Homework 3 in Cryptography I
 Prof. Dr. Rudolf Mathar, Michael Naehrig 05.11.2007

Exercise 7. The permutation $\pi=(2,11,5,8)(3,6,7,4)(9,10)$ defines a permutation cipher with block length $k=11$. Determine the number of character sequences of length 11 over the usual alphabet with 26 letters, whose cryptogram does not differ from the plaintext.

Exercise 8. Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \in \mathbb{Z}_{2}^{3 \times 3}=\mathbb{F}_{2}^{3 \times 3}
$$

It shall be used in a Hill cipher. Why is this possible? Give explicit formulae for the encryption function and determine the decryption function.

Exercise 9. Given a permutation π of the numbers $1, \ldots, 8$ and a bit sequence $k=$ $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}\right) \in \mathbb{Z}_{2}^{8}$ of length 8 . Consider the following function:

$$
E: \mathbb{Z}_{2}^{8} \rightarrow \mathbb{Z}_{2}^{8},\left(m_{1}, \ldots, m_{8}\right) \mapsto\left(m_{\pi(1)} \oplus k_{1}, \ldots, m_{\pi(8)} \oplus k_{8}\right)
$$

Here \oplus denotes addition modulo 2 .
(a) Show, that E can be used as an encryption function. Determine plaintext space and ciphertext space.
(b) What is the key space and what is its cardinality?
(c) Determine the decryption function.

