Homework 12 in Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
15.01.2013

Exercise 35.

Alice and Bob are using the Rabin cryptosystem. Bob's public key is $n=4757$. All integers in the set $\{1, \ldots, n-1\}$ are represented by sequences of 13 bits. In order to identify the correct message, Alice and Bob agreed to only send messages with the last 2 bits set to 1 . Suppose Alice sends the cryptogram $c=1935$.
(a) Find the private key by factoring the public key $n=p q$.
(b) Decipher the cryptogram c and identify the correct message m.

Exercise 36.

Consider the following hash-function:

$$
\left.h: \mathbb{N} \rightarrow \mathbb{N}_{0}, k \mapsto\lfloor 10000(k(1+\sqrt{5}) / 2-\lfloor k(1+\sqrt{5}) / 2)\rfloor)\right\rfloor .
$$

(a) Determine the upper and lower bounds of the codomain of h.
(b) Find a collision for h.

Exercise 37.

(a) Assume that p, q are prime and $p=2 q+1$.

What values can $\operatorname{gcd}(a, p-1)$ attain for $a \in \mathbb{N}$?

Complete the proof of Example 10.2 from the lecture notes.
(b) Show that from

$$
k\left(x_{1}-x_{1}^{\prime}\right) \equiv x_{0}^{\prime}-x_{0} \quad(\bmod p-1)
$$

the discrete logarithm $k=\log _{a} b$ can be efficiently computed.

