Homework 5 in Cryptography I
 Prof. Dr. Rudolf Mathar, Michael Naehrig
 19.11.2007

Exercise 13.

(a) Does the cryptosystem from Exercise 4 have perfect secrecy?
(b) Consider the following modification of this cryptosystem: The matrices A and B are now of the form

$$
A=\left(\begin{array}{cc}
1 & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \quad B=\left(\begin{array}{cc}
b_{1} & 0 \\
0 & b_{2}
\end{array}\right) .
$$

How many possible keys does this system have? Does this system have perfect secrecy, assuming that the message space is $\mathcal{M}=\{0,1\}^{4}$ and that each key is chosen with the same probability?

Exercise 14. Does the cryptosystem from Exercise 10 have perfect secrecy? If not, propose a modification of the system which has perfect secrecy.

Exercise 15. Consider affine ciphers on \mathbb{Z}_{26}, i.e. $\mathcal{M}=\mathbb{Z}_{26}, \mathcal{C}=\mathbb{Z}_{26}$ and $\mathcal{K}=\mathbb{Z}_{26}^{*} \times \mathbb{Z}_{26}=$ $\left\{(a, b) \mid a, b \in \mathbb{Z}_{26}, \operatorname{gcd}(a, 26)=1\right\}$. Select the keys \hat{K} evenly distributed at random and independent of the message distribution \hat{M}.
Show that this system has perfect secrecy.

