Homework 2 in Cryptography I

Prof. Dr. Rudolf Mathar, Michael Naehrig
29.10.2007

Exercise 4. Consider the following function:

$$
E:\{0,1\}^{4} \rightarrow\{0,1\}^{4}, \quad m_{1} m_{2} m_{3} m_{4} \mapsto E\left(m_{1} m_{2} m_{3} m_{4}\right)=c_{1} c_{2} c_{3} c_{4},
$$

where $c_{1}, c_{2}, c_{3}, c_{4}$ are calculated as follows:

$$
C=\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)=A\left(\begin{array}{ll}
m_{1} & m_{2} \\
m_{3} & m_{4}
\end{array}\right)+B .
$$

The matrices A and B are of the form $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in \mathbb{Z}_{2}^{2 \times 2}$ and $B=\left(\begin{array}{ll}b & 0 \\ 0 & b\end{array}\right) \in \mathbb{Z}_{2}^{2 \times 2}$.
The function E can be used to construct an encryption function e for a cryptosystem with $\mathcal{X}=\mathcal{Y}=\{0,1\}$. In this system each block of 4 Bits is encrypted using the function E. The key of the system is (A, B).
(a) Which properties do the matrices A and B have to fulfill in such a system? How many pairs (A, B) of the given form exist with these properties?
(b) Encrypt the Bitstring

$$
1001101111000100
$$

with the key $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Exercise 5.

(a) Prove the following statement:

A matrix $A \in \mathbb{Z}_{m}^{n \times n}$ is invertible, if and only if $\operatorname{gcd}(m, \operatorname{det}(A))=1$.
(b) Is the following matrix invertible? If yes, compute the inverse matrix.

$$
M=\left(\begin{array}{ll}
7 & 1 \\
9 & 2
\end{array}\right) \in \mathbb{Z}_{26}^{2 \times 2}
$$

Exercise 6. Show that the set of regular $n \times n$ matrices over a field K together with the usual matrix multiplication is a group. Is it an abelian group?

