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Abstract

In this paper, we propose a chance-constrained mathematical program for fixed broadband wireless
networks under unreliable channel conditions. The model is reformulated as integer linear program and
valid inequalities are derived for the corresponding polytope. Computational results show that by an
exact separation approach the optimality gap is closed by 42 % on average.

1 Introduction

Fixed broadband wireless (FBW) communications is a promising technology for delivering private high-
speed data connections by means of microwave radio transmission [2]. Microwave, in the context of
this work, refers to terrestrial point-to-point digital radio communications, usually employing highly
directional antennas in clear line-of-sight and operating in licensed frequency bands. The rapid and
relatively cheap deployment is especially interesting for emerging countries and remote locations as well
as for private and isolated networks in urban areas (e.g., connected hospitals, parts of a harbour) where
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classical copper/fiber lines are too costly [9]. In contrast to wired networks, the capacity of a microwave
link is not constant, but depends on the used modulation scheme, which in turn depends on the condition
of the channel. Varying channel conditions result in varying link capacities.

In this paper, we extend our earlier study [3] of planning FBW networks under unreliable channel
conditions. We restate a chance-constrained optimization model and, for the case where the outage
probabilities are independent, an integer linear programming (ILP) formulation (Section 2). We gen-
eralize two classes of cutset-based valid inequalities (Section 3) and propose to separate them exactly.
Preliminary computational results confirm the importance of these cuts (Section 4).

2 Mathematical formulation

The minimum cost design of a fixed broadband wireless network can be formulated as follows, cf. [4] for
technical details. The network’s topology is modeled as a digraph G = (V,E) with V , the set of radio
base stations and E, the set of directional microwave radio links. The traffic requirements are modeled
by a set K. For each k ∈ K, sk denotes the origin, tk the destination, and dk ≥ 0 the expected demand.

For each microwave link uv ∈ E, the capacity is basically determined by the channel bandwidth (e.g., 7
MHz, 28 MHz) and the modulation scheme (e.g., 16-QAM, 128-QAM) used to transmit data. Where
exactly one channel bandwidth has to be chosen at design stage, adaptive modulation is performed at
runtime, depending on the channel conditions, i.e., if the receiving base station observes a deterioration
in signal quality, the modulation scheme is lowered to avoid outage of the link.

Let Wuv be the set of bandwidth choices available for arc uv ∈ E. The choice to operate link uv ∈ E
at bandwidth bwuv, w ∈ Wuv, implies a cost cwuv. The modulation scheme is modeled with a random
variable ηwuv with (known) discrete probability, representing the number of bits per symbol of the current
modulation scheme. The capacity of a microwave link is basically given by the product of bwuv and ηwuv.

Given an infeasibility tolerance ε > 0, our aim is to design a minimum cost network such that its
capacity is sufficient with a probability of at least 1− ε. This joint chance constraint reads

P

(∑
k∈K

dkfk
uv ≤

∑
w∈Wuv

ηwuvb
w
uvy

w
uv ∀uv ∈ E

)
≥ 1− ε (1)

with binary decision variables ywuv indicating whether bandwidth w ∈ Wuv is chosen for arc uv ∈ E and
flow variables fk

uv denoting the fraction of demand dk, k ∈ K, routed on arc uv ∈ E.
For independent random variables ηwuv, we can reformulate the left hand side of (1) as the product of

probabilities by introducing the following notation: For arc uv ∈ E, let Mw
uv be the set of modulations

in case of bandwidth choice w ∈ Wuv with, for m ∈ Mw
uv, bwm

uv the resulting capacity. Given uv ∈ E,
w ∈Wuv, and m ∈Mw

uv, let ρwm
uv be the probability that the link is operated at modulation m or higher.

Now, we may assume that each link is operated at a chosen modulation (or higher) as long as the
overall probability of the assumptions is at least 1− ε. For this, the binary decision variables y obtain a
new index m. The minimum cost fixed broadband wireless network design problem then reads:

min
∑
uv∈E

∑
w∈Wuv

∑
m∈Mw

uv

cwuvy
wm
uv (2a)

s.t.
∑

u∈V :vu∈E

fk
vu −

∑
u∈V :uv∈E

fk
uv =


1, if v = sk,

−1, if v = tk,

0, otherwise

∀v ∈ V, k ∈ K (2b)

∑
w∈Wuv

∑
m∈Mw

uv

ywm
uv = 1 ∀uv ∈ E (2c)

∑
k∈K

dkfk
uv ≤

∑
w∈Wuv

∑
m∈Mw

uv

bwm
uv y

wm
uv ∀uv ∈ E (2d)

∏
uv∈E

(
∑

w∈Wuv

∑
m∈Mw

uv

ρwm
uv y

wm
uv ) ≥ 1− ε (2e)

fk
uv ∈ [0, 1], ywm

uv ∈ {0, 1} (2f)
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Besides the total bandwidth cost function (2a) and the flow conservation constraints (2b), constraints (2c)
ensure that exactly one bandwidth-modulation pair is chosen. Constraint (1) is now equivalently modeled
in the link capacity constraints (2d) and in the solution confidence constraint (2e). (2d) ensure that all
demands on one link can be fulfilled by the chosen bandwidth-modulation pair, whereas (2e) guarantees
that the confidence of the solutions is at least 1− ε.

Note that we assume explicitly a hypothesis on the modulation scheme in constraints (2d). Obviously,
for a given link and bandwidth, the lower the modulation scheme is, the lower the assumed capacity and
the higher the probability that the effective capacity supports the routed traffic. In other words, more
conservative hypotheses on the modulation schemes lead to more reliable solutions.

Constraint (2e) can be easily linearized: By employing monotonicity of logarithmic functions and
because the logarithm of a product equals the sum of the logarithms, (2e) is equivalent to

∑
uv∈E

log

 ∑
w∈Wuv

∑
m∈Mw

uv

ρwm
uv y

wm
uv

 ≥ log(1− ε). (3)

By constraints (2c), exactly one of the sum elements within each logarithmic function will be nonzero.
Hence, (3) is equivalent to ∑

uv∈E

∑
w∈Wuv

∑
m∈Mw

uv

log(ρwm
uv )ywm

uv ≥ log(1− ε). (4)

3 Valid inequalities

Constraints (2b), (2c), and (2d) define a classical network design problem studied intensively in the
literature, see [10] and the references therein. In particular, cut-based inequalities have been proven to
be effective to enhance the performance of ILP solvers [1]. Let S ⊂ V be a proper and nonempty subset
of the nodes V and S = V \ S its complement. The set E(S, S) := {uv ∈ E : u ∈ S, v ∈ S}, i.e., the
set of arcs from S to S defines a cutset. Similarly, let K(S, S) := {k ∈ K : sk ∈ S, tk ∈ S} be the set
of demands originating in S and terminating in S. Finally, let d(S, S) :=

∑
k∈K(S,S) d

k. An appropriate

aggregation of constraints (2b), (2d), and nonnegativity of the variables results in the following base
cutset inequality: ∑

uv∈E(S,S)

∑
w∈Wuv

∑
m∈Mw

uv

bwm
uv y

wm
uv ≥ d(S, S) (5)

Chvátal-Gomory (CG) rounding yields two classes of valid inequalities.
Cutset Inequalities By dividing (5) by a ∈ {bwm

uv : uv ∈ E(S, S), w ∈ Wuv,m ∈ Mw
uv} and rounding

up both sides, the well-known cutset inequalities [10] are obtained:

∑
uv∈E(S,S)

∑
w∈Wuv

∑
m∈Mw

uv

⌈
bwm
uv

a

⌉
ywm
uv ≥

⌈
d(S, S)

a

⌉
(6)

Shifted Cutset Inequalities Instead of applying CG-rounding directly, we can first shift the coeffi-
cients of (5). Given a cutset E(S, S), let auv = minw∈Wuvminm∈Mw

uv
bwm
uv for uv ∈ E(S, S). By (2c)

and a(S, S) :=
∑

uv∈E(S,S) auv, (5) can be rewritten as:∑
uv∈E(S,S)

∑
w∈Wuv

∑
m∈Mw

uv

(bwm
uv − auv)ywm

uv ≥ d(S, S)− a(S, S) (7)

Now, let a′ ∈ {bwm
uv − auv : uv ∈ E(S, S), w ∈Wuv,m ∈Mw

uv}. By CG-rounding, we obtain the following
shifted cutset inequalities:∑

uv∈E(S,S)

∑
w∈Wuv

∑
m∈Mw

uv

⌈
bwm
uv − auv

a′

⌉
ywm
uv ≥

⌈
d(S, S)− a(S, S)

a′

⌉
(8)

It can be shown that (6) and (8) define facets of the convex hull of feasible solutions under certain
conditions (beyond the scope of this paper).
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4 Computational Results

Setting We have performed preliminary computational experiments on a 5× 5 grid network (|V | = 25,
|E| = 80, |K| = 50) based on [8]. We consider two bandwidth choices for each link: 7 MHz (28 MHz)
with cost 1000 (6000) using the 128-QAM (256-QAM) scheme, with an availability of 99.9 %. In fading
conditions, these links will use the 16-QAM (32-QAM) scheme (with 100 % availability).

By assuming the same availability for radio links using the highest modulation scheme and under the
hypothesis that the lowest modulation scheme guarantees an availability of 100 % (independent of the
bandwidth), we can replace (4) by∑

uv∈E

∑
w∈Wuv

yw2
uv ≤

⌊
log(1− ε)

log(ρ)

⌋
=: N (9)

where ρ is the availability probability of the highest modulation scheme. Note that a larger infeasibility
tolerance ε implies a larger value N , i.e., the reliability of the solutions decreases. We consider N =
10 (ε = 0.01), 20, . . . , 80 (no reliability).

All computations are performed with CPLEX 12.2 [6] on a Linux machine with 2.67 GHz Intel Xeon
X5650 processor and 12 GB RAM.
Optimality gap closed In this study, we limit ourselves to a comparison of the optimality gap
with/without separation of violated cutset inequalities (6) and/or shifted cutset inequalities (8). To
this end, the separation of these inequalities is done exactly by an auxiliary ILP (details omitted, cf.
e.g., [5, 7]). The cutset inequalities are separated only in the root node of the branch-and-bound tree.
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Figure 1: Optimality gap closed.

As a reference, we consider the optimality gap, i.e., the difference between LP relaxation and best
known solution (computed by CPLEX with a time limit of 12 h, optimal for N = 10, 60, 70, 80). Fig. 1
shows the optimality gap closed, i.e., the percental reduction of the optimality gap at the end of the
root node. For the results in Fig.1(a), we disabled the internal cuts of CPLEX and separated (i) cutset
inequalities (6), (ii) shifted cutset inequalities (8), and (iii) both. Inequalities (8) close the gap with 16 %
on average, whereas inequalities (6) close only 10 %. Obviously, the optimality gap is closed most by the
combination of (6) and (8) (up to 69 % for N = 10 and 21 % on average). With increasing N , the closure
of the optimality gap decreases with hardly any closure from N = 60. We conjecture that inequalities (6)
and (8) are less likely violated since the constraints (2d) are less restrictive.

In Fig. 1(b), we enabled the internal cuts of CPLEX. The optimality gap closed by internal cuts is
only 10 % on average compared to 42 % by the combination of internal cuts and cutset inequalities (6)
and (8). Note that also CPLEX can separate cutset inequalities [1]: only for N = 80 and (8), some
multi-commodity flow (MCF) cuts are found. In case both types are separated, on average 54 violated
inequalities are found (17 of type (6) and 37 of type (8)). Again, for increasing N the optimality gap
closed decreases, except for N = 80 where 80 % of the gap is closed (due to the MCF cuts). For N = 60,
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the optimality gap is closed less by the combination of (6) and (8) than only by the shifted cutset
inequalities (8). Such a phenomenon can occur due to varying internal CPLEX cuts.

5 Concluding Remarks

In this paper, we have presented a chance-constrained programming approach for the assignment of
bandwidth in reliable fixed broadband wireless networks. We have proposed cutset inequalities and
shifted cutset inequalities to enhance the computability of this problem. In our computational studies, we
have discussed the optimality gap closed and compared the performance of the different cutset inequalities
with and without internal CPLEX cuts. The results show that by the combination of the cutset and the
shifted cutset inequalities, the optimality gap is closed by 41 % on average if the internal cuts for CPLEX
are enabled.

As future work, we intend to investigate more realistic network topologies, different probability models
and the reliability regarding traffic fluctuations.
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