Review Exercise Cryptography I

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier

31.07.2012, WSH 24 A 407, 9:00h

Problem 1.

(a) State four main attacks of cryptanalysis.
(b) Consider the following ciphertext in $\{A, \ldots, Z\}$:

IAENS SPEEC TRDSE SNMTA GNEER VAYOT SHELO RYKSE EI

Compute the index of coincidence and determine if this is a mono- or polyalphabetic cipher. There are 9 letters occurring more often than once.

Let n be a positive integer. Consider an $n \times n$ matrix \mathbf{L} with entries $l_{i, j}$ such that each element of the set $\{0, \ldots, n-1\}$ occurs exactly once in each row $i \in\{0, \ldots, n-1\}$ and in each column $j \in\{0, \ldots, n-1\}$. This encryption matrix is used to determine a cipher for a plaintext $m \in \mathcal{M}=\{0, \ldots, n-1\}$ and a key $k \in \mathcal{K}=\{0, \ldots, n-1\}$ as follows:

$$
c=E_{k}(m)=l_{m, k} .
$$

(c) What is the cardinality of the ciphertext space \mathcal{C} ?
(d) The following matrix $\tilde{\mathbf{L}}$ does not satisfy the conditions given above:

$$
\tilde{\mathbf{L}}=\left(\begin{array}{llll}
1 & 3 & 2 & 0 \\
2 & 0 & 1 & 2 \\
1 & 2 & 0 & 1 \\
0 & 1 & 3 & 2
\end{array}\right)
$$

Generate a matrix $\hat{\mathbf{L}}$ which satisfies the above conditions by changing exactly two entries.

Now, the following encryption matrix is used:

$$
\mathbf{L}=\left(\begin{array}{llll}
2 & 1 & 3 & 0 \\
3 & 0 & 2 & 1 \\
1 & 3 & 0 & 2 \\
0 & 2 & 1 & 3
\end{array}\right)
$$

(e) Compute the corresponding decryption matrix $\mathbf{D}=\left(d_{c, k}\right)$ with $m=E_{k}^{-1}(c)=d_{c, k}$ for the given matrix \mathbf{L}.
(f) A block cipher in Cipher-Block-Chaining mode with blocks of length $n=4$ was used to encrypt the following ciphertext:

$$
\mathbf{c}=(10323210)
$$

Decrypt the ciphertext with key $k=2$ and the initial vector $\mathbf{c}_{0}=(2103)$. Addition is in the finite field \mathbb{F}_{4}.
(g) Show that this cryptosystem has perfect secrecy if the key is uniformly distributed.

Problem 2.

The prime number $p=149$ and $a=2$ are given.
a) How many primitive elements exist for a prime number in general? How many exist for the p given above?
b) Show that the pair of parameters (p, a) can be used for the Diffie-Hellman keyexchange protocol (DH-protocol).

Alice and Bob choose the secret keys $x_{A}=87$ and $x_{B}=50$, respectively.
c) Describe the DH-protocol. Determine the values that are sent by Alice and Bob.
d) Compute the shared key.

The prime number p and the set

$$
\mathcal{A}=\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right) \right\rvert\, a \in \mathbb{F}_{p}\right\} \subseteq \mathbb{F}_{p}^{2 \times 2}
$$

are given.
e) Show that the set \mathcal{A} is a cyclic group with respect to matrix multiplication. Determine a generator and the group order.
f) Formulate the DH -protocol for \mathcal{A} and determine the shared key.
g) Why is this protocol insecure?

Problem 3.

a) Let $n \in \mathbb{Z}$ be odd and $a \in \mathbb{Z}_{n}^{*}$. Prove the following statement: If $a^{\frac{n-1}{2}} \not \equiv \pm 1(\bmod n)$ holds, then n is composite.
b) Formulate a probabilistic prime number test based on the statement given above.
c) Does the test always provide the correct answer if n is prime?
d) Is n actually composite, if the test states „ n composite"?

