Homework 4 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
 06.11.2012

Exercise 10. Let $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ be a cryptosystem. Suppose that $P(\hat{M}=M)>0$ for all $M \in \mathcal{M}, P(\hat{K}=K)>0$ for all $K \in \mathcal{K}$, and $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$ holds. Show that if $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ has perfect secrecy, then

$$
P(\hat{K}=K)=\frac{1}{|\mathcal{K}|} \text { for all } K \in \mathcal{K}
$$

and for all $M \in \mathcal{M}, C \in \mathcal{C}$ there is a unique $K \in \mathcal{K}$ such that $e(M, K)=C$.

Exercise 11. Let $\mathcal{M}=\{a, b\}$ be the message space, $\mathcal{K}=\left\{K_{1}, K_{2}, K_{3}\right\}$ the key space, and $\mathcal{C}=\{1,2,3,4\}$ the ciphertext space. Let \hat{M}, \hat{K} be stochastically independent random variables with support \mathcal{M} and \mathcal{K}, respectively, and with probability distributions: $P(\hat{M}=a)=\frac{1}{4}, P(\hat{M}=b)=\frac{3}{4}, P\left(\hat{K}=K_{1}\right)=\frac{1}{2}, P\left(\hat{K}=K_{2}\right)=\frac{1}{4}, P\left(\hat{K}=K_{3}\right)=\frac{1}{4}$.
The following table explains the encryption rules:

	K_{1}	K_{2}	K_{3}
a	1	2	3
b	2	3	4

(a) Compute the entropies $H(\hat{M}), H(\hat{K}), H(\hat{C})$, and the key equivocation $H(\hat{K} \mid \hat{C})$.
(b) Why does this cryptosystem not have perfect secrecy?
(c) What could be changed to achieve perfect secrecy?

