Lehrstuhl für Theoretische Informationstechnik

Exercise 10. Let $\mathcal{M} = \{a, b\}$ be the message space, $\mathcal{K} = \{K_1, K_2, K_3\}$ be the key space and $\mathcal{C} = \{1, 2, 3, 4\}$ be the ciphertext space. Let $\hat{\mathcal{M}}, \hat{\mathcal{K}}$ be stochastically independent random variables with support \mathcal{M} and \mathcal{K} , respectively, and with probability distribution:

$$P(\hat{M}=a) = \frac{1}{4}, P(\hat{M}=b) = \frac{3}{4}, P(\hat{K}=K_1) = \frac{1}{2}, P(\hat{K}=K_2) = \frac{1}{4}, P(\hat{K}=K_3) = \frac{1}{4}.$$

The following table explains the encryption rules:

RNTHAACHE

Compute the entropies $H(\hat{M}), H(\hat{K}), H(\hat{C})$ and $H(\hat{K} \mid \hat{C})$.

Exercise 11. Let X, Y be discrete random variables on a set Ω . Show that for any function $f: X(\Omega) \times Y(\Omega) \to \mathbb{R}$

$$H(X, Y, f(X, Y)) = H(X, Y).$$

Exercise 12. The ring \mathbb{Z}_2 is a field that is also named \mathbb{F}_2 . The ring \mathbb{Z}_4 is not a field, but there exists a field \mathbb{F}_4 with 4 elements. This field can be constructed as the residue class ring of the polynomial ring $\mathbb{F}_2[x]$ modulo the ideal generated by $f := x^2 + x + 1$. Specify all elements of the field \mathbb{F}_4 and determine the addition und multiplication tables for \mathbb{F}_4 .