Homework 5 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
 13.11.2012

Exercise 12. A block cipher is a cryptosystem where both plaintext and ciphertext space are the set \mathcal{A}^{n} of words of length n over an alphabet \mathcal{A}.
(a) Show that the encryption functions of block ciphers are permutations.
(b) How many different block ciphers exist if $\mathcal{A}=\{0,1\}$ and the block length is $n=6$?

Exercise 13. Consider the following AES-128 key given in hexadecimal notation:

$$
K=2 D 617269650076616 E 00436 C 65656666
$$

(a) What is the round key K_{0} ?
(b) What are the first 4 bytes of round key K_{1} ?

Exercise 14. Within the step MixColumns of the AES algorithm $\mathbf{r}=\left(r_{0}, r_{1}, r_{2}, r_{3}\right)^{\prime} \in \mathbb{F}_{2^{8}}^{4}$, $\mathbb{F}_{2^{8}}=\mathbb{F}_{2}[X] /\left(x^{8}+x^{4}+x^{3}+x+1\right) \mathbb{F}_{2}[X]$, is given by $\mathbf{r}=\mathbf{T c}$ with $\mathbf{c}=\left(c_{0}, c_{1}, c_{2}, c_{3}\right)^{\prime} \in \mathbb{F}_{2^{8}}^{4}$,

$$
\mathbf{T}=\left(\begin{array}{cccc}
x & (x+1) & 1 & 1 \\
1 & x & (x+1) & 1 \\
1 & 1 & x & (x+1) \\
(x+1) & 1 & 1 & x
\end{array}\right) \in \mathbb{F}_{2^{8}}^{4 \times 4}
$$

Show $\left(c_{3} u^{3}+c_{2} u^{2}+c_{1} u+c_{0}\right)\left((x+1) u^{3}+u^{2}+u+x\right)=r_{3} u^{3}+r_{2} u^{2}+r_{1} u+r_{0} \bmod u^{4}+1$.

