Homework 10 in Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
18.12.2012

Exercise 29. Consider the following public-key cryptosystem:
Alice chooses four integers a, b, a^{\prime} and b^{\prime}. She caluclates the values:

$$
M=a b-1, \quad e=a^{\prime} M+a, \quad d=b^{\prime} M+b, \quad n=\frac{e d-1}{M} .
$$

Her public key is (n, e) and her private key is d. A plaintext m is encrypted by $c \equiv e m(\bmod n)$. Alice deciphers c by computing $c d \equiv m(\bmod n)$.
(a) Verify that the decryption operation recovers the plaintext.
(b) Break the system by means of the Euclidean algorithm.

Exercise 30.

Consider an RSA cryptosystem with $n=p q$ with two primes $p \neq q$ and a public key $e=d^{-1}(\bmod \varphi(n))$. The plaintext m is in the set $\{1, \ldots, n-1\}$.
(a) Show that it is possible to compute the secret key d if m and n are not coprime, i.e. if $p \mid m$ or $q \mid m$.
(b) Calculate the probability for m and n having common divisors.
(c) How large is the probability if n has 1024 bits? The primes p and q are approximately of same size $(p, q \approx \sqrt{n})$.

Exercise 31.

Alice is using the ElGamal cryptosystem for encrypting the messages m_{1} and m_{2}. The generated cryptograms are

$$
\mathbf{c}_{1}=(1537,2192) \text { and } \mathbf{c}_{2}=(1537,1393) .
$$

The public key of Alice is $(p, a, y)=(3571,2,2905)$.
(a) What has Alice done wrong here?
(b) The first message is given as $m_{1}=567$. Determine the message m_{2}.

