Review Exercise Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 31.07.2012, WSH 24 A 407, 10:30h

Problem 4. A prime number $p \equiv 5 \pmod{8}$, a quadratic residue *a* modulo *p* and the following algorithm are given.

Algorithm 1 SQR

RNTHAACHFI

Input: Prime number p with $p \equiv 5 \pmod{8}$ and quadratic residue $a \mod p$ **Output:** Square roots (r, -r) of $a \mod p$

 $d \leftarrow a^{\frac{p-1}{4}} \mod p$ if (d = 1) then $r \leftarrow a^{\frac{p+3}{8}} \mod p$ end if if (d = p - 1) then $r \leftarrow 2a(4a)^{\frac{p-5}{8}} \mod p$ end if return (r, -r)

- a) Show that the variable d in algorithm SQR can only take the values 1 or p-1.
- b) Suppose that $2^{\frac{p-1}{2}} \equiv -1 \pmod{p}$ holds. Prove that algorithm SQR computes both square roots of a modulo p.

A variant of the Rabin cryptosystem uses algorithm SQR and is accordingly defined for prime numbers $p, q \equiv 5 \pmod{8}$ with $n = p \cdot q$.

The prime numbers p = 53, q = 37, and the ciphertext $c = 1342 = m^2 \mod n$ are given. By agreement the message m ends on 101 in its binary representation.

- c) Compute the square roots of 17 modulo 53 and 10 modulo 37.
- d) Decipher the message m. You may use $7 \cdot 53 10 \cdot 37 = 1$ for your computation.

Problem 5.

- (a) Compute the probability that in a group of 6 students at least two students have their birthday on the same day in this year (year 2012 has 366 days) assuming that birthdays are independent and uniformly distributed.
- (b) What are the four basic requirements of cryptographic hash functions?

The discrete logarithm hash function $h: \mathbb{Z}_{q^2} \to \mathbb{Z}_p$ is defined by:

$$h(m) = h(x, y) = u^x v^y \mod p,$$

with numbers p = 2q + 1 and q both prime, numbers u and v primitive elements modulo p, and a message given as m = x + yq with $0 \le x, y \le q - 1$.

- (c) Compute the hash value h(x, y) for the message m = 1073 with the parameters u = 37, v = 131, and p = 167.
- (d) What values can gcd(a, p-1) attain for $a \in \mathbb{N}$?
- (e) Assume that $h(x_1, y_1) = h(x_2, y_2)$ with $x_1 \neq x_2, y_2 > y_1$, and $2 \neq y_2 y_1$ holds. Compute the discrete logarithm $\log_u(v)$ depending on x_1, y_1, x_2 and y_2 .
- (f) Find a collision to h(1073) for the given discrete logarithm $\log_{37}(131) = 101$.

The hash function is now applied on two messages m_1 and m_2 . Alice wants to sign both hashed messages with the Digital Signature Algorithm (DSA).

- (g) What are the three basic requirements for signature schemes?
- (h) Assume Alice uses the same session key k for both signatures. Derive her secret key x.

Problem 6.

- (a) Show that $E_{\alpha}: Y^2 = X^3 + \alpha X + 1$ is an elliptic curve over the finite field \mathbb{F}_{13} for $\alpha = 2$.
- (b) Compute the points iP for P = (0, 1) on E_2 with i = 0, ..., 4.
- (c) The group order of E_2 is $\#E_2(\mathbb{F}_q) = 8$. Show that P is a cyclic generator for E_2 .

Consider the following algorithm to compute the discrete logarithm on elliptic curves:

Algorithm 2 The Babystep-Giantstep-Algorithm on Elliptic Curves
Require: An elliptic curve $E_{\alpha}(\mathbb{F}_q)$ and two points $P, Q \in E_{\alpha}(\mathbb{F}_q)$
Ensure: $a \in \mathbb{F}_q$, i.e., the discrete logarithm of $Q = aP$ on E_{α}
(1) Fix $m \leftarrow \lceil \sqrt{q} \rceil$.
(2) Compute a table of <i>babysteps</i> $b_i = iP$ for indices $i \in \mathbb{Z}$ in $0 \le i < m$.
(3) Compute a table of giantsteps $g_j = Q - j(mP)$ for all indices $j \in \mathbb{Z}$ in $0 \le j < m$ until
you find a pair (i, j) such that $b_i = g_j$ holds.
return $a = i + mj \mod q$.

- (d) Show that the given algorithm calculates the discrete logarithm on elliptic curves.
- (e) Compute the discrete logarithm of Q = aP with points P = (0, 1) and Q = (8, 3) on the elliptic curve E_2 using this algorithm.