Homework 12 in Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 15.01.2013

Exercise 35.

RNTHAACHE

Alice and Bob are using the Rabin cryptosystem. Bob's public key is n = 4757. All integers in the set $\{1, \ldots, n-1\}$ are represented by sequences of 13 bits. In order to identify the correct message, Alice and Bob agreed to only send messages with the last 2 bits set to 1. Suppose Alice sends the cryptogram c = 1935.

- (a) Find the private key by factoring the public key n = pq.
- (b) Decipher the cryptogram c and identify the correct message m.

Exercise 36.

Consider the following hash-function:

 $h: \mathbb{N} \to \mathbb{N}_0, \ k \mapsto \lfloor 10000(k(1+\sqrt{5})/2 - \lfloor k(1+\sqrt{5})/2) \rfloor) \rfloor.$

- (a) Determine the upper and lower bounds of the codomain of h.
- (b) Find a collision for h.

Exercise 37.

(a) Assume that p, q are prime and p = 2q + 1. What values can gcd(a, p - 1) attain for $a \in \mathbb{N}$?

Complete the proof of Example 10.2 from the lecture notes.

(b) Show that from

 $k(x_1 - x'_1) \equiv x'_0 - x_0 \pmod{p-1}$

the discrete logarithm $k = \log_a b$ can be efficiently computed.