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Exercise 7. The handling of long keys for Vernam ciphers is difficult. Therefore autokey
systems are proposed. For a given keyword k = (k0, . . . , kn−1) and message
m = (m0, . . . ,ml−1) the following two autokey systems are given.

ci =

{
mi + ki (mod 26) 0 ≤ i ≤ n− 1

mi + ci−n (mod 26) n ≤ i ≤ l − 1

ĉi =

{
mi + ki (mod 26) 0 ≤ i ≤ n− 1

mi + mi−n (mod 26) n ≤ i ≤ l − 1

(a) Describe a ciphertext-only attack on c = (c0, . . . , cl−1).

(b) Decrypt the cryptogram c=DLGVTYOACOUVCEZA.

(c) Assume the keylength to be known. Describe a ciphertext-only attack
on ĉ = (ĉ0, . . . , ĉl−1).

(d) Decrypt the cryptogram ĉ=QEXYIRVESIUXXKQVFLHKG using keylength 2.

Exercise 8.

In Lemma 3.3 of the lecture notes, the expectation value of the index of coincidence was
calculated for the ciphertext (C1, . . . , Cn) with random variables C1, . . . Cn i.i.d.

(a) Derive the variance of the index of coincidence Var(IC) for the model of Lemma 3.3.



Exercise 9.

Let X, Y be random variables with support X = {x1, . . . , xm} and Y = {y1, . . . , yd}.
Assume that X, Y are distributed by P (X = xi) = pi and P (Y = yj) = qj.

Let (X, Y ) be the corresponding two-dimensional random variable with distribution
P (X = xi, Y = yj) = pij.

Prove the following statements from Theorem 4.3:

(a) 0 ≤ H(X) with equality if and only if P (X = xi) = 1 for some i.

(b) H(X) ≤ logm with equality if and only if P (X = xi) = 1
m

for all i.

(c) H(X | Y ) ≤ H(X) with equality if and only if X and Y are stochastically
independent (conditioning reduces entropy).

(d) H(X, Y ) = H(X) + H(Y | X) (chainrule of entropies).

(e) H(X, Y ) ≤ H(X) + H(Y ) with equality iff X and Y are stochastically independent.

Hint (a): ln z ≤ z − 1 for all z > 0 with equality if and only if z = 1.

Hint (b),(c): If f is a convex function, the Jensen inequality f(E(X)) ≤ E(f(X)) holds.


