Homework 9 in Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 11.12.2012

Exercise 25. There is the following system of linear congruences:

 $x \equiv 3 \pmod{11}$ $x \equiv 5 \pmod{13}$ $x \equiv 7 \pmod{15}$ $x \equiv 9 \pmod{17}.$

(a) Compute the smallest positive solution using the Chinese Remainder Theorem.

Exercise 26. Alice and Bob use the Diffie-Hellman key exchange protocol to agree upon a shared key. As system parameters they use the prime number p = 101 and the primitive element a = 2 modulo p. Alice chooses the random secret x = 37 and Bob chooses y = 33. Use the Square and Multiply algorithm to compute large integer powers.

- (a) How does the protocol work? Which values are exchanged between Alice and Bob?
- (b) Compute the shared key.

RNTHAACHE

Exercise 27. Prove Proposition 7.5 from the lecture, which provides a possibility to check whether a is a primitve element modulo n:

Let p > 3 be prime, $p - 1 = \prod_{i=1}^{k} p_i^{t_i}$ the prime factorization of p - 1. Then, $a \in \mathbb{Z}_p^*$ is a primitive element modulo $p \Leftrightarrow a^{\frac{p-1}{p_i}} \not\equiv 1 \pmod{p}$ for all $i \in \{1, \ldots, k\}$.

Exercise 28. Alice and Bob are using the Shamir's no-key protocol to exchange a secret message. They agree to use the prime p = 31337 for their communication. Alice chooses the random number a = 9999 while Bob chooses b = 1011. Alice's message is m = 3567.

(a) Calculate all exchanged values c_1 , c_2 , and c_3 following the protocol. **Hint**: You may use $6399^{1011} \mod 31337 = 29872$.