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Solution of Problem 1
Each calculated distance d(x,y) is equivalent to 0.5P. The updated centers in b) each is
equivalent to 0.5P.

a) The center of cluster 1 is c1 = x1, and the center of cluster 2 is c2 = x3.

d(c1,x2) =
√

(7− 7)2 + (3− 0)2 = 3

d(c2,x2) =
√

(9− 7)2 + (1− 3)2 =
√

8 = 2.8284

x2 belongs to cluster 2.

d(c1,x4) =
√

(9− 7)2 + (5− 0)2 =
√

29 = 5.38

d(c2,x4) =
√

(9− 9)2 + (5− 1)2 = 4.

x4 belongs to cluster 2.

d(c1,x5) =
√

(3− 7)2 + (7− 0)2 =
√

65 = 8.06

d(c2,x5) =
√

(9− 3)2 + (1− 7)2 =
√

72 = 8.485.

x5 belongs to cluster 1.

d(c1,x6) =
√

(12− 7)2 + (3− 0)2 =
√

34 = 5.83

d(c2,x6) =
√

(12− 9)2 + (3− 1)2 =
√

13 = 3.605.

x6 belongs to cluster 2.

b) The new center of cluster 1 is (
7+3

2 , 0+7
2

)
= (5, 3.5)

The new center of cluster 2 is(
7+9+9+12

4 , 3+1+5+3
4

)
= (9.25, 3).



c) Using d1(x,y):

d(c1,x2) = |7− 7|+ |3− 0| = 3
d(c2,x2) = |9− 7|+ |1− 3| = 4

x2 belongs to cluster 1.

d(c1,x4) = |9− 7|+ |5− 0| = 7
d(c2,x4) = |9− 9|+ |5− 1| = 4.

x4 belongs to cluster 2.

d(c1,x5) = |3− 7|+ |7− 0| = 11
d(c2,x5) = |9− 3|+ |1− 7| = 12.

x5 belongs to cluster 1.

d(c1,x6) = |12− 7|+ |3− 0| = 8
d(c2,x6) = |12− 9|+ |3− 1| = 5.

x6 belongs to cluster 2.
Using d∞(x,y):

d(c1,x2) = max(| 7− 7 |, | 3− 0 |) = max(0, 3) = 3
d(c2,x2) = max(| 9− 7 |, | 1− 3 |) = max(2, 2) = 2

x2 belongs to cluster 2.

d(c1,x4) = max(| 9− 7 |, | 5− 0 |) = max(2, 5) = 5
d(c2,x4) = max(| 9− 9 |, | 5− 1 |) = max(0, 4) = 4.

x4 belongs to cluster 2.

d(c1,x5) = max(| 3− 7 |, | 7− 0 |) = max(4, 7) = 7
d(c2,x5) = max(| 3− 9 |, | 7− 1 |) = max(6, 6) = 6.

x5 belongs to cluster 2.

d(c1,x6) = max(| 12− 7 |, | 3− 0 |) = max(5, 3) = 5
d(c2,x6) = max(| 12− 9 |, | 3− 1 |) = max(3, 2) = 3.

x6 belongs to cluster 2.



Solution of Problem 2

a) If the n points are clustered into S1, . . . , Sg, then ML-cluster analysis writes as

max
S1,...,Sg

g∑
k=1

∑
i∈Sk

log fk(xi) = max
S1,...,Sg

g∑
k=1

∑
i∈Sk

const.−1
2 log |Σ|−1

2
{

(xi − µk)T Σ−1(xi − µk)
}
.

Therefore having Σ and µk, the ML-cluster analysis is given by

min
S1,...,Sg

g∑
k=1

∑
i∈Sk

log |Σ|+
{

(xi − µk)T Σ−1(xi − µk)
}
.

b) Given clustering of samples S1, . . . , Sg, the ML-estimation of Σ results from the min-
imization of above expression for fixed S1, . . . , Sg. Following similar argument from
ML estimation of covariance matrix, µk are estimated by xk. Using these values and
differentiating with respect to Σ−1, similar to ML-estimation of covariance matrix, the
ML-estimation of Σ is given by:

nΣ̂ =
g∑

k=1

∑
i∈Sk

{
(xi − xk)(xi − xk)T

}
=⇒ Σ̂ = 1

n
W,

where W is within-group sum of squares.

c) Using the above estimation, ML-estimation can be written as

min
S1,...,Sg

g∑
k=1

∑
i∈Sk

log |W
n
|+

{
(xi − xk)T W−1n(xi − xk)

}
.

But:
g∑

k=1

∑
i∈Sk

(xi−xk)T W−1n(xi−xk) =
g∑

k=1

∑
i∈Sk

tr(nW−1(xi−xk)(xi−xk)T ) = n2tr(W−1W) = n2·p.

In other words, the second term in the optimization problem is constant and thus not
relevant for the optimization problem. We remove it from the optimization problem.
Also, the division by n in the first term does not change the optimization problem
and logarithm can be left out from the optimization problem, too. Therefore, the
ML-estimation can be written as:

min
S1,...,Sg

det(W).

d) If Σ is known, ML-cluster analysis is written as:

min
S1,...,Sg

g∑
k=1

∑
i∈Sk

log |Σ|+
{

(xi − xk)T Σ−1(xi − xk)
}
.

Since Σ is known and irrelevant for the optimization, only the second term is important.
Now see that from the argument used above:

g∑
k=1

∑
i∈Sk

(xi − xk)T Σ−1(xi − xk) = tr(WΣ−1).

Therefore the ML-analysis writes as:
min

S1,...,Sg

tr(WΣ−1).



Solution of Problem 3

a) Since the number of data points in each class is the same we have that

E1 = E2 = I3 −
1
3131T

3 =


2
3 −1

3 −
1
3

−1
3

2
3 −1

3
−1

3 −
1
3

2
3


b)

x̄ = 1
6

6∑
k=1

xk = 1
6

−1 + 1 + 2 + 1 + 0− 1
1− 2 + 0 + 1 + 2 + 1
1 + 0− 1− 1− 1− 1

 = 1
6

 2
3
−3


c)

x̄1 = x1 + x2 + x3

3 = 1
3

−1 + 1 + 2
1− 2 + 0
1 + 0− 1

 = 1
3

 2
−1
0

 = 1
6

 4
−2
0

 ,

x̄2 = x4 + x5 + x6

3 = 1
3

 1 + 0− 1
1 + 2 + 1
−1− 1− 1

 = 1
3

 0
4
−3

 = 1
6

 0
8
−6


d)

x̄1 − x̄ = 1
6

 2
−5
3

 , x̄2 − x̄ = 1
6

−2
5
−3


Note that (x̄1 − x̄) = −(x̄2 − x̄), therefore we have that

(x̄1 − x̄)(x̄1 − x̄)T = (x̄2 − x̄)(x̄2 − x̄)T = 1
62

 4 −10 6
−10 25 −15

6 −15 9



B = 3(x̄1 − x̄)(x̄1 − x̄)T + 3(x̄2 − x̄)(x̄2 − x̄)T = 1
6

 4 −10 6
−10 25 −15

6 −15 9


e)

W−1B =
[
1 1
1 −1

] [
3 2
2 −2

]
=
[
5 0
1 4

]

det
∣∣∣W−1B− λI2

∣∣∣ = det
∣∣∣∣∣
[
5− λ 0

1 4− λ

]∣∣∣∣∣ = (5− λ)(4− λ)

By setting this determinant to zero we obtain the eigenvalues of W−1B as the roots
of (5− λ)(4− λ), that is λ1 = 5 and λ2 = 4. Therefore, the optimal value of Fisher’s
discriminant is

max
a∈R2

{
aTBa
aTWa

}
= 5 .


