution of Y given input X = xi has
(Lebesgue) density

f(y | xi) = fi(y), y ∈ Rn.

The AWGN channel Y = X + n is a special case hereof
with fi(y) = ϕ(y − xi). Here, ϕ denotes the density of a
Gaussian distribution Nn(0,Σ).

Mutual information between channel input and output as a
function of p = (p1, . . . , pM ) and f1, . . . , fM may be written



as
I(X;Y ) = I

(
p; (f1, . . . , fM )

)
= H(Y )−H(Y |X)

= H
( M∑
i=1

pifi

)
−

M∑
i=1

piH(fi)

=
M∑
i=1

piD
(
fi

∥∥∥ M∑
j=1

pjfj

)
,

(1)

where D(f‖g) =
∫
f log f

g denotes the Kullback-Leibler
divergence between densities f and g.

Let F denote the set of all Lebesgue densities f : Rn →
R+. From the convexity of t log t, t ≥ 0, it is easily concluded
that

H
( M∑
i=1

pifi

)
is a concave function of p ∈ DM . (2)

By applying the log-sum inequality (cf. [7]) we also obtain

αf1 log
f1
g1

+ (1− α)f2 log
f2
g2

≥ (αf1 + (1− α)f2
)
log

αf1 + (1− α)f2
αg1 + (1− α)g2

,

pointwise for any pairs of densities (f1, g1), (f2, g2) ∈ F2.
Integrating both sides of the above inequality shows that

D(f‖g) is a convex function of the pair (f, g) ∈ F2. (3)

Applying (2) and (3) to the third and forth line of represen-
tation (1), respectively, gives the following.

Proposition 1: Mutual information I
(
p; (f1, . . . , fM )

)
is a

concave function of p ∈ DM and a convex function of
(f1, . . . , fM ) ∈ FM .

Hence, determining the capacity of the channel for fixed
channel transfer densities f1, . . . , fM leads to a concave
optimization problem, namely

C = max
p∈DM

I(p; f1, . . . , fM ). (4)

III. CAPACIYT-ACHIEVING INPUT DISTRIBUTIONS

In the work [8], capacity-achieving input distributions are
characterized by exploiting the KKT-conditions of problem
(4). It turns out that distribution p∗ is capacity-achieving if
the mixture density

∑M
j=1 p

∗
jfj(y) with weights p∗j is placed

in the center of all noise densities fj(y), where “distance” is
measured by the Kullback-Leibler divergence.

Proposition 2: Input distribution p∗ is capacity-achieving if
and only if

D
(
fi

∥∥∥ M∑
j=1

p∗jfj
)

= ζ (5)

for some ζ > 0, for all i such that pi > 0. Furthermore, if
H(fi) is independent of i, then p∗ is capacity-achieving iff∫

fi(y) log
( M∑
j=1

p∗jfj(y)
)
dy = ζ (6)

for all i such that pi > 0.

We now turn to the problem of how to choose optimum
signaling points if the input distribution is fixed, mostly the
uniform in what follows. The entropy of mixture distributions
will be the key to finding optimum constellations, usually hard
to determine as will be outlined in the next section.

IV. ENTROPY OF MIXTURES

For a given bounded set S ⊂ RN and a maximum number
of signaling points M ∈ N the full optimum signaling problem
reads as

max
p∈DM , x1,...,xM∈S

I
(
p; (f1, . . . , fM )

)
(7)

with

fi(y) = f(y | xi), y ∈ RN .

In this section, we assume that the entropy of density
fi(y) = f(y | xi) is independent of i with the same value
H(f0), say, for all i. This holds true, e.g., for the additive
noise model Y = X+n where fi(y) = f0(y−xi) for some
given noise density f0. In this case, as can be seen from (1),
mutual information only depends, up to the constant H(f0),
on the entropy of the mixture

∑M
i=1 fi. Hence, determining

the entropy of a mixture distribution plays a prominent role
for solving (7).

The entropy of mixture distributions is an important building
block for different engineering problems. Gaussian mixtures
are used as noise models in certain interference channels, see
[9], [10]. An analytical representation of the corresponding
entropy seems to be hard to achieve, as is demonstrated in
the work [11]. Therein, the entropy of a simple equiprobable
mixture of two scalar Guassians with expectation −µ and µ,
respectively, is given involving a certain integral over ln of
cosh. Numerically it is demonstrated that the entropy of this
mixture

H
(

1
2 ϕ(y + µ) + 1

2 ϕ(y − µ)
)

(8)

is monotonically increasing as a function of µ ≥ 0, with ϕ(y)
denoting the scalar Gaussian density with zero expectation
and variance σ2. Although this result seems to be intuitively
obvious, and fully meets the interpretation of differential
entropy, its derivation is amazingly intricate.

The reduction of Gaussian mixtures is an important problem
inter alia in multi-target tracking for radar systems. Mixture
pairs of Gaussians are successively merged into a single
Gaussian component whose moments match the first two
moments of the pair. In the paper [12], the Kulback-Leibler
divergence is proposed to minimize the dissimilarity between
the single Gaussian and the mixture. The basic problem of
computing the Kullback-Leibler divergence between mixtures
is in the vein of the present optimum signaling question. No
explicit solution is provided in [12], an easily computed upper
bound is used instead.
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Fig. 1. Mixture densities of the triangular (9) for µ = 0, µ = 0.25, µ = 0.75
and µ = 1 (from upper left to lower right).

V. INCREASING POWER NOT ALWAYS INCREASES
CAPACITY

Monotonicity of the entropy in (8) when equiprobably
mixing two Gaussians with expectations −µ and µ may be
interpreted as the fact that power increases capacity of a scalar
AWGN channel with 2-PAM and signaling points −µ and µ.
This seems to be obvious and matches intuition.

The following question reads as a special case of the full
problem (7). Select S to be the intervall S = [−b, b]. Assume
two signaling point −µ, µ placed symmetrically around zero
within S and both used with the same probability p1 = p2 =
1
2 . What is the capacity-maximizing choice of −µ and µ?
One might easily conjecture that maximum power solves the
problem, i.e., selecting −µ = −b and µ = b, which seems to
be true in the case of Gaussian noise, as is numerically shown
in [11].

The following example with triangular noise densities sup-
ports this conjecture, however, it will turn out to be false in
general.

A. Mixture of triangular densities

Define the densitiy of a triangular distribution as

f0(y) =


y + 1, −1 ≤ y ≤ 0
−y + 1, 0 ≤ y ≤ 1
0, otherwise

. (9)

Let

f−µ(y) = f0(y + µ) and fµ(y) = f0(y − µ), µ ≥ 0,

hence applying signaling points −µ and µ for the correspond-
ing channel with additive noise governed by the triangular
distribution.

Corresponding mixture densities for µ = 0, µ = 0.25, µ =
0.75 and µ = 1 are shown in Figure 1

Tedious algebra leads to an amazingly simple analytical
expression for the entropy of the mixture and the mutual
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Fig. 2. Entropy and mutual information of a channel as a function of µ > 0
with the triangular as noise distribution and 2-PAM signaling points −µ and
µ.

information of this channel. Logarithms are considered to the
base 2.

H
(

1
2f−µ + 1

2fµ
)

=

{
1 + log e

2 − (1− µ)2, 0 ≤ µ ≤ 1
1 + log e

2 , µ ≥ 1
,

and

I
(
X;Y ) =

{
1− (1− µ)2, 0 ≤ µ ≤ 1
1, µ ≥ 1

.

Both, entropy and mutual information are depicted as func-
tions of µ in Figure 2, clearly indicating that monotonicity
holds. The conclusion is that maximum power, −µ = −b and
µ = b, yields maximum capacity.

Entropy starts at µ = 0 with log e/2 = 1/(2 ln 2) =
0.72135, the entropy of the standard triangular distribution
(9). It increases to H( 1

2f−1 + 1
2f1) = 1 + log e/2 = 1.72135

at µ = 1, where from it remains constant over all arguments
exceeding 1.

Zero capacity is achieved at µ = 0, where signaling points
are indiscriminable at the receiver. Capacity increases to one
bit per channel use at µ = 1, and stays constant at value 1
for any values µ ≥ 1. This is because the support of the error
densities does not overlap for µ ≥ 1, and hence signaling
points can be discriminated without error at the receiver.

The following example shows that capacity not necessarily
increases with power. Although it may look artifical, the
example shows that monotonicity is strictly connected to the
shape of the noise distribution.

B. Mixture of chopped uniforms

Now let

f0(y) =

{
1
2 ,

1
2 ≤ |y| ≤ 3

2

0, otherwise
(10)
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Fig. 3. Mixture densities of the chopped uniform (10) for µ = 0, µ =
0.75, µ = 1.25 and µ = 1.5 (from upper left to lower right).

denote the density of a chopped uniform distribution. Again
let

f−µ(y) = f0(y + µ) and fµ(y) = f0(y − µ), µ ≥ 0,

be the additive noise densities corresponding to signaling
points −µ and µ.

Corresponding mixture densities for µ = 0, µ = 0.25, µ =
0.75 and µ = 1 are shown in Figure 3

By studying all possible intersection cases of both densities,
entropy of the mixture and mutual information of the corre-
sponding binary input channel are obtained as piecewise linear
functions.

H
(

1
2f−µ + 1

2fµ
)

=


2µ+ 1, 0 ≤ µ ≤ 1

2
5
2 − µ, 1

2 ≤ µ ≤ 1
µ+ 1

2 , 1 ≤ µ ≤ 3
2

2, µ ≥ 3
2

,

and
I(X;Y ) = H

(
1
2f−µ + 1

2fµ
)− 1,

applying logarithms to the base 2.
Both are depicted as functions of µ in Figure 4. Obviously,

capacity is not an increasing function of µ, and hence of
power. Zero capacity is obviously achieved if µ = 0, capacity
increases to 1 at the point µ = 1

2 where both error densities
have disjoint support. With again overlapping support for
1
2 ≤ µ ≤ 3

2 , capacity first decreases linearly to 1
2 and then

increases back to its maximum value 1 at µ = 3
2 . Since the

support overlaps never again for signaling points |µ| ≥ 3
2 ,

capacity remains constant at value 1.

VI. A CONJECTURE

We conjecture that in the case of symmetric 2-PAM with ad-
ditive noise, as used in the two examples above, monotonicity
of mutual information holds whenever

r(µ) =
∫ ∞

0

f−µ(y)dy +
∫ 0

−∞
fµ(y)dy

I(X; Y )

H(1
2f−µ + 1

2fµ)
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Fig. 4. Entropy and mutual information of a channel as a function of µ ≥ 0
with segmented uniforms as noise distribution and 2-PAM signaling points
−µ and µ.
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Fig. 5. The binary asymmetric channel with error probabilities ε, δ ∈ [0, 1].

is a decreasing function of µ ≥ 0.
This is supported by the corresponding equivalent binary

asymmetric channel with error probabilities ε, δ ∈ [0, 1], see
Figure 5. With log-likelihood decoding the error probilities ε
and δ correspond to the integral of the noise density over the
interval (−∞, 0) and (0,∞), respectively.

In [13], the capacity-achieving input distributon p =
(p0, p1) of this channel is derived as

p∗0 =
1

1 + b
, p∗1 =

b

1 + b
,

with

b =
aε− (1− ε)
δ − a(1− δ) and a = exp

(h(δ)− h(ε)
1− ε− δ

)
,

and h(ε) = H(ε, 1− ε), the entropy of (ε, 1− ε).
The corresponding capacity is monotonically increasing as

ε and δ decreases, which gives rise to conjecture the same
behavior for the continuous channel model.



It seems to be extremely difficult to find a necessary and
sufficient condition, which characterizes monotonicity of the
capacity of general channels and, furthermore, has an intuitive
interpretation.

VII. CONCLUSIONS

We have shown interesting differences in the behavior of
channel capacity as signaling points become further apart,
and hence transmission power increases. Two examples, tri-
angular and chopped uniform noise distributions have been
investigated in detail. The material developed in this paper is
a special case of the general question of how to find optimum
signaling points in a bounded set. A general solution even
to this special case seems to be extremely hard. In the future,
we will investigate general methods to find optimum signaling
constellation for arbitrary noise distributions.
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