Homework 4 in Cryptography I
 Prof. Dr. Rudolf Mathar, Michael Naehrig

12.11.2007

Exercise 10. Let $\mathcal{M}=\{a, b\}$ be the message space, $\mathcal{K}=\left\{K_{1}, K_{2}, K_{3}\right\}$ be the key space and $\mathcal{C}=\{1,2,3,4\}$ be the ciphertext space. Let \hat{M}, \hat{K} be stochastically independent random variables with support \mathcal{M} and \mathcal{K}, respectively, and with probability distribution:

$$
P(\hat{M}=a)=\frac{1}{4}, P(\hat{M}=b)=\frac{3}{4}, P\left(\hat{K}=K_{1}\right)=\frac{1}{2}, P\left(\hat{K}=K_{2}\right)=\frac{1}{4}, P\left(\hat{K}=K_{3}\right)=\frac{1}{4} .
$$

The following table explains the encryption rules:

	K_{1}	K_{2}	K_{3}
a	1	2	3
b	2	3	4

Compute the entropies $H(\hat{M}), H(\hat{K}), H(\hat{C})$ and $H(\hat{K} \mid \hat{C})$.

Exercise 11. Let X, Y be discrete random variables on a set Ω. Show that for any function $f: X(\Omega) \times Y(\Omega) \rightarrow \mathbb{R}$

$$
H(X, Y, f(X, Y))=H(X, Y)
$$

Exercise 12. The ring \mathbb{Z}_{2} is a field that is also named \mathbb{F}_{2}. The ring \mathbb{Z}_{4} is not a field, but there exists a field \mathbb{F}_{4} with 4 elements. This field can be constructed as the residue class ring of the polynomial ring $\mathbb{F}_{2}[x]$ modulo the ideal generated by $f:=x^{2}+x+1$. Specify all elements of the field \mathbb{F}_{4} and determine the addition und multiplication tables for \mathbb{F}_{4}.

