Review Exercise Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
07.08.2013, WSH 24 A 407, 10:00h

Exercise 1. An archaeologist found a secret entrance to an ancient English ${ }^{1}$ pyramid.
The inscription of the massive door reveals:

A	I	V	Z	Z	Q	U	V	K	V	Q	Q	V	I
0	8	21	25	25	16	20	21	10	21	16	16	21	8
Z	W	F	S	E	H	Q	J	J	A	V	S	B	V
25	22	5	18	4	7	16	9	9	0	21	18	1	21

The archaeologist already found out that the ciphertext space is $\mathcal{C}=\{A, B, \ldots, Z\}$ and that an affine cipher is used.
(a) What is the cardinality of the message space \mathcal{M} and of the key space \mathcal{K} ?
(b) Calculate the estimator of the index of coincidence I_{c} and decide if this is a monoalphabetic or a polyalphabetic cipher.
(c) Help the archaeologist to decipher the inscription: Give the encryption and decryption rule and decipher the first eight letters of the cryptogram to verify your results. What is the key?

Hint: The most frequent letters in English are:

letter	E	T	A	O	I	N
frequency	12.2	9.10	8.12	7.68	7.31	6.95

Exercise 2. Let φ be the Euler function. Moreover, let $p \neq q$ be prime numbers and $n=p q$.
(a) Show that $\varphi(p q)=\varphi(p) \varphi(q)$ holds.
(b) Show that n may be efficiently factorized if $\varphi(n)$ is known.
(c) Factorize $n=367080319$ by means of $\varphi(n)=367042000$.

Another variant for factorization of a natural number m was developped by Pierre de Fermat. He has utilized

$$
\begin{equation*}
m=x^{2}-y^{2}=(x-y)(x+y) \quad x, y \in \mathbb{N}_{0} \tag{1}
\end{equation*}
$$

for factorization.
(d) Factorize $n=367080319$ utilizing (1).
(e) Is it possible to find $x, y \in \mathbb{N}_{0}$ for all natural numbers $m>2$ such that (1) is fulfilled? Give a reason.

Exercise 3. Alice wants to use the triple $(p, a, y)=(137,3,97)$ as public ElGamal key.
(a) Show that this is a valid ElGamal key.
(b) Determine the plaintext of Alice's message $\left(c_{1}, c_{2}\right)=(81,7)$ without calculating the private key x.

Alice utilizes this key for signing the messages $h\left(m_{1}\right)=106$ and $h\left(m_{2}\right)=99$ with the signatures $\left(r_{1}, s_{1}\right)=(13,63)$ and $\left(r_{2}, s_{2}\right)=(13,62)$.
(c) What did Alice do wrong?
(d) Calculate her private key x.

Exercise 4. Consider the following function:

$$
E: Y^{2}=X^{3}+2 X+6
$$

(a) Does E describe an elliptic curve in the field \mathbb{F}_{7} ? Give a reason.
(b) Determine all points and their inverses in the group.
(c) What is the order of the group?

It is difficult to obtain the discrete logarithm a of Q to the base P for two points P, Q of an elliptic curve E. A possible approach is the application of the Pollard ρ-factoring method. The idea behind this method is to find numbers $c, d, c^{\prime}, d^{\prime} \in \mathbb{Z}$ for two given points P, Q on the elliptic curve with $\operatorname{gcd}\left(d-d^{\prime}, \operatorname{ord}(P)\right)=1$ such that the following equation holds:

$$
\begin{equation*}
c P+d Q=c^{\prime} P+d^{\prime} Q . \tag{2}
\end{equation*}
$$

(d) Compute the discrete logarithm a of Q to base P by means of (2).

An oracle provides us the values $c=2, d=4, c^{\prime}=-1, d^{\prime}=-3, P=(4,1), Q=(1,3)$, $4 Q=(3,5)$, and $-3 Q=(5,6)$. Assume that P is a generator.
(e) Show that equation (2) is fulfilled for these values and compute the discrete logarithm a of Q to base P.

