Homework 12 in Advanced Methods of Cryptography - Proposal for Solution -

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier

15.01.2013

Solution to Exercise 37.

(a) $\operatorname{gcd}(a, p-1) \in\{1,2, q, 2 q\}$ for all $a \in \mathbb{N}$ since the factorization is $p-1=1 \cdot 2 \cdot q$.
(b) p, q are prime with $p=2 q+1$ (\Rightarrow Sophie-Germain primes), a, b are primitive elements, and $0 \leq m \leq q^{2}-1$. The hash function is defined by:

$$
h(m)=a^{x_{0}} b^{x_{1}} \quad \bmod p
$$

with $0 \leq x_{0}, x_{1} \leq q-1 \wedge m=x_{0}+x_{1} q$. The given function is slow but collision-free. Proof: Assume there is a collision, i.e., at least one pair of messages satisfies:

$$
m \neq m^{\prime} \wedge h(m)=h\left(m^{\prime}\right) .
$$

It is to show that the discrete logarithm $k=\log _{a}(b) \bmod p$ can be determined if a collision is known. The two different messages are as in Ex. 10.2:

$$
\begin{aligned}
m & =x_{0}+x_{1} q, \\
m^{\prime} & =x_{0}^{\prime}+x_{1}^{\prime} q,
\end{aligned}
$$

and the common hash-value is:

$$
\begin{align*}
h(m) & =h\left(m^{\prime}\right), \\
\stackrel{E x, 10.2}{\Leftrightarrow} k\left(x_{1}-x_{1}^{\prime}\right) & \equiv x_{0}^{\prime}-x_{0} \quad(\bmod p-1) . \tag{1}
\end{align*}
$$

Furthermore, $x_{1}-x_{1}^{\prime} \not \equiv 0(\bmod p-1)$, otherwise it would follow that $m=m^{\prime}$.
To determine k, assume both $0 \leq k, k^{\prime}<p-1$ fulfil (1). Then

$$
\begin{align*}
k\left(x_{1}-x_{1}^{\prime}\right) & \equiv x_{0}^{\prime}-x_{0} \quad(\bmod p-1) \wedge \\
k^{\prime}\left(x_{1}-x_{1}^{\prime}\right) & \equiv x_{0}^{\prime}-x_{0} \quad(\bmod p-1) \\
\Rightarrow\left(k-k^{\prime}\right)\left(x_{1}-x_{1}^{\prime}\right) & \equiv 0 \quad(\bmod p-1) . \tag{2}
\end{align*}
$$

It holds:

$$
\begin{aligned}
-(p-1) & <k-k^{\prime}<p-1 \wedge \\
x_{1} & \neq x_{1}^{\prime} \wedge \\
-(q-1) & \leq x_{1}-x_{1}^{\prime} \leq q-1
\end{aligned}
$$

Let $d=\operatorname{gcd}\left(x_{1}-x_{1}^{\prime}, p-1\right)$, then it follows from (1) that $d \mid\left(x_{0}^{\prime}-x_{0}\right)$:

1) $d=1 \Rightarrow k-k^{\prime} \equiv 0(\bmod p-1) \Rightarrow k \equiv k^{\prime}(\bmod p-1)$, i.e., there is the solution:

$$
k=\left(x_{1}-x_{1}^{\prime}\right)^{-1}\left(x_{0}^{\prime}-x_{0}\right) \quad \bmod (p-1)
$$

2) $d>1$:

$$
\begin{equation*}
\stackrel{(1)}{\Rightarrow} k\left(\frac{x_{1}-x_{1}^{\prime}}{d}\right) \equiv\left(\frac{x_{0}^{\prime}-x_{0}}{d}\right)\left(\bmod \frac{p-1}{d}\right) . \tag{3}
\end{equation*}
$$

It holds $\operatorname{gcd}\left(\frac{x_{1}-x_{1}^{\prime}}{d}, \frac{p-1}{d}\right)=1 \stackrel{1)}{\Rightarrow}(3)$ has exactly one solution $k_{0}<\frac{p-1}{d}$:

$$
\begin{equation*}
k_{0}=\left(\frac{x_{1}-x_{1}^{\prime}}{d}\right)^{-1}\left(\frac{x_{0}^{\prime}-x_{0}}{d}\right)\left(\bmod \frac{p-1}{d}\right) \tag{4}
\end{equation*}
$$

For the solution of (1), this yields multiple candidates: $k_{l}=k_{0}+\left(\frac{p-1}{d}\right) \cdot l$, with $l=0, \ldots, d-1$.
Recall from (a) that $p-1=2 q \Rightarrow d \in\{1,2, q, 2 q\} \Rightarrow d \in\{1,2\}$ as $\left(x_{1}-x_{1}^{\prime}\right) \leq q-1 \Rightarrow d=2$ as $d>1$.
Check all candidates k_{0}, k_{1}, i.e., check if $a^{k_{0}} \equiv b(\bmod p)$ or if $a^{k_{0}+\frac{p-1}{2}} \equiv b$ $(\bmod p)$ holds.
The candidate fulfilling the concruence is $\log _{a}(b)$.
Altogether, finding collisions is hard because the determination of a discrete logarithm is computationally extensive.

