Homework 1 in Advanced Methods of Cryptography - Proposal for Solution -

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier

16.10.2012

Solution to Exercise 3.

A bijective function $\pi: M \mapsto M$ over a finite set M is called permutation.
(a) It holds:
i) $\pi(1) \in M$ has n different possibilities
ii) $\pi(2) \in M \backslash\{\pi(1)\}$ has $n-1$ different possibilities, $\pi(1)$ has to be taken out, otherwise π is not bijective.
iii) $\pi(3) \in M \backslash\{\pi(1), \pi(2)\}$ has $n-2$ different possibilities.
iv) \vdots

Overall, there are $n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 1=n$! different permutations possible.
(b) Let $\pi_{1}, \pi_{2}, \pi_{3}$ be permutations over M and $m \in M$.
i) Associativity: $\left(\left(\pi_{1} \circ \pi_{2}\right) \circ \pi_{3}\right)(m)=\left(\pi_{1} \circ \pi_{2}\right)\left(\pi_{3}(m)\right)=\pi_{1}\left(\pi_{2}\left(\pi_{3}(m)\right)\right)=$ $\pi_{1}\left(\left(\pi_{2} \circ \pi_{3}\right)(m)\right)=\pi_{1} \circ\left(\pi_{2} \circ \pi_{3}\right)(m)$
ii) Neutral element: $\pi_{0}(m)=m, \forall m \in M$ is the neutral element, it holds for a permutation π and $m \in M$:
$\left(\pi \circ \pi_{0}\right)(m)=\left(\pi\left(\pi_{0}(m)\right)=\pi(m)=\pi_{0}(\pi(m))=\left(\pi_{0} \circ \pi\right)(m)\right.$
iii) Inverse element: Each permutation π has an inverse element as it is a bijective function, it holds $\pi \circ \pi^{-1}=\pi^{-1} \circ \pi=\pi_{0}$.

With i), ii), and iii) the permutations form a group together with the composition of functions.
For $n=1,2$ this group is commutative. However, for $n \geq 3$ it is not. Given a permutation π it can be fully described by

$$
(1,2, \ldots, n) \mapsto(\pi(1), \pi(2), \ldots, \pi(n))
$$

Define π_{1} by $(1,2,3, \ldots, n) \mapsto(1,3,2, \ldots)$ and π_{2} by $(1,2,3, \ldots, n) \mapsto(2,1,3, \ldots)$, then it holds $\left(\pi_{1} \circ \pi_{2}\right)(1)=\pi_{1}\left(\pi_{2}(1)\right)=\pi_{1}(2)=3$ and $\left(\pi_{2} \circ \pi_{1}\right)(1)=\pi_{2}\left(\pi_{1}(1)\right)=\pi_{2}(1)=2$ which shows that the group is not commutative.

There are two applications of using permutations for cryptography.

- In 2.2 of the script the substitition cipher is introduced, where the permutation is defined over the alphabet, i.e., each character m of the message is encrypted as $c=\pi(m)$. This is a generalization of the Caesar cipher.
- In 2.3 of the script permutation ciphers are introduced, where the order of characters is permutated in message blocks of length $k \in \mathbb{N}$, i.e., π is a permutation over $\{1, \ldots, k\}$, and for $l \in \mathbb{N}_{0}, 1 \leq i \leq k$ the message (m_{1}, m_{2}, \ldots) is ecnrypted as $c_{l k+i}=m_{l k+\pi(i)}$.

