- RHENISCHWESTFALISCHE TECHNISCHE HOCHSCHLLE HOCHSCH
AACHEN

Homework 8 in Cryptography II
 Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten
 03.07.2008

Exercise 20. Create a Challenge-Response protocol in which Alice and Bob authenticate each other. The protocol shall be based on Public-Key cryptography. Is it possible to reach this goal without a hash function in just 3 messages?

Excercise 21. Consider the equation

$$
Y^{2}=X^{3}+X+1
$$

Show that this equation describes an elliptic curve over the field \mathbb{F}_{7}.
a) Determine all points in $E\left(\mathbb{F}_{7}\right)$ and compute the trace t of E.
b) Show that $E\left(\mathbb{F}_{7}\right)$ is cyclic and give a generator.

Excercise 22. Let $E: Y^{2}=X^{3}+a X+b$ be a curve over the field K with $\operatorname{char}(K) \neq 2,3$ and let $f:=Y^{2}-X^{3}-a X-b$.
A point $P=(x, y) \in E$ is called singular, if both formal partial derivatives $\partial f / \partial X(x, y)$ and $\partial f / \partial Y(x, y)$ vanish at P.
Prove that for the discriminant Δ of E it holds that

$$
\Delta \neq 0 \Leftrightarrow E \text { has no singular points. }
$$

