Homework 3 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
 30.10.2012

Exercise 7. The handling of long keys for Vernam ciphers is difficult. Therefore autokey systems are proposed. For a given keyword $k=\left(k_{0}, \ldots, k_{n-1}\right)$ and message $m=\left(m_{0}, \ldots, m_{l-1}\right)$ the following two autokey systems are given.

$$
\begin{aligned}
& c_{i}=\left\{\begin{array}{lll}
m_{i}+k_{i} & (\bmod 26) & 0 \leq i \leq n-1 \\
m_{i}+c_{i-n} & (\bmod 26) & n \leq i \leq l-1
\end{array}\right. \\
& \hat{c}_{i}=\left\{\begin{array}{lll}
m_{i}+k_{i} & (\bmod 26) & 0 \leq i \leq n-1 \\
m_{i}+m_{i-n} & (\bmod 26) & n \leq i \leq l-1
\end{array}\right.
\end{aligned}
$$

(a) Describe a ciphertext-only attack on $\mathbf{c}=\left(c_{0}, \ldots, c_{l-1}\right)$.
(b) Decrypt the cryptogram $\mathbf{c}=$ DLGVTYOACOUVCEZA.
(c) Assume the keylength to be known. Describe a ciphertext-only attack on $\hat{\mathbf{c}}=\left(\hat{c}_{0}, \ldots, \hat{c}_{l-1}\right)$.
(d) Decrypt the cryptogram $\hat{\mathbf{c}}=$ QEXYIRVESIUXXKQVFLHKG using keylength 2.

Exercise 8.

In Lemma 3.3 of the lecture notes, the expectation value of the index of coincidence was calculated for the ciphertext $\left(C_{1}, \ldots, C_{n}\right)$ with random variables $C_{1}, \ldots C_{n}$ i.i.d.
(a) Derive the variance of the index of coincidence $\operatorname{Var}\left(I_{C}\right)$ for the model of Lemma 3.3.

Exercise 9.

Let X, Y be random variables with support $\mathcal{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ and $\mathcal{Y}=\left\{y_{1}, \ldots, y_{d}\right\}$. Assume that X, Y are distributed by $P\left(X=x_{i}\right)=p_{i}$ and $P\left(Y=y_{j}\right)=q_{j}$.
Let (X, Y) be the corresponding two-dimensional random variable with distribution $P\left(X=x_{i}, Y=y_{j}\right)=p_{i j}$.
Prove the following statements from Theorem 4.3:
(a) $0 \leq H(X)$ with equality if and only if $P\left(X=x_{i}\right)=1$ for some i.
(b) $H(X) \leq \log m$ with equality if and only if $P\left(X=x_{i}\right)=\frac{1}{m}$ for all i.
(c) $H(X \mid Y) \leq H(X)$ with equality if and only if X and Y are stochastically independent (conditioning reduces entropy).
(d) $H(X, Y)=H(X)+H(Y \mid X)$ (chainrule of entropies).
(e) $H(X, Y) \leq H(X)+H(Y)$ with equality iff X and Y are stochastically independent.

Hint (a): $\ln z \leq z-1$ for all $z>0$ with equality if and only if $z=1$.
Hint (b),(c): If f is a convex function, the Jensen inequality $f(E(X)) \leq E(f(X))$ holds.

