Lehrstuhl für Theoretische Informationstechnik

Exercise 1. Decrypt the following ciphertexts and explain your approach. The plaintext messages are in English.

- Caesar cipher: sdscsxceppsmsoxddyzbydomdyebcovfocgsdrvkg cgoxoondyzbydomdyebcovfocgsdrwkdrowkdsmc
- Affine cipher: onhldqrttydxtlgtojkhqtjxctdc

Exercise 2. Determine the number of possible keys for the following cryptosystems:

a) Substitution cipher,

RNTHAACHE

- b) Affine cipher with the alphabet $\Sigma = \mathbb{Z}_{26} = \{0 \dots 25\},\$
- c) Permutation cipher with a fixed blocklength k.

Exercise 3. Let e_K be one of the ciphers from Exercise 2. Show that encrypting a message m with key K_1 and the result afterwards with the key K_2 is the same as doing one encryption with a different key K_3 , i.e.

$$e_{K_2}(e_{K_1}(m)) = e_{K_3}(m).$$

Compute the corresponding keys for the concatenation in all three cases.