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Abstract—Based upon profound knowledge about wireless
communication systems that was gathered during the past
decades, modelling biological systems analogously has become
more and more popular. Although the assumptions about the
latter are sometimes less reliable than those about technical
systems, some models have proven useful in explaining the
behaviour of biological communication systems for example when
affected by diseases like Alzheimer. In this work, such a model
based upon parallel quantised channels is examined further. The
key aspect is to figure out whether the proven capacity bounds
are reachable, and under which conditions.

I. INTRODUCTION

In [1], an approach for modelling biological communication
systems by a set of parallel channels, together with quantisa-
tion and information fusion, is presented. Some real-valued
signal X is transmitted via n channels. In each channel i
the signal is disturbed by an additive noise term Wi. Both
X and the Wi follow a zero-mean Gaussian distribution with
variances σ2

X and σ2
W , respectively. The sums Vi = X + Wi

are then quantised by a function q : R → {0, . . . ,m − 1},
and a function u : {0, . . . ,m − 1}n → {0, . . . ,m − 1} is
employed to merge the (possibly different) values Yi = q(Vi)
to a decision U = u(Y1, . . . , Yn). This model is depicted in
Figure 1. The authors show that the capacity of this channel,
expressed by the mutual information, is bounded by

I(X;U) ≤ min

{
logm,

1

2
log

(
1 + n

σ2
X

σ2
W

)}
, (1)

whereupon the term logm reflects the maximal amount of
information that can be transmitted by a quantisation with m
steps. The second term refers to the capacity of n parallel
AWGN channels.

In this work, we take a closer look at the question if
this bound is reachable. First, the capacity of the quantised
channel with real-valued input X will be examined, with
particular attention paid to the capacity restriction induced
by the quantisation. Then, quantised channels with discrete
input will be considered. Based on input distributions proposed
in [2] and [3], the capacity achievable in our channel model
will be calculated. Third, numerical results for the mutual
information of a quantised AWGN channel will be compared
to the upper bound that originates from the data processing
inequality. At the end, simulation results for a proposed

information fusion algorithm will be presented, which show
the efficiency of the algorithm.
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Fig. 1. Model for Parallel Channels with Quantisation

II. RESULTS AND DISCUSSION

A. Identifying the Limiting Factor
Assuming optimal quantisation and information fusion, it

can be shown that the capacity bound in Equation 1 can be
reached. In this case, the limiting factor is either the capacity of
the parallel AWGN channels, or the amount of information that
can be preserved during the quantisation. A closer look onto
Equation 1 shows that the quantisation is the limiting factor
if m <

√
1 + nσ2

X/σ
2
W , otherwise the capacity is limited by

the AWGN channels. On the one hand, this means that, given
the number of channels n and the signal-to-noise ratio (SNR)
σ2
X/σ

2
W , it is possible to ensure that the quantisation is not the

limiting factor, by increasing the number of steps m above this
bound. On the other hand, even when an arbitrary low SNR is
given, increasing the number of parallel channels n leads to
a point where the capacity of the AWGN channels is not the
limiting factor anymore.

B. Quantisation with Inadequate Thresholds
As seen before, one of the limiting factors for the capacity

of the whole channel is the quantisation step Yi = q(Vi). As
Yi is a discrete random variable with m outcomes,

I(Vi;Yi) = H(Yi)−H(Yi|Vi) = H(Yi)

978-1-4673-0762-8/12/$31.00 ©2012 IEEE 741



is bounded by the value logm. To achieve this bound, the
quantising function q has to ensure that Yi is uniformely
distributed on {0, . . . ,m−1}. With knowledge about the distri-
bution of X and Wi, this is easily possible. For stochastically
independent X ∼ N(0, σ2

X) and Wi ∼ N(0, σ2
W ), the sum

X+Wi is known to be N(0, σ2
X +σ2

W )-distributed. Choosing
the threshold values

ϑj =
√
σ2
X + σ2

W Φ−1
(
j

m

)
, 0 ≤ j ≤ m,

the quantising function

q(v) =

m−1∑
j=0

j I{ϑj < v ≤ ϑj+1}

defined in [1] provides the desired result, as it was also shown
in [4]. Φ−1 denotes the inverse of the cumulative distribution
function Φ of the standard Gaussian distribution. Note that
ϑ0 = −∞ and ϑm =∞.

The situation changes when the quantiser is not aware of
the presence of the noise term, or has no information about its
distribution. In the following we assume that the quantising
function is optimised for the distribution of X , but applied
to the random variable Vi = X + Wi. Thus, it utilises the
thresholds

ϑj = σXΦ−1
(
j

m

)
, 0 ≤ j ≤ m,

to quantise a N(0, σ2
X +σ2

W )-distributed random variable. The
resulting distribution of Yi can be described by

P (Yi = j) = Φ

(
ϑj+1√
σ2
X + σ2

W

)
− Φ

(
ϑj√

σ2
X + σ2

W

)

= Φ

(
σXΦ−1

(
j+1
m

)√
σ2
X + σ2

W

)
− Φ

(
σXΦ−1

(
j
m

)√
σ2
X + σ2

W

)
.

Note that it only depends on m and on

σX√
σ2
X + σ2

W

=

√
σ2
X

σ2
X + σ2

W

,

a function of the ratio between the variances of X and X+Wi.
If this ratio is one, we have again

P (Yi = j) = Φ

(
Φ−1

(
j + 1

m

))
− Φ

(
Φ−1

(
j

m

))
=
j + 1

m
− j

m
=

1

m
,

in this case Yi is uniformely distributed. There exists no
closed-form expression for the entropy

H(Yi) = −
m−1∑
j=0

P (Yi = j) logP (Yi = j)

as a function of the ratio between the variances, but of course
it can easily be computed numerically.

Some results for different values of m are shown in Fig-
ure 2, in all cases the entropy is calculated using the dyadic
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Fig. 2. Entropy of Yi under Inadequate Quantisation

logarithm. Thus, the maximal entropy is one for m = 2,
but higher for greater values of m. In all cases the maximal
entropy is achieved when the ratio of the variances is one.
This means, in other words, that the variance of Wi is zero,
so Wi ≡ 0 and X + Wi = X . As Var(Wi) increases, the
entropy decreases in all cases except m = 2. In the latter case,
each N(0, σ2

X +σ2
W )-distributed random variable is optimally

quantised, as the threshold values ϑ0 = −∞, ϑ1 = 0 and
ϑ2 =∞ always yield a uniform distribution on {0, 1} for Yi.

C. Discrete Input

Until now, the common input X of the parallel channels was
assumed to be continuous, following a zero-mean Gaussian
distribution with variance σ2

X . Although this seems reasonable
for biological sensor systems which measure for example
physical quantities like brightness or temperature, the model
might also be examined in conjunction with a discrete input.
As this combination is highly relevant for wireless communi-
cation systems, it has already been widely studied. Typically
the noise term Wi is still assumed to be continuous in this
context.

It should be kept in mind that a discrete input introduces
another predicament in achieving the capacity. As seen in
Equation 1, the capacity is bounded by the capacity of the
AWGN channels and by the entropy achieved by the quanti-
sation. In case of a continuous input the latter can be maximal
in all cases, as long as the distribution of Vi is known to
the quantiser, this was shown in Section II-B. Thus, the input
distribution can be chosen to maximise the capacity of the
AWGN channels, which results in a Gaussian distribution. A
discrete input, on the other hand, should be close to a uniform
distribution in case of high SNR, to maximise the entropy
H(Yi). In case of low SNR, this counteracts the effort to
achieve the capacity of the AWGN channels, so a compromise
has to be found.

To examine the behaviour of our model with discrete
input, some different types of input distributions will now be
considered. All of them are zero-mean discrete distributions
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with m equidistant possible values xj and variance σ2
X . The

uniquely determined uniform distribution with these properties
is given by X ∼ U({x0, . . . , xm−1}) with

xj =
3 σX(2j + 1−m)√

3(m2 − 1)

for 0 ≤ j ≤ m − 1. Thus, the thresholds for the ML
quantisation are

ϑ0 = −∞, ϑm =∞ and

ϑj =
3 σX(2j −m)√

3(m2 − 1)
, 1 ≤ j ≤ m− 1,

yielding the transition probabilities

P (Yi = 0|X = xj) =Φ

(
3 σX(1− 2j)

σW
√

3(m2 − 1)

)
,

P (Yi = m− 1|X = xj) =1− Φ

(
3 σX(2(m− j)− 3)

σW
√

3(m2 − 1)

)
and

P (Yi = k|X = xj) =Φ

(
3 σX(2(k − j) + 1)

σW
√

3(m2 − 1)

)

− Φ

(
3 σX(2(k − j)− 1)

σW
√

3(m2 − 1)

)
for 1 ≤ k ≤ m− 2. For a high SNR σ2

X/σ
2
W , the input value

X = xj induces the output value Yi = j with high probability,
thus the mutual information I(X;Yi) and the entropy H(Yi)
are nearly maximal.

As shown in [3], the capacity-achieving discrete input distri-
bution is not a uniform distribution anymore when the SNR of
the channel is very low. Instead, it looks like an approximation
of the Gaussian distribution, which is known as the capacity-
achieving continuous input distribution. This leads to the
idea of employing a symmetric binomial distribution on m
equidistant possible values xj as input distribution. A zero-
mean distribution of this kind with variance σ2

X is uniquely
determined, it is described by

P (X = xj) =

(
m− 1

j

)
1

2m−1

with

xj =
σX(2j + 1−m)√

m− 1

for 0 ≤ j ≤ m − 1. It should be noted that this distribution
is identical to the above-mentioned uniform distribution in the
case m = 2, and that for higher values of m the spacing
of the input values xj is wider compared to the uniform
distribution, given the same variance σ2

X . The thresholds for
the ML quantisation are

ϑ0 = −∞, ϑm =∞ and

ϑj =
σX(2j −m)√

m− 1
, 1 ≤ j ≤ m− 1,
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Fig. 3. The Mutual Information and Entropy of Yi for Discrete Input

however it should be noted that they are not identical to those
of the maximum a posteriori (MAP) quantisation anymore,
as the input distribution differs from the uniform distribution.
The transition probabilities are

P (Yi = 0|X = xj) =Φ

(
σX(1− 2j)

σW
√
m− 1

)
,

P (Yi = m− 1|X = xj) =1− Φ

(
σX(2(m− j)− 3)

σW
√
m− 1

)
and

P (Yi = k|X = xj) =Φ

(
σX(2(k − j) + 1)

σW
√
m− 1

)
− Φ

(
σX(2(k − j)− 1)

σW
√
m− 1

)
for 1 ≤ k ≤ m− 2.

Numerical results for both approaches are shown in Fig-
ure 3. X and Yi both have m = 5 possible values, and the
value Var(Wi)/Var(X) which is the inverse of the SNR varies
between 0 and 1.5. The depicted upper bound for the mutual
information

I(X;Yi) ≤ min

{
1

2
log

(
1 +

σ2
X

σ2
W

)
, logm

}
will be explained in detail in Section II-D. As expected, the
uniform input distribution performs better for a very high SNR
where H(Yi|X) trends to zero, as it achieves the maximal
value H(Yi) = ld(5) in this case. With decreasing SNR,
the entropy of Yi remains near this high level, but of course
the mutual information I(X;Yi) decreases significantly as
H(Yi|X) increases.

The binomial input distribution induces a similar distribu-
tion for Yi when the SNR is very high, thus H(Yi) and also
I(X;Yi) stay well below the theoretical limit in this case.
With decreasing SNR, the changing output distribution leads
to an increase of the entropy H(Yi), until it even exceeds
the output entropy delivered by the uniform input distribution.

743



Of course, the mutual information I(X;Yi) decreases with
decreasing SNR. Interestingly the mutual information is more
or less equal for both approaches over nearly the whole SNR
range, the second approach does not outperform the first one
for higher SNR values, as one might have expected. On the
other hand, both approaches nearly reach the upper bound
given by the capacity of a channel with continuous input
distribution.

D. Mutual Information between X and Yi
The theoretical bound given in Equation 1 was derived using

the data processing inequality to obtain

I(X;U) ≤ min{I(X;VVV ), I(VVV ;YYY ), I(YYY ;U)},

see [1]. The same argument also yields the bound

I(X;Yi) ≤ min{I(X;Vi), I(Vi;Yi)}

≤ min

{
1

2
log

(
1 +

σ2
X

σ2
W

)
, logm

}
,

but of course it is questionable if this bound is tight. The
attempt to calculate the desired mutual information directly
yields

I(X;Yi) = H(Yi)−H(Yi|X)

= H(Yi)−
∫ ∞
−∞

H(Yi|X = x)fX(x)dx

with H(Yi) = −
∑m−1

j=0 qj log qj and

H(Yi|X = x) = −
m−1∑
j=0

qj|x log qj|x.

Here the qj := P (Yi = j) denote the probabilities for Yi,
and the qj|x := P (Yi = j|X = x) denote the probabilities
for Yi given X = x. As it is known that Vi = X + Wi is
N(0, σ2

X + σ2
W )-distributed if no condition applies, and that

it is N(x, σ2
W )-distributed under the condition X = x, these

probabilities can be computed numerically for arbitrary x ∈ R
and a quantisation given by thresholds ϑ0, . . . , ϑm. We know
that

qj = Φ

(
ϑj+1√
σ2
X + σ2

W

)
− Φ

(
ϑj√

σ2
X + σ2

W

)
and

qj|x = Φ

(
ϑj+1 − x
σW

)
− Φ

(
ϑj − x
σW

)
.

For a k′ ∈ N, thresholds −∞ = κ0 ≤ · · · ≤ κk′ = ∞
and arbitrarily chosen x′0, . . . , x

′
k′−1, x′k ∈ [κk,κk+1], an

approximation

H(Yi|X) ≈
k′−1∑
k=0

H(Yi|X = x′k)

∫ κk+1

κk

fX(x)dx

=

k′−1∑
k=0

H(Yi|X = x′k)

(
Φ

(
κk+1

σX

)
− Φ

(
κk

σX

))
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Fig. 4. The Mutual Information between X and Yi

of the entropy can be computed, and it converges to the true
value with increasing k′ if the thresholds κk are chosen in an
appropriate way, for example such that∫ κk+1

κk

fX(x)dx = Φ

(
κk+1

σX

)
− Φ

(
κk

σX

)
=

1

k′

for all 0 ≤ k ≤ k′ − 1.
Some results for m = 5 are given in Figure 4, together with

the theoretical upper bound which is given by

I(X;Yi) ≤ min

{
1

2
ld
(

1 +
σ2
X

σ2
W

)
, ldm

}
.

The value Var(Wi)/Var(X) = σ2
W /σ2

X on the horizontal axis
is the inverse of the SNR. These results were computed by
dividing the whole range of real numbers into k′ = 10000
intervals [κk,κk+1] with equal probabilities for the outcome
of X , and the values x′k were determined by the rule

Φ

(
x′k
σX

)
=

2k + 1

2k′
, 0 ≤ k ≤ k′ − 1.

The thresholds ϑj for the quantisation were chosen such
that the entropy H(Yi) is maximal. While the upper bound
remains at ld(5) for very high values of the SNR, the actual
mutual information begins to decrease immediately as the SNR
decreases (or, in other words, σ2

W /σ2
X increases), but it stays

close to the bound and even approaches it again for lower
SNR values. Of course both the bound as well as the mutual
information tend to zero when the SNR goes to zero.

E. Information Fusion

It has been stated in [1] that the information fusion step is
a hard problem in general. Given some identically distributed
random variables Y1, . . . , Yn, described by the probabilities
qj = P (Yi = j), the problem is to find a mapping

u : {0, . . . ,m− 1}n → {0, . . . ,m− 1},
(Y1, . . . , Yn) 7→ u(Y1, . . . , Yn) =: U,

that maximises the entropy H(U). As the Yi are functions of
a common input X and independent noise terms Wi, they are
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dependent to some degree. For a given entropy H(Yi) of the
Yi, an upper bound for the entropy of U is given by

H(U) = H(u(Y1, . . . , Yn)) ≤ H(Y1, . . . , Yn)

≤ H(Y1) + · · ·+H(Yn) = n ·H(Yi).

If the Yi are uniformely distributed on {0, . . . ,m−1}, there
is a rather counterintuitive, but simple possibility to reach
the bound H(U) = logm. This can be achieved by defining
u(Y1, . . . , Yn) = Yk for some arbitrary 1 ≤ k ≤ n. Although
the amount of information represented by the other Yi, i 6= k,
is wasted, this method still suffices to utilise the maximal
amount of information that U can represent. Of course this
result is related to the fact that the random variable U can not
represent more information than one single Yi, as they are all
discrete random variables with support {0, . . . ,m− 1}.

In general, the distribution of U is characterised by the
probabilities P (U = j) = P (u(YYY ) = j) = P (YYY ∈ u−1(j)),
where YYY = (Y1, . . . , Yn) denotes the random vector formed
by the random variables Yi, and

u−1(j) = {YYY ∈ {0, . . . ,m− 1}n | u(YYY ) = j}

denotes the preimage of j under the mapping u. So the
problem of finding the best mapping u is equivalent to the
task of partitioning the set {0, . . . ,m−1}n into m parts, such
that the probabilities for YYY falling into the different parts are
as uniform as possible. A potential approach using a greedy
heuristic method is proposed in [1]. The algorithm starts with
the whole set {0, . . . ,m−1}n and the related probabilities. In
each step, the two elements with the smallest probabilities are
merged, until there are exactly m elements left. These form
the desired partitioning of the original set.

Some simulation results for different values of m are shown
in Figure 5. Here, the distribution of the Yi was taken from the
inadequate quantisation example in Section II-B, and the most
extreme value (σ2

X +σ2
W )/σ2

X = 30 for the ratio between the
variances was chosen. To facilitate the computation, the Yi are
now assumed to be stochastically independent. As the common
input X is quite small in relation to the independent noise
terms Wi, this approximation seems acceptable. The range for
the number of channels n is chosen such that the number of
elements in the set {0, . . . ,m−1}n, which of course amounts
to N := mn, does not exceed one billion.

As mentioned before, the Yi are already uniformely dis-
tributed in the case m = 2. In this case the algorithm preserves
the maximal entropy when performing the information fusion.
For higher values of m, the entropy of the Yi is a lot
smaller than the maximum given by the dyadic logarithm
ld(m). This can easily be seen in the figure, as we know that
H(U) = H(Yi) for n = 1. When the number of channels n
increases, the entropy of U quickly approaches the maximum.
As the simulation shows, H(U) is already nearly optimal for
n ≥ 2 in the case m = 5, and for n ≥ 3 in the other cases
reviewed here. Due to the heuristic concept of the algorithm,
the entropy does not increase monotonically with increasing
n. In the case m = 5 for example, the algorithm performs
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Fig. 5. Entropy of U in Relation to the Number of Channels n

better for n = 2 than for every other n considered, although
the difference is indeed very small.

III. CONCLUSION

The bound for the capacity of our channel model given in
Equation 1 can also be expressed as

I(X;U) ≤ min{I(X;VVV ), I(VVV ;YYY ), I(YYY ;U)},

which means that the capacity of the whole system is bounded
by the capacities of the individual stages. While I(X;VVV ) is
already covered by known results about AWGN channels,
we have shown that I(Vi;Yi) can always be maximised by
an appropriate choice of the quantisation, as long as the
distribution of the Vi is known. Additionally, we examined
I(X;Yi) directly and found that the bound

I(X;Yi) ≤ min

{
1

2
log

(
1 +

σ2
X

σ2
W

)
, logm

}
is almost reachable, for continuous as well as for discrete
input. For I(Yi;U), we showed that the proposed algorithm
does a good job of maximising the entropy of U , even when
the entropy of the Yi is low.
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