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Discrete Channel Model
Discrete information channels are described by

� A pair of random variables

(X ,Y ) with support X × Y,

X is the input r.v., X = {x1, . . . , xm} the input alphabet.
Y is the outputr.v., Y = {y1, . . . , yd} the output alphabet.

� The channel matrix

W =
�
wij

�
i=1,...,m, j=1,...,d

with

wij = P(Y = yj | X = xi
�
, i = 1, . . . ,m, j = 1, . . . , d

� Input distribution

P(X = xi ) = pi , i = 1, . . . ,m,

p = (p1, . . . , pm).
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Discrete Channel Model

W =
�
wij

�
1≤i≤m,1≤j≤r

xi yj

Input X Channel W Output Y

Write W composed of rows w1, . . . ,wm as W =




w1

w2

...
wm




Lemma 4.1

H(Y ) = H(pW )

H(Y | X = xi ) = H(wi )

H(Y | X ) =
m�

i=1

piH(wi )
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Channel Capacity
Mutual information

I (X ;Y ) = H(Y ) − H(Y | X )

= H(pW )−
m�

i=1

piH(wi )

=
m�

i=1

piD
�
wi � pW

�
= I (p;W ),

D denoting the Kulback-Leibler divergence.

Aim: For a given channel W use the input distribution that maximizes
mutual information I (X ;Y ).

Definition 4.2.

C = max
(p1,...,pm)

I (X ;Y ) = max
p

I (p,W )

is called channel capacity.

Determining capacity is in general a complicated optimization problem.
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Binary Symmetric Channel (BSC)
Example 4.3.

1 1

0 0
ε

ε

1− ε

1− ε

X Y

Input distribution p = (p0, p1)

Channel matrix

W =

�
1− ε ε
ε 1− ε

�

Mutual Information:

I (X ;Y ) = I (p;W ) = H(pW ) −
m�

i=1

piH(wi )

=
� �� �
H
�
p0(1− ε) + p1ε, εp0 + (1− ε)p1

�
−
� �� �
H
�
ε, 1− ε

�

The maximum of I (p,W ) over all input distributions (p0, p1) is achieved
at

(p∗0 , p
∗
1 ) = (0.5, 0.5)
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Binary Symmetric Channel (BSC)
Hence, p∗0 = p∗1 = 1

2 is capacity-achieving. It holds

C = max
(p0,p1)

I (X ;Y ) = 1 + (1− ε) log2(1− ε) + ε log2 ε

Capacity of the BSC as a function of ε:
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Channel Capacity (ctd.)

Given a channel with channel matrix W . To compute channel capacity
solve

C = max
p

I (p;W ) = max
p

m�

i=1

piD
�
wi � pW

�

Theorem 4.4.
The capacity of the channel W is attained at p∗ = (p∗1 , . . . , p

∗
m) if and

only if
D(wi � p∗W ) = ζ for all i = 1, . . . ,m.

for all i = 1, . . . ,m with pi > 0.
Moreover,

C = I (p∗;W ) = ζ.
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Channel Capacity (ctd.)
Proof of the Theorem:

Mutual information I (p;W ) is a concave function of p. Hence the KKT
conditions (cf., e.g., Boyd and Vandenberge 2004) are necessary and
sufficient for optimality of some input distribution p. Using the above
representation some elementary algebra shows that

∂

∂pi
I (p;W ) = D(wi�pW )− 1.

The full set of KKT conditions now reads as

�m
j=1pj = 1

pi ≥ 0, i = 1, . . . ,m

λi ≥ 0, i = 1, . . . ,m

λipi = 0, i = 1, . . . ,m

D(wi�pW ) + λi + ν = 0, i = 1, . . . ,m

which shows the assertion.
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Channel Capacity (ctd.)

Denote self information by ρ(q) = −q log q, q ≥ 0.

Theorem 4.5. (G. Alirezaei, 2018)
Given a channel with square channel matrix W =

�
wij

�
i,j=1,...,m

. Assume

that W is invertible with inverse

T =
�
tij
�
i,j=1,...,m

.

Then, measured in nats, the capacity is

C = ln
��

k

exp
�
−

�

i,j

tki ρ(wij)
��

and the capacity achieving distribution is given by

p∗� = e−C
�

k

tks exp
�
−
�

i,j

tki ρ(wij)
�
=

�
k tks exp

�
−�

i,j tki ρ(wij)
�

�
k exp

�
−�

i,j tki ρ(wij)
�
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Binary Asymmetric Channel (BAC)
Example 4.6.

1 1

0 0
ε

δ

1− δ

1− ε

W =

�
1− ε ε
δ 1− δ

�

The capacity-achieving distribution is

p∗0 =
1

1 + b
, p∗1 =

b

1 + b
,

with

b =
aε− (1− ε)

δ − a(1− δ)
and a = exp

�h(δ)− h(ε)

1− ε− δ

�
,

and h(ε) = H(ε, 1− ε), the entropy of (ε, 1− ε).

Note that ε = δ yields the previous result for the BSC.
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Binary Asymmetric Channel (BAC)

Derivation of capacity for the BAC:

By Theorem 4.4 the capacity-achieving input distribution p = (p0, p1)
satisfies

D(w1�pW ) = D(w2�pW ).

This is an equation in the variables p0, p1 which jointly with the condition
p0 + p1 = 1 has the solution

p∗0 =
1

1 + b
, p∗1 =

b

1 + b
, (1)

with

b =
aε− (1− ε)

δ − a(1− δ)
and a = exp

�h(δ)− h(ε)

1− ε− δ

�
,

and h(ε) = H(ε, 1− ε), the entropy of (ε, 1− ε).
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Binary Z-Channel (BZC)

Example 4.7.
The so called Z-channel is a special case of the BAC with ε = 0.

1 1

0 0

δ

1− δ

1

The capacity-achieving distribution is obtained from the BAC by setting
ε = 0.
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Binary Asymmetric Erasure Channel (BAEC)

Example 4.8.

0 0
1− ε

1 1

e

1− δ

ε

δ

W =

�
1− ε ε 0
0 δ 1− δ

�

The capacity-achieving distribution is determined by finding the solution
x∗ of

ε log ε− δ log δ = (1− δ) log(δ + εx)− (1− ε) log(ε+ δ/x)

and setting
p∗0
p∗1

= x∗, p∗0 + p∗1 = 1.
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Binary Asymmetric Erasure Channel (BAEC)

Derivation of capacity for the BAEC:

By Theorem 4.4 the capacity-achieving distribution p∗ = (p∗0 , p
∗
1 ),

p∗0 + p∗1 = 1 is given by the solution of

(1− ε) log
1− ε

p0(1− ε)
+ ε log

ε

p0ε+ p1δ

= δ log
δ

p0ε+ p1δ
+ (1− δ) log

1− δ

p0(1− δ)
,

(2)

Substituting x = p0
p1
, equation (2) reads equivalently as

ε log ε− δ log δ = (1− δ) log(δ + εx)− (1− ε) log(ε+ δ/x)

By differentiating w.r.t. x it is easy to see that the right hand side is
monotonically increasing such that exactly one solution p∗ = (p∗1 , p

∗
2 )

exists, which can be numerically computed.
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