Homework 7 in Advanced Methods of Cryptography - Proposal for Solution -

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
27.11.2012

Solution to Exercise 20.

(a) For the MRPT (Miller Rabin primality test) the number n shall be displayed as $n=1+q \cdot 2^{k}$. Then, there are k squarings (iterations in the for loop).
Consequently, the worst case occurs for $q=1$, i.e., $n=1+2^{k}$. It follows

$$
n-1<10^{301}=2^{\log _{2}(10) \cdot 301}<2^{1000} .
$$

In worst case less than 1000 squarings are needed.
(b) By assumption P (MRPT states „ n is prime" \mid, n is composite" $)=\frac{1}{4}$. Let X be a random variable describing the number of tests until „ n is composite" is stated for the first time. As the repetitions for MRPT evaluations are independent, X follows a geometric distribution with parameter $p=\frac{3}{4}$, i.e.,

$$
P(X=M)=\left(\frac{1}{4}\right)^{M-1} \frac{3}{4} \text { and } E(X)=\frac{1}{p}=\frac{4}{3} .
$$

