Homework 6 in Cryptography I
 Prof. Dr. Rudolf Mathar, Michael Naehrig
 26.11.2007

Exercise 16. Let M be a block of bits of length 64 and K be a block of bits of length 56 . Let $\operatorname{DES}(M, K)$ denote the encryption of M with key K using the DES cryptosystem. Show that

$$
\operatorname{DES}(M, K)=\overline{\operatorname{DES}(\bar{M}, \bar{K})}
$$

where - denotes the bitwise complement.

Exercise 17. Consider the following cryptosystem. Messages are bit sequences of arbitrary length, i.e. character sequences over the alphabet $\mathbb{F}_{2}=\{0,1\}$. Let the message be $m=$ $m_{1} m_{2} \ldots m_{l}$. Keys are also bit sequences $k=k_{1} k_{2} \ldots k_{n}$ of fixed length n. Usually we have $n<l$. Now a key stream $z=z_{1} z_{2} \ldots z_{l}$ is generated in a recursive manner depending on the key:

$$
\begin{aligned}
& z_{i}=k_{i}, \quad 1 \leq i \leq n, \\
& z_{i}=\sum_{j=1}^{n} s_{j} z_{i-j} \quad(\bmod 2), \quad n<i \leq l .
\end{aligned}
$$

Here s_{1}, \ldots, s_{n} are fixed bits which are given in advance. We encrypt $c_{i}:=m_{i} \oplus z_{i}$ for $1 \leq i \leq l$.
(a) How does decryption work for this cryptosystem? Why should $k=00 \ldots 0$ not be chosen as the key?
(b) Encrypt the message $m=10110001010011010100$ with $n=4, s_{2}=s_{3}=0, s_{1}=s_{4}=$ 1 using the key $k=0110$. The key stream is periodic. How long is its period?

This method for generating a key stream is called linear feedback shift register (LFSR).

Exercise 18. Consider the finite field \mathbb{F}_{4} from Exercise 12. Construct an extension field \mathbb{F}_{16} of \mathbb{F}_{4} with 16 elements and describe your approach.
Hint: Start with the polynomial ring $\mathbb{F}_{4}[U]$.

