Review Exercise Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 07.08.2013, WSH 24 A 407, 10:00h

Exercise 1. An archaeologist found a secret entrance to an ancient English¹ pyramid. The inscription of the massive door reveals:

А	Ι	V	Ζ	Ζ	\mathbf{Q}	U	V	Κ	V	\mathbf{Q}	\mathbf{Q}	V	Ι
0	8	21	25	25	16	20	21	10	21	16	16	21	8
Ζ	W	\mathbf{F}	\mathbf{S}	Ε	Η	\mathbf{Q}	J	J	А	V	\mathbf{S}	В	V
25	22	5	18	4	7	16	9	9	0	21	18	1	21

The archaeologist already found out that the ciphertext space is $C = \{A, B, \dots, Z\}$ and that an affine cipher is used.

- (a) What is the cardinality of the message space \mathcal{M} and of the key space \mathcal{K} ?
- (b) Calculate the estimator of the index of coincidence I_c and decide if this is a monoalphabetic or a polyalphabetic cipher.
- (c) Help the archaeologist to decipher the inscription: Give the encryption and decryption rule and decipher the first eight letters of the cryptogram to verify your results. What is the key?

Hint: The most frequent letters in English are:

letter	Ε	T	А	Ο	Ī	Ν
frequency	12.2	9.10	8.12	7.68	7.31	6.95

Exercise 2. Let φ be the Euler function. Moreover, let $p \neq q$ be prime numbers and n = p q.

- (a) Show that $\varphi(pq) = \varphi(p)\varphi(q)$ holds.
- (b) Show that n may be efficiently factorized if $\varphi(n)$ is known.
- (c) Factorize n = 367080319 by means of $\varphi(n) = 367042000$.

Another variant for factorization of a natural number m was developped by Pierre de Fermat. He has utilized

$$m = x^{2} - y^{2} = (x - y)(x + y) \quad x, y \in \mathbb{N}_{0}$$
(1)

for factorization.

RWTHAACHE

- (d) Factorize n = 367080319 utilizing (1).
- (e) Is it possible to find $x, y \in \mathbb{N}_0$ for all natural numbers m > 2 such that (1) is fulfilled? Give a reason.

Exercise 3. Alice wants to use the triple (p, a, y) = (137, 3, 97) as public ElGamal key.

- (a) Show that this is a valid ElGamal key.
- (b) Determine the plaintext of Alice's message $(c_1, c_2) = (81, 7)$ without calculating the private key x.

Alice utilizes this key for signing the messages $h(m_1) = 106$ and $h(m_2) = 99$ with the signatures $(r_1, s_1) = (13, 63)$ and $(r_2, s_2) = (13, 62)$.

- (c) What did Alice do wrong?
- (d) Calculate her private key x.

Exercise 4. Consider the following function:

$$E: Y^2 = X^3 + 2X + 6.$$

- (a) Does E describe an elliptic curve in the field \mathbb{F}_7 ? Give a reason.
- (b) Determine all points and their inverses in the group.
- (c) What is the order of the group?

It is difficult to obtain the discrete logarithm a of Q to the base P for two points P, Q of an elliptic curve E. A possible approach is the application of the Pollard ρ -factoring method. The idea behind this method is to find numbers $c, d, c', d' \in \mathbb{Z}$ for two given points P, Q on the elliptic curve with gcd(d - d', ord(P)) = 1 such that the following equation holds:

$$cP + dQ = c'P + d'Q. (2)$$

(d) Compute the discrete logarithm a of Q to base P by means of (2).

An oracle provides us the values c = 2, d = 4, c' = -1, d' = -3, P = (4, 1), Q = (1, 3), 4Q = (3, 5), and -3Q = (5, 6). Assume that P is a generator.

(e) Show that equation (2) is fulfilled for these values and compute the discrete logarithm a of Q to base P.