Homework 9 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
 11.12.2012

Exercise 25. There is the following system of linear congruences:

$$
\begin{aligned}
& x \equiv 3 \quad(\bmod 11) \\
& x \equiv 5 \quad(\bmod 13) \\
& x \equiv 7 \quad(\bmod 15) \\
& x \equiv 9 \quad(\bmod 17) .
\end{aligned}
$$

(a) Compute the smallest positive solution using the Chinese Remainder Theorem.

Exercise 26. Alice and Bob use the Diffie-Hellman key exchange protocol to agree upon a shared key. As system parameters they use the prime number $p=101$ and the primitive element $a=2$ modulo p. Alice chooses the random secret $x=37$ and Bob chooses $y=33$. Use the Square and Multiply algorithm to compute large integer powers.
(a) How does the protocol work? Which values are exchanged between Alice and Bob?
(b) Compute the shared key.

Exercise 27. Prove Proposition 7.5 from the lecture, which provides a possibility to check whether a is a primitve element modulo n :
Let $p>3$ be prime, $p-1=\prod_{i=1}^{k} p_{i}^{t_{i}}$ the prime factorization of $p-1$. Then, $a \in \mathbb{Z}_{p}^{*}$ is a primitive element modulo $p \Leftrightarrow a^{\frac{p-1}{p_{i}}} \not \equiv 1(\bmod p)$ for all $i \in\{1, \ldots, k\}$.

Exercise 28. Alice and Bob are using the Shamir's no-key protocol to exchange a secret message. They agree to use the prime $p=31337$ for their communication. Alice chooses the random number $a=9999$ while Bob chooses $b=1011$. Alice's message is $m=3567$.
(a) Calculate all exchanged values c_{1}, c_{2}, and c_{3} following the protocol.

Hint: You may use $6399^{1011} \bmod \quad 31337=29872$.

