

Homework 5 in Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 13.11.2012

Exercise 12. A block cipher is a cryptosystem where both plaintext and ciphertext space are the set \mathcal{A}^n of words of length n over an alphabet \mathcal{A} .

- (a) Show that the encryption functions of block ciphers are permutations.
- (b) How many different block ciphers exist if $A = \{0, 1\}$ and the block length is n = 6?

Exercise 13. Consider the following AES-128 key given in hexadecimal notation:

$$K = 2D \ 61 \ 72 \ 69 \ 65 \ 00 \ 76 \ 61 \ 6E \ 00 \ 43 \ 6C \ 65 \ 65 \ 66 \ 66$$

- (a) What is the round key K_0 ?
- (b) What are the first 4 bytes of round key K_1 ?

Exercise 14. Within the step MixColumns of the AES algorithm $\mathbf{r}=(r_0,r_1,r_2,r_3)'\in\mathbb{F}_{2^8}^4$, $\mathbb{F}_{2^8}=\mathbb{F}_2[X]/(x^8+x^4+x^3+x+1)\mathbb{F}_2[X]$, is given by $\mathbf{r}=\mathbf{Tc}$ with $\mathbf{c}=(c_0,c_1,c_2,c_3)'\in\mathbb{F}_{2^8}^4$,

$$\mathbf{T} = \begin{pmatrix} x & (x+1) & 1 & 1\\ 1 & x & (x+1) & 1\\ 1 & 1 & x & (x+1)\\ (x+1) & 1 & 1 & x \end{pmatrix} \in \mathbb{F}_{2^8}^{4 \times 4}.$$

Show $(c_3u^3 + c_2u^2 + c_1u + c_0)((x+1)u^3 + u^2 + u + x) = r_3u^3 + r_2u^2 + r_1u + r_0 \mod u^4 + 1.$