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Abstract—This paper considers the problem of associating
users, in an heterogeneous network, to either a macro node
or a pico node within a tightly coordinated cell cluster. We
introduce a new theoretical framework to model this problem
for the downlink and derive upper bounds for achievable sum
rate and minimum rate using convex optimization. Further
we propose heuristics, consisting in dynamic cell association,
enabling to achieve performance close to the upper bounds.
Finally we implement these heuristics in an LTE simulator and
show the potential of such dynamic cell association for a small
LTE network.

I. INTRODUCTION

Heterogeneous Network (HetNet) is seen as a promising
way to meet the increasing demand for mobile broadband
traffic in cellular networks. In HetNet, a typical setup consists
of a network with a macro node complemented with pico
nodes. The goal of the pico nodes is to provide higher
capacity in areas with high user equipment (UE) density. The
considered pico nodes use the same frequency band as the
macro node, but have a much smaller transmit (Tx) power.

In such a HetNet, a fundamental problem is the one of
associating UEs, either with the macro node or with a pico
node. In 3GPP Long Term Evolution (LTE) networks, a UE
is associated with the node whose signal is received with
the largest average strength. We call this algorithm the best
SNR heuristic. It ensures robustness of the user transmission
towards interference. However, due to the Tx power imbalance
between macro and pico nodes, this cell association only
allows a small fraction of users to connect to the pico nodes
[1]. In other words, it leads to a load imbalance between the
macro and pico nodes, which limits the user throughput.

A modified cell association has been evaluated within 3GPP
[1], [2]. It increases the coverage area of pico nodes by adding
a fixed bias to the measured received (Rx) power of pico nodes.
Thus, a larger fraction of users is served by low power nodes,
and a better load balancing is achieved between the macro
and pico nodes. However, with this static modification to the
cell association, certain users that are connected with the pico
nodes, receive stronger signals from the macro node and the
achieved better load balancing may not compensate a lower
Signal to Interference and Noise Ratio (SINR) resulting from
the increased interference level.

The goal of the present work is to determine a dynamic
scheme for cell association for the downlink in HetNets,
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which optimizes the system performance (in terms of sum rate
and min rate) and to analyze the trade-off between the load
balancing and the interference level.

Cell association has been studied for load balancing in 3G
networks. In [3] and [4], the authors address a setup in which,
the base stations (BSs) serve a single UE at each time slot and
derive a centralized and distributed algorithm respectively. In
[5] and [6], the authors assume a proportional fair scheduler
at each BS and derive optimal cell association by solving a
sequence of Boolean linear programs.

The main difference between the present work and [3]–
[6], is that they do not consider a HetNet scenario, where
there is a large power imbalance between nodes and a specific
structure of the interference. Another important point is that
we do not directly optimize the load balancing, but rather
we want to understand the influence of the trade-off between
load balancing and interference on other metrics like, e.g, the
sum rate. In contrast to [3], [4] we address the impact of
having more or less users served at the same time on the same
resource by a specific node. Finally as opposed to [5], [6], we
bound the system performance using convex optimization and
achieve this bound using a heuristic with a complexity linear
in the number of users.

The contribution of the present paper is manifolds. We
propose a new theoretical framework to analyze dynamic cell
association in HetNet and derive upper bounds on achievable
sum rate and min rate using convex optimization. We describe
low complexity heuristics, which achieve performance close
to the upper bounds. We verify our results through numerical
evaluations and analyze the offloading potential of increasing
the pico coverage area and the associated rise of interference.
Finally we implement these heuristics in an LTE simulator to
show the potential of dynamic cell association in a real setup.

Section II and III describe our setup and optimization prob-
lems. Section IV and V derive upper bounds on the solution
of these problems, as well as heuristics approaching these
bounds. Section VI presents numerical results and Section VII
concludes this work.

II. DYNAMIC CELL ASSOCIATION WITHIN A TIGHTLY
COORDINATED CELL CLUSTER

Since the goal of this work is to understand the impact of
cell association and load balancing in HetNet, with respect to
UE bitrate metrics, we consider a simple network composed
of a macro node and one pico node. This is an important first
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Fig. 1. Scenario with tightly coordinated macro and pico nodes.

step toward analyzing larger networks. Figure 1 illustrates the
considered scenario.

The dynamic cell association takes its decision by consider-
ing the long-term signal measurements and the total number of
users within the network. Therefore, it is not expected to be
performed very often, but only when the number of active
UEs changes (UE with new transmission or with finished
transmission) or when the long-term signal measurements have
significantly changed.

On the contrary, the resource scheduling is performed at
each node on a much more frequent basis. In order to decouple
the association problem and the scheduling problem, we first
assume that the macro and pico nodes share their bandwidth
equally among all associated UEs, which corresponds to a
Round Robin scheduler. This enables us to upper bound the
achievable sum rate and min rate of the network. We then
implement our dynamic cell association on an LTE simulator
and verify that this decoupling is a meaningful assumption.
Note that this approach extends easily to another scheduler,
e.g., proportional fairness, by simply scaling the UE rates with
a weight proportional to their past rate.

Dynamic cell association requires a tight coordination be-
tween nodes to exchange the required information and react
quickly to a changed situation. It may also be preferable that
the different nodes appear to the user as the same cell, as
described in [7]. This makes the handover invisible to the user
and enables to shorten the handover delay and avoid the usual
handover signaling overhead. In that case the cell association
is actually a point selection since, for the UEs, there is only
one cell. In this paper, we assume that such tight coordination
is possible between the macro node and the pico node.

III. SYSTEM MODEL AND OPTIMIZATION PROBLEM

We consider a cooperation cluster with one macro node (in
the following node 1) with a transmit power σ1 and one pico
node (node 2) with a transmit power σ2 < σ1. Each node
operates with a bandwidth B at the same frequency band.
We assume that the network contains n UEs for which a cell
association should be defined.

Consider x1,x2 ∈ {0, 1}n representing the association of
the UEs to one or the other node as follows.

xj,i = 1 if UE i is associated with node j,
xj,i = 0 Otherwise. (1)

A UE i is associated with a single node, therefore x1+x2 = 1,
where 1 is a vector of size n containing only ’1’s.

The goal of the present work is to maximize a function f(x),
where x , [xT

1 xT
2]T. We consider two optimization problems.

In the first one, f(x) represents the sum rate of all users, while
in the second problem f(x) represents the minimum user rate.

To get an estimate of the achievable user rate per Hz with
a certain cell association, the equation C(γ) = log2(1 + γ) is
used. γ denotes the user SINR calculated based on the average
channel gain, since the cell association mechanism is supposed
to be valid over a long term.

If gij represents the average channel gain between node
j and UE i, the average received power from the node j at
UE i can be expressed as σ̂ij = σjgij . Further we define
σn as the noise and interference power measured over B
at the receiver, where the interference component of σn is
an estimate of the interference power received from all cells
outside the coordination cluster.

We assume that there is no restriction in the frequency
resources that a node can allocate to a user. Consequently,
a node always allocates all available frequency resources to
its associated UEs at a given time. In other words, as soon
as there is one active UE associated with a node, this node
creates interference over the whole bandwidth. Accordingly
two cases can be observed.

1) All UEs are associated with the same node. In that
case, each UE i has a SINR with the associated node j
corresponding to σ̂ij/σn and an achievable rate per Hz
of C(σ̂ij/σn).

2) At least one UE is associated with each node. Here,
each UE i has a SINR with the associated node j
corresponding to σ̂ij/(σ̂ik + σn) with k 6= j. The
achievable rate per Hz is C(σ̂ij/(σ̂ik + σn)).

Let the vector r̂j = (r̂j,i)1≤i≤n ∈ Rn contains the
achievable downlink rate of all UEs, as if they are scheduled
alone with node j ∈ {1, 2} and there exists at least one other
UE scheduled with the other node.

r̂j,i = B · C(σ̂ij/(σ̂ik + σn)), j 6= k. (2)

The vector r̃j = (r̃j,i)1≤i≤n ∈ Rn contains the achievable
downlink rate of all UEs, if they are scheduled alone with
node j and no other UE is scheduled with the other node.

r̃j,i = B · C(σ̂ij/σn), j 6= k. (3)

Finally we define r1 , [r̂T
1 0T]T, r2 , [0T r̂T

2]T,
11 , [1T 0T]T and 12 , [0T 1T]T, where 0 is a vector
of size n containing only ’0’s. .

A. Sum rate maximization

Using the previously defined variables we can formulate the
problem of finding the cell association, which maximizes the
sum rate of all UEs as follows. First solve the problem

maximize
x

rT
1x

1T
1x

+
rT
2x

1T
2x

(4)

subject to [I I]x = 1, 1T
1x ≥ 1, 1T

2x ≥ 1

xi ∈ {0, 1}, i = 1, . . . , 2n,

where I is the identity matrix of size n.
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The division by 1T
jx in Equation (4) reflects the fact that the

time-frequency resources of a node have to be shared among
the users associated to this node. Consequently the achievable
bitrate for a user decreases when more users are associated
with the same node. In Equation (4) an equal share of the node
resources among the served users is assumed. This corresponds
to the well-known Round Robin scheduler.

Let us call p? the optimal value of Equation (4) and x?

the corresponding optimal cell association. We then compute
max
¶
p?, 1

Tr̃1
n , 1

Tr̃2
n

©
. If p? is the maximum, the optimal cell

association is given by x?. If 1Tr̃j
n is the maximum, the optimal

cell association is when all UEs are with node j.

B. Minimum rate maximization

Similarly we can formulate the problem of finding the cell
association, which maximizes the minimum rate among all
UEs as follows. First find p?, the optimal value of the problem

maximize
x

min
i

Å
r1,ixi
1T
1x

+
r2,i+nxi+n

1T
2x

ã
(5)

subject to [I I]x = 1, 1T
1x ≥ 1, 1T

2x ≥ 1

xi ∈ {0, 1}, i = 1, . . . , 2n.

Then compute max
{
p?,min

i

Ä
r̃1,i
n

ä
,min

i

Ä
r̃1,i
n

ä}
to find the

optimal cell association.
Problems (4) and (5) are nonconvex and therefore hard to

solve exactly.

IV. CELL ASSOCIATION FOR SUM RATE MAXIMIZATION

We derive an upper bound on the solution of problem (4)
and develop a heuristic approaching this upper bound.

A. Upper bound

First we rewrite problem (4) as follows.

maximize
x

rT
1xx

T12 + rT
2xx

T11

1T
1xx

T12
(6)

subject to [I I]x = 1, 1T
1x ≥ 1, 1T

2x ≥ 1

xi ∈ {0, 1}, i = 1, . . . , 2n.

We then proceed to a variable change X , xxT. Furthermore,
since the constraint X = xxT is equivalent to the two con-
straints X < 0 and rank(X) = 1, we replace these constraints
and get the following nonconvex optimization problem.

maximize
X

rT
1X12 + rT

2X11

1T
1X12

(7)

subject to [I I]diag(X) = 1

1T
1diag(X) ≥ 1, 1T

2diag(X) ≥ 1

Xij ∈ {0, 1}, i, j = 1, . . . , 2n

X < 0, rank(X) = 1.

As such we cannot solve problem (7). In order to get an upper
bound on its solution we do the following.

1) We relax the nonconvex constraints by changing
Xij = {0, 1} to 0 ≤ Xij ≤ 1 and dropping the rank
constraint rank(X) = 1.

Algorithm 1 Bisection method for sum rate maximization
Initialize l and u and ε > 0.
while u− l > ε do
t = (u+ l)/2.
Solve the feasibility problem (9) with a fix t.
if Problem (9) is feasible then
l = t;

else
u = t.

end if
end while
return u.

2) We explicitly rewrite constraints on the structure of
the problem which disappeared by dropping the rank
constraint. Namely we know that

∑2n
i=1

∑2n
j=1Xij = n2

since x had exactly n entries equal to 1 and the other
equal to 0. Furthermore we know that we have at least
n− 1 entries equal to 1 in the upper right corner of X
(equal to x1x2

T) since at least one UE is associated to
node 1 or 2.

We relax problem (7) as follows.

maximize
X

rT
1X12 + rT

2X11

1T
1X12

(8)

subject to [I I]diag(X) = 1

1T
1diag(X) ≥ 1, 1T

2diag(X) ≥ 1

0 ≤ Xij ≤ 1 i, j = 1, . . . , 2n, X < 0
2n∑
i=1

2n∑
j=1

Xij = n2,
n∑

i=1

2n∑
j=n+1

Xij ≥ n− 1.

The problem (8) is quasiconcave [8] since all its constraints
are convex and its objective function is quasiconcave. To see
this, observe that all superlevel sets of the objective function,

St = {X|1T
1X12 > 0, rT

1X12 + rT
2X11 ≥ t1T

1X12},

are convex. We can write the following feasibility problem,

find X (9)

subject to rT
1X12 + rT

2X11 ≥ t1T
1X12

[I I]diag(X) = 1

1T
1diag(X) ≥ 1, 1T

2diag(X) ≥ 1

0 ≤ Xij ≤ 1 i, j = 1, . . . , 2n, X < 0
2n∑
i=1

2n∑
j=1

Xij = n2,
n∑

i=1

2n∑
j=n+1

Xij ≥ n− 1,

and solve problem (8) efficiently using the bisection method
described in Algorithm 1. The final value of u is an upper
bound on the optimal value of problem (4).

B. Dynamic range heuristic

In this heuristic, the users are first sorted according to the
difference in the power they received from the nodes of the
coordination cluster: ∆σ̂i = σ̂i2 − σ̂i1. We then compute the
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sum rate achieved by n+1 different cell associations, starting
with the initial state where all users are associated with node
1. We associate the UE with the largest ∆σ̂i with node 2,
compute the resulting sum rate and repeat this process until all
UEs are with node 2. We select the cell association providing
the largest sum rate. This heuristic has a complexity linear
in the number of UEs. Interestingly, numerical evaluations in
Section VI suggest that it is close to optimal.

V. CELL ASSOCIATION FOR MIN. RATE MAXIMIZATION

A. Upper bound

Similar to the sum rate maximization problem we can
reformulate problem (5) as follows.

maximize
X

min
i

Ç
r1,iX

T
i 12 + r2,i+nX

T
i+n11

1T
1X12

å
(10)

subject to [I I]diag(X) = 1

1T
1diag(X) ≥ 1, 1T

2diag(X) ≥ 1

Xij ∈ {0, 1}, i, j = 1, . . . , 2n

X < 0, rank(X) = 1.

Where Xi is the i-th column of X. This problem can be
relaxed in the same manner.

maximize
X

min
i

Ç
r1,iX

T
i 12 + r2,i+nX

T
i+n11

1T
1X12

å
(11)

subject to [I I]diag(X) = 1

1T
1diag(X) ≥ 1, 1T

2diag(X) ≥ 1

Xij ∈ {0, 1}, i, j = 1, . . . , 2n, X < 0
2n∑
i=1

2n∑
j=1

Xij = n2,
n∑

i=1

2n∑
j=n+1

Xij ≥ n− 1.

Since the term in the min function is quasiconcave and that
the minimum of quasiconcave functions is also quasiconcave
[8], we can solve problem (11) using the bisection method.

B. Dynamic range heuristic

The heuristic is close to the one described in section IV-B.
For all considered n+ 1 cell associations, the minimum user
rate is calculated. The finally selected cell association is the
one providing the largest minimum rate.

VI. NUMERICAL RESULTS

In this section, the dynamic range heuristic for the case
of sum rate and min rate maximization is compared with the
best SNR heuristic, in which a user i is associated with the
node j with the largest average received signal power σ̂ij . The
different cell associations are evaluated in a simplified radio
network composed of one macro node with a Tx power of
40W and one pico node with a Tx power of 1W. Each node
operates with a 5MHz bandwidth. The pico node is randomly
dropped within the macro cell area with a radius of 167m.

As proposed in [9], we calculate the average channel gain
between the macro node and a user i as gi1 = −(128.1 +
37.6 log(di1)), while the average channel gain between the
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Fig. 2. Sum rate maximization: UE sum rate for different cell associations.
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Fig. 3. Sum rate maximization: ratio of UEs with the pico node.

pico node and a user i is given by gi2 = −(140.7 +
36.7 log(di2)), where dij denotes the distance between the user
i and the node j in km. The users are dropped in a hotspot of
40m radius around the pico node with a probability of 2/3.

To produce Figures 2, 3, 4 and 5, σn has been varied from
−160dBW to −80dBW. For each value of σn, 200 drops of 10
UEs have been performed. For each drop, the corresponding
achievable rate for each user with different cell associations
has been measured.

Figure 2 shows the average UE sum rate over all drops at
different interference and noise levels. The two main points
to see from this curve are 1) the dynamic range heuristic out-
performs the standard best SNR heuristic and 2) the dynamic
range heuristic is actually overlapping the upper bound, such
that we can say that this heuristic is nearly optimal.

Figure 3 further illustrates the ratio of pico users depending
on the noise and outside cluster interference level. It is
observed that the best SNR heuristic provides a pico user ratio
of about 26%, although the users have a larger probability
(2/3) to be in the direct vicinity of the pico node. This is
due to the Tx power imbalance between the macro and pico
nodes and the proposed average channel gain model of [9].
By contrast, the ratio of pico users changes with σn for the
dynamic range association. At low outside cluster interference
level, the load is particularly imbalanced since all users are
assigned to the macro node. This is to avoid an interference
rise, as explained later. At medium interference level, most of
the users are served by the pico node. The basic strategy of
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Fig. 4. Min rate maximization: UE min rate for different cell associations.
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Fig. 5. Min rate maximization: average ratio of UE with the pico node.

the sum rate optimization here is to assign to the macro node
only the closest users, so as to achieve large peak user rate
for them and boost the global sum rate. At high interference
regime, the load is evenly spread among the nodes, since they
have a similar share of users.

Figure 4 and 5 show similar results but for the minimum rate
optimization problem. There also, the dynamic range heuristic
provides a minimum user rate close to the upper bound, while
it outperforms the minimum user rate of the best SNR cell
association. With the minimum rate optimization, it can be
observed that the load is very imbalanced at low and moderate
outside cluster interference level. Indeed, this strategy assigns
no user to the pico node so as to avoid creating additional intra-
cluster interference by the pico node. In this case, even remote
users have a good SINR and therefore a high achievable rate.
At high σn however, the load is better shared among nodes. In
that case the increased interference caused by the pico node
does not affect the SINR so much anymore and more users
get assigned to the pico node.

Finally, we simulate a small LTE network composed of one
macro node, one pico node and 10 UEs, dropped as previously.
Figure 6 shows the cumulative distribution of the achieved
user throughput obtained through simulations for the best SNR
heuristic and the dynamic range heuristic, both for sum rate
and min rate maximization. The same average channel gain
equation was used, while the fast fading followed the SCME
models defined in [10]. The received noise + outside cluster
interference level was set to −153dBW.
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Fig. 6. CDF of UE rate in an LTE network for different cell associations.

We can observe that the sum rate maximization provides
good performance for a few macro users at the cost of the
other users, while the min rate maximization boosts the rate
of cell UEs, yielding a similar user throughput for all users.
The cell association with sum rate maximization provides a
gain of 26% in the average user throughput compared to the
best SNR association, while the gain in the fifth percentile user
throughput reaches +200% using a dynamic cell association
for min rate maximization.

VII. CONCLUSION

In this work we have presented a new theoretical framework
to study the impact of cell association on the downlink
of heterogeneous networks. We have derived upper bounds
on the achievable sum rate and min rate and proposed a
dynamic range extension algorithm, which outperforms the
conventional cell association scheme and comes close to the
theoretical limit. In order to validate our results, we have
implemented dynamic range extension in an LTE simulator
and demonstrated promising performance increase. Future
work will consist in considering larger networks with several
pairs of macro and pico nodes.
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