Exercise 1.

Bob's public ElGamal key is $(p, a, y)=(101,2,11)$.
(a) Find the plaintext of the message $\left(c_{1}, c_{2}\right)=(64,79)$ sent to Bob without finding his private key.
(b) Find Bob's private ElGamal key.

Exercise 2.

Consider a Hill cipher over the alphabet \mathbb{Z}_{p}, p prime, with block length $m \geq 2$.
(a) Which conditions need to be fulfilled such that the key $U \in \mathbb{Z}_{p}^{m \times m}$ is feasible?
(b) What is the cardinality of the key space for $m=2$ and p prime? What is the cardinality if $p=29$?

For $p=29$ a known-plaintext attack for the message

a	l	l	t	h	e	b	e	s	t	f	o	r	y	o	u	i	n	h	e	r	e	(in letters)
0	11	11	19	7	4	1	4	18	19	5	14	17	24	14	20	8	13	7	4	17	4	(in numbers)

shall be executed. The corresponding cryptogram is given as
e $\begin{array}{llllllllllllllllllllll} & p & z & j & s & y & r & m & c & p & j & p & m & z & o & t & v & j & s & n & k & \text { (in letters) }\end{array}$
$\begin{array}{llllllllllllllllllll}4 & 4 & 15 & 25 & 9 & 18 & 24 & 17 & 12 & 2 & 15 & 9 & 15 & 12 & 25 & 14 & 19 & 21 & 9 & 18 \\ 13 & 10 & \text { (in numbers) }\end{array}$
(c) Which key U has been used for encryption?

Now consider the alphabet \mathbb{Z}_{26}, i.e., $p=26$ is no longer a prime.
(d) Is the key $U=\left(\begin{array}{cc}15 & 11 \\ 1 & 8\end{array}\right)$ appropriate for executing the Hill cipher? Determine the decryption function, if applicable.

Exercise 3.

Consider a block cipher with $N \in \mathbb{N}$ Feistel rounds. Each round $1 \leq n \leq N$ is structured as given in the following figure.
The message \mathbf{m} is decomposed into two parts of the same size $\mathbf{m}=\left(L_{1}, R_{1}\right)$. It holds that

$$
\begin{aligned}
& L_{n+1}=R_{n} \\
& R_{n+1}=f_{n}\left(K_{n}, R_{n}\right) \oplus L_{n}
\end{aligned}
$$

where the round keys are denoted as K_{n}. The resulting cryptogram is given as

$$
\mathbf{c}=\left(R_{N+1}, L_{N+1}\right)
$$

(a) Describe a decryption method. Is it possible to apply the same algorithm for decryption? What are the round keys, if applicable?

Abbildung 3.1: Feistel round

Consider a specific block cipher with input length of 8 and key length of 4 bits. The functions f_{n} are given as

$$
f_{n}\left(R_{n}, K_{n}\right)=g\left(R_{n} \oplus K_{n}\right) .
$$

Analogously to SubBytes of AES the function $g\left(a_{3}, a_{2}, a_{1}, a_{0}\right)=\left(r_{3}, r_{2}, r_{1}, r_{0}\right), a_{i}, r_{i} \in$ $\{0,1\}$, is defined by

$$
\left(\begin{array}{l}
r_{0} \\
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right)=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \oplus\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

where $\left(y_{3}, y_{2}, y_{1}, y_{0}\right) \in \mathbb{F}_{2^{4}}$ is determined by the inverse polynomial of $\sum_{i=0}^{3} a_{i} x^{i}$ modulo the irreducible polynomial $h(x)=x^{4}+x^{3}+1$.
The resulting function g is given by the following table.

\mathbf{a}	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$g(\mathbf{a})$	1	10	2	12	8	14	15	5	13	9	0	11	6	7	3	4

In this table, $\mathbf{a}=\left(a_{3}, a_{2}, a_{1}, a_{0}\right)$ and $g(\mathbf{a})=\left(r_{3}, r_{2}, r_{1}, r_{0}\right)$ are represented by $\sum_{i=0}^{3} a_{i} 2^{i}$ and $\sum_{i=0}^{3} r_{i} 2^{i}$.
(b) Show that the inverse of $x^{3}+x$ modulo $h(x)$ in $\mathbb{F}_{2^{4}}$ is given by $x^{3}+x+1$.
(c) Assume g to be known and $N=2$ Feistel rounds are executed. Calculate the keys K_{1} and K_{2} for a given message $\mathbf{m}=(0,0,1,1,1,1,0,0)$ and a cryptogram $\mathbf{c}=$ $(1,0,1,0,0,1,1,0)$. Is security improved by introducing a third round?
(d) Which block cipher of the lecture has the same structure as illustrated in Figure 3.1: Specify the blocks within the functions f_{n} which are executed in that block cipher.

Exercise 4.

(a) Show by means of the Miller Rabin primality test (MRPT) that $n=301$ is composite. Utilize the square and multiply algorithm. Is 2 a strong witness for the compositeness of n ?
(b) One run of the MRPT for a given odd number $n=1+q 2^{k}, k, q \in \mathbb{N}, q$ odd, consists of an exponentiation and a couple of squarings. The exponentiation shall be performed by means of the square and multiply algorithm. Assume that the chosen number a is a strong witness for compositeness of n. How many multiplications m and squarings s are needed during one run of the MRPT? Determine the minimum and maximum number of multiplications and squarings.
(c) All odd numbers up to $N \in \mathbb{N}$ are tested on primality with one run of the MRPT ($M=1$). Assume there are $\lfloor N / \ln (N)\rfloor$ primes which are less or equal to N. Compute an upper bound for the expectation of the number of runs for which the test states „prime".
(d) Consider a composite number $n=p \cdot q=3365753$ with primes p and q. Factorize n by means of the knowledge $\varphi(n)=3361920$.

Exercise 5.

Consider the RSA cryptosystem.
(a) Show the correctness of the RSA decryption.
(b) Is $e=2$ a valid RSA key? Justify your answer.
(c) Decrypt the ciphertext $c=8$ which was encrypted with the public key $(n, e)=$ (9797, 1477).

Consider the Rabin cryptosystem with parameters $p=43$ and $q=71$.
(d) Decrypt the ciphertext $c=144$.

Hints:

- Calculate the square roots of $2 \bmod 71$ and $15 \bmod 43$.
- It holds that $20 \cdot 71-33 \cdot 43=1$.
- Assume that the least significant bits of the message are 101.

Exercise 6.

Consider the following proposal for a hash function.
Given is a message $M=m_{1}, m_{2}, \ldots, m_{n}$ consisting of blocks $m_{i} \in\{0,1, \ldots, q-1\}$. Let q be prime and b be a primitive element $(\bmod q)$.

Given: $f(t):=b^{t}(\bmod q)$
Initialise: $h_{0}:=0$
for $i:=1$ to n :

$$
h_{i}:=f\left(h_{i-1}+m_{i}\right)
$$

return h_{n}
(a) Find a collision for the proposed hash function.
(b) Is $f(t)$ for $t \in\{2, \ldots, q-2\}$ preimage resistant? Justify your answer.
(c) The ElGamal signature scheme and the hash function above shall be used for signing a document. Parameters are $p=461, a=2, x=99$ and $k=3$, and for the hash function $q=131$ and $b=2$. Sign the message $M=(14,5,122,12)$.

Exercise 7.

Consider the elliptic curve

$$
E: y^{2}=x^{3}+2 x+4
$$

The curve is defined over \mathbb{F}_{7}.
(a) Calculate all points of the curve. How many points are in $E\left(\mathbb{F}_{7}\right)$?
(b) Identify the inverses $-P$ for all points $P \in E\left(\mathbb{F}_{7}\right)$.

Now the Diffie-Hellman key exchange is performed on E. The discrete logarithm problem on elliptic curves is to find a such that $Q=a P$ holds with given points P and Q.
(c) Describe the Diffie-Hellman key exchange protocol on elliptic curves and corresponding parameters.

Perform the key exchange on $E\left(\mathbb{F}_{7}\right)$ and generator $P=(0,2)$. Alice chooses $x=4$ as her secret and Bob chooses $y=3$.
(d) Calculate the messages $x P$ and $y P$ of the key exchange and the common key.

