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Abstract—In this paper, we consider the problem of sensing
a frequency spectrum in a distributed manner using as few
measurements as possible while still guaranteeing a low detection
error. To achieve this goal we use the newly developed technique
of matrix completion which enables to recover a low rank matrix
from a small subset of its entries. We model the sensed bandwidth
at different cognitive radios as a spectrum matrix. It has been
shown that in many cases the spectrum used by a primary
user is underutilized. Therefore the spectrum matrix often has
a low rank structure. By taking few measurements at several
cognitive radios and reconstructing the matrix at a fusion center,
we can dramatically reduce the required number of samples to
reconstruct the utilization of the bandwidth. This is a key enabler
for efficient and reliable spectrum reuse.

I. INTRODUCTION

Bandwidth scarcity has become one of the most important
problems in modern communication systems. One of the most
promising approaches to tackle this problem is to reuse the
underutilized bandwidth of a primary system. This approach
is called dynamic spectrum access (DSA) and is performed
by intelligent transceivers called cognitive radios (CRs). The
main technology enabling DSA is spectrum sensing, the goal
of which is to sense the spectrum occupancy in a given
bandwidth and measure the marginal power in individual
frequencies. By knowing the spectrum occupancy, CRs can
reuse the spectrum which is left unoccupied by a primary user.
It can also enable several transmitters to use the same resource
inside a communication cell if it can be determined, that their
signals cannot interfere. Spectrum sensing of a potentially
large bandwidth is very costly when sampling at the Nyquist
rate and requires expensive hardware components. In order to
counterbalance this drawback, it might be interesting to sample
at a rate lower than the Nyquist rate.

This goal can be achieved by using compressed sensing (CS)
[1], [2], which can be employed because the frequency spec-
trum can often be assumed to be only sparsely occupied. There
exists a rich literature on applying CS to spectrum sensing. In
[3], the author presents a complete setup to perform distributed
spectrum sensing using CS. The scenario consists of several
CRs which sense the channel and take a number of time
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domain measurements much smaller than the actual dimension
of the discrete frequency signal. Using CS reconstruction, the
CRs recover the spectrum at their location. In order to increase
the reliability of spectrum sensing and to combat the effect of
fading, the author proposes a distributed approach to spectrum
sensing. Using the algorithm [4], the compressed spectrum
measurements can be shared among neighbors and based on
several measurements, each node can reconstruct a reliable
image of the frequency spectrum. Another very interesting
approach is the one presented in [5], where the authors not
only try to estimate the frequency spectrum, but also want to
determine the position of the primary users. The authors use a
deterministic path-loss model to link the received power and
the distance between transmitter and receiver and use a virtual
grid which represents the possible positions of the primary
users, to render the optimization problem tractable.

The main idea of the present work is to use the newly devel-
oped technique of matrix completion (MC) [6], [7], to further
reduce the number of measurements required to reconstruct the
utilization of the bandwidth. Indeed, MC enables to reconstruct
a matrix M € R™*"2 from much fewer samples than n; - ngy
if M has a low rank and is incoherent. In the next section we
explain the basics of MC. The link between spectrum sensing
and MC is clear. If we model the sensed spectrum at different
CRs as a spectrum matrix, this matrix has a low rank because
the spectrum is sparsely used. We can therefore reconstruct the
occupancy of the bandwidth while letting each CR take much
fewer measurements than necessary for traditional spectrum
sensing employing Nyquist-rate sampling.

In [8], the authors introduce an approach to use MC in
spectrum sensing to reconstruct a frequency spectrum. They
present a framework for modeling the problem as well as
simulation results showing that this approach works well.

The contribution of the present paper is manifold and is
different from [8] in many aspects. First we use the algorithm
OPTSPACE of [7] to perform MC and we explicitly consider
noisy measurements in our framework. Second we give ana-
lytical bounds on the number of required samples to achieve
a certain reconstruction error. Third, and most importantly,
we present a new approach to the problem, utilizing past
spectrum observations to further diminish the number of
required samples and propose a sliding window algorithm to
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optimize the use of this knowledge. Finally we verify our idea
by proceeding to numerical evaluations and analyze the system
performance for different window sizes and noise conditions.

The rest of the present work is organized as follows.
Section II gives the basics of MC. In section III, we present
our mathematical framework and in section IV, we develop
bounds on the required number of measurements and error for
the simple MC reconstruction and describe a new algorithm
making use of past spectrum observations. Finally, we verify
our method experimentally in section V and conclude this
paper in section VL

II. BASICS OF MATRIX COMPLETION

In this section we focus on the work of [7]. We want to
reconstruct a matrix M € R™*™2. The measurements we
take are noisy and thus we only have access to P = M + N,
where N is a noise matrix. In [7], the authors demonstrate
that it is possible to recover M from fewer measurements
than mn; - no using their algorithm called OPTSPACE, given
that M and the sampling process fulfill several requirements
detailed below. Note that we present OPTSPACE in more detail
in section IV-A.

A. Uniform Sampling

We measure m entries of P uniformly distributed at random.

B. Low Rank

The matrix M has to have a low rank denoted by 7.

C. Incoherence

Let M = UXVT be a scaled singular value decomposition
of M, where UTU = nily,, viv = nol,, and ¥ is a
diagonal matrix with ¥;; = o, being the i-th singular value of
M, scaled by 1/\/niny. Let oy > --- > o,. The matrix M
is (o, p1)-incoherent if the following two conditions hold.

Al vz:lv ) nlvjzla sy T2, Zzle,?kS‘u()T, Z£=1‘/j2kgiu‘or-
A2 Vi=1, ooy, =1, ey g | ey Uik (25) Vi <par/2,

D. Minimum Required Number of Samples and error bound

We define k = 01/0, and a = ny/ng > 1. There exist
numerical constants C' and C’ such that if

m > Cngv/ark?max{ por+/alog na,
pgriak?, €8]
pir?art},
then with a probability of at least 1 — 1/n3, OPTSPACE
recovers M with an error

1
Vv in2

provided that the right-hand side is smaller than o,. ||.||r de-
notes the Frobenius norm, ||.||2 denotes the maximum singular
value, M is the reconstruction of M and N¥ equals N at the
positions where P has been sampled and is zero otherwise.

~ No\/ T
IM =M < C'W* =22 NP, @)

III. ANALYTICAL MODEL AND OPTIMIZATION PROBLEM

We consider a cognitive radio (CR) network with no CRs,
sensing a bandwidth of size n;. A primary system owns this
bandwidth and transmits a signal at time slot ¢, resulting in
a frequency spectrum f(t) € C™, where f(t) is k-sparse,
i.e. it has no more than £ nonzero components. The sparsity
of f(t) represents the fact that the bandwidth is scarcely used.
We observe N; time slots, i.e. t =1,..., N;.

Each CR i (i = 1,...,ny) senses a signal f;(¢) given by

£i(t) = H; (1) () + mi(2), 3)

where H;(t) € C™*™ is a diagonal matrix, [H;(t)];;
(j = 1,...,m1) is the channel gain encountered by [f(t)];
at CR ¢ and n,(t) is a noise vector, the entries of which are
Gaussian independently and identically-distributed with mean
zero and variance o2. Note that in the present paper we assume
that the CRs have no knowledge of H,(¢). We define the
matrix F(t) € Cmxn2 g5

F(t) = [fi(t),.... 5., (1), €))
which can be expressed as a sum of matrices as follows
F(t) = F(t) + N(?) )

where F(t) € C"*"2 is given by
F(t) = Hi(t)E(t), ..., Hu, ()], 6)
and N(t) € C™*™ is given by
N(t) = n1(2), ..., 00, (1)]- (7

Each CR i undersamples the signal f; () in time, i.e. it takes
only m;(t) time samples of Wf;(t), where ¥ € C™*™1 s the
inverse discrete Fourier transform (IDFT) matrix. The total
number of measurements m(t) made by the CRs at time slot
t is given by

() =3 m0) ®

We define Q(t) as a set of cardinality m(t) containing the
indices of the sampled entries of \I'F(t) Further we introduce
the projection operator Pgq(;) defined as follows. Given a
matrix X,

[P (X)]i; = { gx]ij

The result of the sampling by the CRs is given by the matrix
T(t) = Pow (TE(1)), (10)

if (i,7) € Q(1),
otherwise.

€))

of size ny X ny. T(t) contains only m(t) non-zero entries.

All measurements are collected at a fusion center. The
goal of the fusion center is to recover the matrix F(¢) which
represents the spectrum at each CR. To achieve this, we need
an algorithm taking T(t) as input and producing a matrix
F.(t) € C™*"2 guch that the reconstruction error

1
F.(t
——|IF. (1)

—F@)e an
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is as small as possible.

One of the main contributions of the present paper is,
that in order to recover F(t), we will make use of previous
observations of the channel. In other words, in addition to
T(t), we use the knowledge of T(1),..., T(t—1) to recover
F(t). We assume that the primary user slowly changes its
usage of the bandwidth, i.e. f(¢) and f(¢+ 1) are very similar.
To model this behavior we will assume that

o if [f(¢)]; is not used at time ¢, it is used at time ¢ + 1

with probability p;.

o if [f(¢)]; is used by the primary user at time ¢, it stops

being used at time ¢ 4+ 1 with probability p,.
The probabilities p; and ps model how fast the spectrum
occupancy is changing and they are typically small. However,
although the spectrum is changing, we consider the spectrum
to be on average k-sparse at each time slot t. Therefore, it
holds that

(n1 — k)p1 = kpa. (12)

IV. SPECTRUM SENSING USING MATRIX COMPLETION

In order to recover the matrix F(¢) we want to exploit the
fact that F(¢) has a low rank. Indeed, since f(¢) is k-sparse,
F(t) has at most rank k for k& < ns. The idea is to use the
algorithm OPTSPACE of [7] to reconstruct F(¢) based on its
undersampled noisy version in time ’i‘(t) We first explain how
to recover F(t) observing only one time slot and in a second
step we introduce a method utilizing past observations.

A. Spectrum Sensing without Prior Spectrum Information

We use OPTSPACE to recover F(t) using algorithm (1).

Algorithm 1 OPTSPACE for spectrum sensing
T(t) = trim(T(t) = Pog) (TF(1))).
P,(T(t)) = rank-k projection of T(t).
Decompose P,(T(t)) as P.(T(t)) = UgXoVy.
mirllji’r{l/ize min. L Paw (T(t) — USVH)||p, with initial
condition (Ug, Vo).
return T,(t) = UXVH,

For details about the frim and projection operations, refer
to [7]. In this form, the algorithm (1) returns a matrix
T,(t) € C™*"2 To recover F(t) we simply apply a DFT
matrix to Ty (t), i.e. Fp(t) = 1T (¢).

In order to bound the error between F.(¢) and F(¢) we now
consider the decomposition of the matrix WF(¢) into its real
and imaginary part:

WF(t) = Ty (t) + iTo(t). (13)

First we determine the number of samples required for recon-
structing these two parts separately from noisy observations
with OPTSPACE. Subsequently, an upper bound for the result-
ing reconstruction error is found. We define T\ (¢) and Ty (t)
as the reconstruction of T (¢) and To(t) respectively. T (¢)
and To(¢) are (uo, p1)-incoherent with rank &k and (g, p})-
incoherent with rank k' respectively, oy > > o, and

o > > o) are the ordered scaled singular values
of T4(t) and Ty(¢) respectively, k = oy/0,, &' = o}/oL,
a = mni/ny > 1 and we sampled m(t) complex entries
of WE(t). When using algorithm (1), there exist numerical
constants Cy, C7, Cy and C% such that if

m(t) > Cingv/ar?max{ pok+/alogna,

pekrart, (14)
pik?art},
and
m(t) > Congv/ar?max{ uyk’\/alog na,
M62k/2041‘€/4> (15)
M&2k/2a/{/4},

then with a probability of at least 1 — 1/n3,

T, (t) — Ty (t ) Vka
I 1(\}@1( F < Cl,g”;(t)o‘||7>Q(t)(Re(\I/N(t)))H2
L . )
' (16)
and
Too(t) — Tt onaVE
I 2(\}@2( F < Cﬁ2”;(00‘||7>Q(t)(1m('IlN(t)))H2
é €2,

A7)
provided that €; < o, and €3 < 0. Using the triangular
inequality, it follows that

1
—||T(t) — TF(t)||p < , 18
G T O <t 08)
where
T, (t) = Tri(t) + iTra(t). (19)
Finally, since the IDFT matrix ¥ is unitary, we find
1
—||F.(¢t) — F(¢ < . 20
P POl ate QO

B. Spectrum Sensing with Prior Spectrum Information

We now consider the case where we can use past channel
observations T(1), ..., T(t—1) to recover F(t). The intuition
underlying our idea is as follows. The rank of the matrix F(¢)
and the matrix [F(¢) F(¢ + 1)] is nearly the same since the
spectrum occupancy changes slowly. From (14), we can see
that, in that case, to recover F(¢) and F(¢ + 1) separately, we
need more measurements than to recover [F(¢) F(¢t + 1)]. In
other words, reusing past channel observations, we need less
measurements per time slot to recover F(¢).

We will proceed using a sliding window algorithm. We first
define the matrix W (¢1,t2) given by

Wity ta) =P[F(t1) F(t1+1) ... F(ta)],

which is a window matrix defined as the concatenation of time-
domain matrices from time slot ¢; to ¢5. Our algorithm is given
in (2). Further we define t,, as the maximum number of time
slots in the window matrix we want to reconstruct. At ¢t = 1
the window matrix only contains WF (1) and we reconstruct
F(1) using the method described in the previous section. As ¢

2n
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increases, we append WF(t) to the window matrix and recover
W(1,t) (and consequently F(¢)). When ¢ has reached ¢,, we
begin sliding the window. In other words we remove the part of
the window matrix representing the first time slot and append
WF(t), hence getting W (2, ¢,,+1). We slide the window until
t =N, te

Algorithm 2 Sliding window algorithm
Window size t,,.
Initialization: recover F(1).
fori=2,...,t, do
Recover W (1,4) and consequently F (7).
end for
Sliding phase:
for j=1,...,N; —t, do
Recover W (1 + j,t,, + j) and consequently F(t,, + 7).
end for

In the following section it will be demonstrated that this
approach largely improves the performance of the system
compared to the simple approach without prior spectrum
information.

V. NUMERICAL EVALUATION

To validate our concept we simulate the scenario described
in Table I. The non-zero entries of F(¢) are generated ran-
domly from the Rayleigh distribution with standard deviation
o = 0.5. The signal to noise ratio (SNR) is defined as the
signal energy of the wideband signal over the entire spectrum
divided by the overall noise energy (again over the entire
spectrum). Note, that due to the sparse spectrum occupation,

TABLE I
SCENARIO PARAMETERS

Parameters Symbol Value
Number of frequency subchannels n1 300
Number of CRs ng 5
Average number of busy subchannels k 5
Number of observed time slots Ny 50
Probability of subchannel to become occupied p1 1/5000
Window size tw {10, 20}

Signal to noise ratio (SNR) {0, —10, —20}dB

the considered values for the SNR, i.e. 0dB, —10dB and
—20dB might seem low. However, defining the SNR as the
signal energy of a single subchannel divided by the noise
energy of named subchannel would yield SNR values of
17.8dB, 7.8dB and —2.2dB respectively for the occupied
channels.

In Figure 1, we plot the reconstruction error at SNR = 0dB
without past spectrum information (window size 1) and with
the window sizes 10 and 20. In this case we take the same
number of samples at each iteration. The plot enables us to
compare the effect of the window size on the performance
of the system. First we can see that using past information
provides a significant decrease in the reconstruction error. Note
that in both cases we take the same number of samples per
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Fig. 1. Reconstruction error at each time slot, SNR = 0dB, 375 samples per
time slot

time slot, but in the window case we keep the old ones. In this
case our approach provides a gain of up to 25%. The second
thing we can see is that a larger window size actually further
decreases the reconstruction error.

In Figure 2, we plot the reconstruction error without past
information against the reconstruction error with a window of
size 20 for different SNRs. This figure illustrates the behavior

0.5 |- §
5 - ==ty =1, SNR = —20dB
5 04 —— ty = 20, SNR = —20dB ||
§ ===ty =1, SNR = —10dB
S 03 —— tyw = 20, SNR = —10dB [
=
Z - ==ty =1, SNR = 0dB
g 02} tw =20, SNR=0dB |
& g
0.1r L R R e )
1 1 1 1 1 1
0 10 20 30 40 50
Time slot
Fig. 2. Reconstruction error at each time slot, 375 samples per time slot

of the system with respect to noise intensity. First we can ob-
serve that a larger noise power induces a larger reconstruction
error in both reconstruction methods. Comparing the method
without past information with the one employing the sliding
window, we can see that the amount by which the usage of
past information decreases the reconstruction error gets bigger
as the SNR goes up. Another observation that can be made,
is that applying the multi time slot reconstruction with a non-
decreasing number of samples per time slot yields larger errors
than the single time slot reconstruction for low SNRs in the
transient stage. Indeed, in the first time slots, the gain of having
past information does not compensate the increase in error
resulting from the higher amount of sampled noise.

In Figure 3 and 4, we illustrate a scenario at SNR = —10dB,
where the sliding window method is applied using a decreasing
number of samples per time slot. Figure 3 plots the number of
samples taken and Figure 4 shows the reconstruction error at
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Fig. 4. Reconstruction error at each time slot, decreasing number of samples,
SNR = —10dB

each time slot. In this case we consider a window of size 10.

These two curves demonstrate the relevance of our approach.
First we accumulate samples and the reconstruction error gets
smaller. Then, when the window starts sliding, the number of
total samples we consider is reduced until we reach time slot
20. From there on we have a constant total number of samples
and the reconstruction error is constant. The results speak
for themselves. In order to achieve a smaller reconstruction
error, the sliding window algorithm needs 200 measurements
per time slot, while the simple MC algorithm without prior
spectrum knowledge requires 375.

In Figure 5 and 6 we analyze a similar scenario. This time
however, the window is of size 20. Increasing the window
size allows us to reduce the number of required samples
even more. The sliding window algorithm achieves a smaller
reconstruction error with 37 measurements per time slot than
the simple MC algorithm without prior spectrum knowledge
does with 375.

VI. CONCLUSION

In this paper we have presented a new approach to spectrum
sensing using matrix completion and exploiting past spectrum
information to reduce the number of required samples while
still guaranteeing a small error. We have given analytical
bounds on the necessary number of samples and error and

350 - .

—_—ty, =
250 —_—ty =20

150 8

Number of samples

50 |- .

0 10 20 30 40 50

Time slot

Number of samples taken at each time slot

0.14

0.12

Reconstruction error

0 10 20 30 40 50

Time slot

Fig. 6. Reconstruction error at each time slot, decreasing number of samples,
SNR = —10dB

we have demonstrated the validity of our approach through
numerical evaluation. A future research direction is the im-
plementation of such a concept on a software defined radio
platform to verify real world performance.
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